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Definition

Wiki Epidemiology is the study and analysis of the distribution
(who, when, and where), patterns and determinants of health
and disease conditions in defined populations

BMJ Epidemiology is the study of how often diseases occur in
different groups of people and why. Epidemiological
information is used to plan and evaluate strategies to prevent
illness and as a guide to the management of patients in whom
disease has already developed

Etymology: the study of what is upon the people, derived from the
Greek epi (upon, among), demos (people, district) and logos
(study, word, discourse)
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https://en.wikipedia.org/wiki/Epidemiology
https://www.bmj.com/about-bmj/resources-readers/publications/epidemiology-uninitiated/1-what-epidemiology


What does ChatGPT say?

Epidemiology is the scientific discipline that focuses on
the study of the distribution, determinants, and patterns
of health-related events, conditions, and diseases within
populations. It involves the systematic collection, analysis,
and interpretation of data to understand how diseases and
health-related issues spread and impact different groups
of people. Epidemiologists use various research methods
and statistical techniques to investigate factors such as the
causes of diseases, risk factors, disease transmission, and
the effectiveness of interventions and preventive measures.
The findings from epidemiological studies are essential for
public health decision-making, healthcare planning, and
the development of strategies to control and prevent the
spread of diseases.
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Who, when and where

Recall part of the definition on Wikipedia
Epidemiology is the study and analysis of the distribution
(who, when, and where)
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A terminologically heavy domain

A few pointers for modellers:

- Moghadas and Laskowski. Review of terms used in modelling
influenza infection. NCCID 2014

- Milwid et al. Toward standardizing a lexicon of infectious disease
modeling terms. Frontiers in Public Health 2016

p. 4 – Epidemiology

https://nccid.ca/wp-content/uploads/sites/2/2015/03/ReviewTermsFluWEB.pdf
https://nccid.ca/wp-content/uploads/sites/2/2015/03/ReviewTermsFluWEB.pdf
https://doi.org/10.3389/fpubh.2016.00213
https://doi.org/10.3389/fpubh.2016.00213


Who

- Epidemiology typically used when dealing with humans, but
sometimes also generically when an easy description is sought; e.g.,
plant disease epidemiology

- Epizootic: denoting or relating to a disease that is temporarily
prevalent and widespread in an animal population

- Panzootic is like a pandemic for animals

- One Health: considers health of humans, animals and their
environment (including plants)
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Incidence & Prevalence (when?)

Incidence: number of new cases in a population generated within
a certain time period

Prevalence: number of cases of a disease at a single time point in
a population

=⇒ I(t) in an epidemiological model is prevalence, not
incidence
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Exposition versus Exposed

- Some bright bulb (not sure who) in days of yore: let’s call
exposed someone who has contracted the disease but is not yet
showing symptoms ( =⇒ SEIR model)

- ”Real” epidemiologist: let’s trace people who were exposed to
the virus, i.e., people having come into contact with the virus
(whether they have contracted the disease or not)

- Interestingly, I have embarked on a quixotic quest to make people
use L instead of E, only to be told by real epidemiologists that they
don’t care :)
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The different stages of propagation
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Epidemic curves

- Used to record the occurrence of new cases as a function of time

- When not too many cases, usually ”individualised” (bar plots)

- When number of cases is large, continuous curve
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Some terminology for “where”

▶ Epidemic: diseases that are visited upon a population

▶ Pandemic: (will revisit this later in the course) epidemic that
has spread across a large region, e.g., multiple continents or
worldwide

▶ Endemic: diseases that reside within a population

▶ We don’t say “panendemic”

p. 13 – Epidemiology



Where? 1854 cholera outbreak

Cholera outbreak near Broad
Street, London (UK)
Studied by John Snow

I found that
nearly all the deaths
had taken place
within a short dis-
tance of the [Broad
Street] pump
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https://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak
https://en.wikipedia.org/wiki/John_Snow


WHO pandemic (influenza) phases

Period Phase Description
Interpandemic 1

No animal influenza virus circulating
among animals has been reported to
cause infection in humans

2
Animal influenza virus circulating in
domesticated or wild animals known
to have caused infection in humans
and therefore considered a specific po-
tential pandemic threat
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https://www.ncbi.nlm.nih.gov/books/NBK143061/


WHO pandemic (influenza) phases

Period Phase Description
Pandemic alert 3

Animal or human-animal influenza re-
assortant virus has caused sporadic
cases or small clusters of disease
in people, but has not resulted in
H2H transmission sufficient to sustain
community-level outbreaks

4
Human-to-human transmission of an
animal or human-animal influenza
reassortant virus able to sustain
community-level outbreaks has been
verified
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https://www.ncbi.nlm.nih.gov/books/NBK143061/


WHO pandemic (influenza) phases

Period Phase Description
Pandemic alert 5

Same identified virus has caused sus-
tained community-level outbreaks in
at least 2 countries in 1 WHO region

Pandemic 6
In addition to criteria in Phase 5,
same virus has caused sustained
community-level outbreaks in at least
1 other country in another WHO re-
gion
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https://www.ncbi.nlm.nih.gov/books/NBK143061/


p. 18 – Epidemiology



Epidemiology
Definition
Who, when and where
Fighting against infections



Fighting against infections

Epidemiological information is used to plan and evaluate
strategies to prevent illness and as a guide to the man-
agement of patients in whom disease has already devel-
oped

▶ Preventing illness
▶ Prophylactic measures
▶ Vaccination

▶ Managing illness
▶ Prevention of further spread (e.g., in hospital)
▶ Treatment

p. 19 – Epidemiology



Immunisation
▶ Smallpox first disease for which it was known

▶ Mentioned in a 1549 Chinese book

▶ China: powdered smallpox scabs blown up noses of the healthy;
variolation-induced mortality not negligible (0.5-2%) but lower
than normal (20%)

▶ 1798: Edward Jenner introduces safer inoculation with cowpox
(vaccination)

▶ 1880s: Pasteur extends vaccination to chicken cholera and
anthrax in animals and human rabies

At the time, herd immunity was not understood so this was for
personal protection
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The domain is quite old ..

.. but has only become a thing in recent years!
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Daniel Bernoulli (1760)

▶ BNF scan or pdf

▶ Probably the first epidemic
model

▶ About petite vérole (small-
pox) inoculation
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https://gallica.bnf.fr/ark:/12148/bpt6k3558n/f220.item
https://julien-arino.github.io/assets/pdf/Bernoulli-1760.pdf


Ross (early 1900)

▶ On 20 August 1897, observed
malaria parasites in the gut of a
mosquito fed several days earlier
on a malaria positive human

▶ Nobel Prize for Medicine
1902

▶ Started considering malaria
eradication using mathematical
models; for some history, read
this 2012 paper
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320609/pdf/ppat.1002588.pdf


Kermack and McKendrick (1927+)

▶ We spend a lot more time on this later

▶ Groundbreaking set of papers starting in 1927

▶ We will see one particular case, the most well known, but this is
just the tip of the iceberg of their work

p. 24 – Mathematical Epidemiology



Macdonald, Dietz and malaria

▶ Read for instance this paper, which presents a history of the
development of the so-called Ross-Macdonald model

▶ Klaus Dietz also worked a lot on malaria
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https://doi.org/10.1371/journal.ppat.1002588


Some activity later, but not much until 1990s

▶ In recent years, explosion

▶ Since the beginning of COVID-19: just nuts..
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Some landmarks in mathematical epidemiology (IMBO)
▶ Macdonald. The epidemiology and control of malaria. 1957
▶ Baroyan, Rvachev et al. Deterministic epidemic models for a
territory with a transport network. Kibernetika, 1967
▶ Hethcote & Yorke. Gonorrhea Transmission Dynamics and
Control. LNBM 56, 1984
▶ Anderson & May. Infectious diseases of humans: dynamics and
control. 1991
▶ Capasso. Mathematical Structures of Epidemic Systems. LNBM
97, 1993
▶ Hethcote. The mathematics of infectious diseases. SIAM
Review, 2000
▶ van den Driessche & Watmough. Reproduction numbers and
sub-threshold endemic equilibria for compartmental models of
disease transmission. MBS, 2002
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A more recent trend

▶ Some rare numerical work ≤ 1980s, mostly simulation of math
models
▶ Baroyan, Rvachev et al. Computer modelling of influenza

epidemics for the whole country (USSR). Advances in Applied
Probability (1971)

▶ Rvachev & Longini. A mathematical model for the global
spread of influenza. Mathematical Biosciences (1986)

▶ Flahault, Letrait et al. Modelling the 1985 influenza epidemic
in France. Statistics in Medicine (1988)

▶ More and more frequent now, to the point that some modelling
studies are purely simulation-based

p. 28 – Mathematical Epidemiology

https://doi.org/10.2307/1426167
https://doi.org/10.2307/1426167
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1002/sim.4780071107
https://doi.org/10.1002/sim.4780071107


Agent-based models (ABM)

▶ Early in the life of these models, they were called IBM
(individual-based models)

▶ Over the years, a ”philosophical” distinction has emerged:
▶ IBM are mathematical models that consider individuals as the

units; e.g., DTMC, CTMC, branching processes, etc.
▶ ABM are computational models whose study is, for the most

part, only possible numerically

p. 29 – Mathematical Epidemiology



Network models

▶ Network models endow vertices with simple systems and couple
them through graphs

▶ Can be ABM, but some networks can also be studied analytically

p. 30 – Mathematical Epidemiology
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Has happened all along, undergoing a transformation

▶ Epidemiology has long relied on data

▶ Many developments in statistics originate there

▶ Data has traditionally been better for chronic diseases than for
infectious ones

▶ Near-real-time surveillance of infectious diseases ongoing since
the 1980s (e.g., Réseau Sentinelles)

▶ SARS-CoV-1 saw the beginning of a move towards real-time
emerging infectious disease data

▶ With SARS-CoV-2, the system has really progressed a lot, both
in terms of “citizen science” and governmental initiatives

p. 31 – Mathematical Epidemiology
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Compartmental models

▶ Have become synonymous with epidemiological models

▶ Many epidemiological models are compartmental models, but
the development of compartmental models in the 1970-1980s was
not at all specific to epidemiology

▶ See in particular the works of John Jacquez, Carl Simon, GG
Walter

▶ Unjustly fell into disuse: there are some very nice results in the
area
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Compartment (Jacquez 1979)

A compartment is an amount of some material which
acts kinetically like a distinct, homogeneous, well-mixed
amount of material. A compartmental system consists
of one or more compartments which interact by exchang-
ing the material. There may be inputs into one or more
compartments from outside the system and there may be
excretions from the compartments of the system.

p. 33 – Compartmental models

https://doi-org.uml.idm.oclc.org/10.1016/B978-0-12-434180-7.50021-8


qi

ii(t)
fjifij

f0i

▶ qi size of the compartment, i.e.,
quantity of kinetically
homogeneous material present
in i; qi ≥ 0

▶ fij and fji transfer
coefficients/functions

▶ f0i excretion coefficient/function
▶ ii(t) entries from outside the

system

Above is a flow diagram, which summarises the different flows
acting on the compartment
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Paper series worth reading

Model here is a particular case in
▶ Kermack & McKendrick. A contribution to the mathematical

theory of epidemics (1927)

That paper was followed by a series of “Contributions to the
mathematical theory of epidemics.”
▶ II. The problem of endemicity (1932)
▶ III. Further studies of the problem of endemicity (1933)
▶ IV. Analysis of experimental epidemics of the virus disease

mouse ectromelia (1937)
▶ V. Analysis of experimental epidemics of mouse-typhoid; a

bacterial disease conferring incomplete immunity (1939)

p. 35 – The Kermack-McKendrick SIR model without demography

https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1932.0171
https://doi.org/10.1098/rspa.1933.0106
https://doi.org/10.1017/S0022172400034902
https://doi.org/10.1017/S0022172400034902
https://doi.org/10.1017/S0022172400011918
https://doi.org/10.1017/S0022172400011918


What is the size of an epidemic?

▶ If we are interested in the possibility that an epidemic occurs
▶ Does an epidemic peak always take place?
▶ If it does take place, what is its size?

▶ If an epidemic traverses a population, is everyone
affected/infected?

p. 36 – The Kermack-McKendrick SIR model without demography
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The Kermack-McKendrick SIR model without demography

▶ The period of time under consideration is sufficiently short that
demography can be neglected (we also say the model has no vital
dynamics)

▶ Individuals are either susceptible to the disease or infected by
(and infectious with) the disease

▶ After recovering or dying from the disease, individuals are
removed from the infectious compartment (R)

▶ Incidence is of mass action type and takes the form βSI
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The state variables

We formulate the model as a system of differential equations

Differential equationsL unknowns are functions (instead of scalars,
like in algebraic equations)

At time t ≥ 0 (we typically assume time starts at t = 0, but could
also consider t ≥ t0 > 0), the state variables, in the current
model, are the numbers of individuals who are
▶ susceptible to the disease: S(t)
▶ infected and infectious with the disease: I(t)
▶ removed from the infectious comparment: R(t)

Often, we drop the dependence on t if it is not explicitly required
and write S, I,R
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Important – Incidence functions
Incidence is the rate at which new cases arise, the incidence
function then describes how contacts lead to new infections

If there are S susceptible individuals and I infectious individuals in
the population, we use a function of the form

f(S, I)

The function can also explicitly depend on the total population N,
i.e., f(S, I,N)

We return to incidence functions in Lecture 06

For now, just know the most common incidence functions are
▶ mass action incidence f(S, I,N) = βSI
▶ standard (or proportional) incidence f(S, I,N) = βSI/N

p. 39 – The Kermack-McKendrick SIR model without demography
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The Kermack-McKendrick model

This model is typically called the Kermack-McKendrick (KMK)
SIR model

d
dtS(t) = −βS(t)I(t)
d
dt I(t) = βS(t)I(t)− γI(t)
d
dtR(t) = γI(t)

S(t) I(t) R(t)
βS(t)I(t) γI(t)

p. 40 – The Kermack-McKendrick SIR model without demography



The Kermack-McKendrick model

As indicated, we often drop dependence on t of the state variables;
we also write X′ := dX(t)/dt. So the KMK model is usually written

S′ = −βSI (1a)
I′ = βSI − γI (1b)

R′ = γI (1c)

S I R
βSI γI

p. 41 – The Kermack-McKendrick SIR model without demography
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Reduction of the model
3 compartments, but when considered in detail, we notice that
removed do not have a direct influence on the dynamics of S or I,
in the sense that R does not appear in (1a) or (1b)

Furthermore, the total population (including deceased who are also
in R) N = S + I + R satisfies

N′ = (S + I + R)′ = 0

Thus, N is constant and the dynamics of R can be deduced from
R = N − (S + I)

So we now consider

S′ = −βSI (2a)
I′ = βSI − γI (2b)
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Equilibria
Let us consider the equilibria of

S′ = −βSI (2a)
I′ = (βS − γ)I (2b)

From (2b)
▶ either S⋆ = γ/β

▶ or I⋆ = 0

Substitute into (2a)
▶ in the first case, (S⋆, I⋆) = (γ/β, 0)
▶ in the second case, any S⋆ ≥ 0 is an EP

The second case is an issue: the usual linearisation does not work
when there is a continuum of equilibria as the EP are not isolated
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Another approach – Study dI/dS

S′ = −βSI (2a)
I′ = βSI − γI (2b)

What is the dynamics of dI/dS?

dI
dS =

dI
dt

dt
dS =

I′
S′ =

βSI − γI
−βSI =

γ

βS − 1 (4)

provided S ̸= 0

Note – Recall that S and I are S(t) and I(t).. (4) thus describes
the relation between S and I over solutions to the original ODE (2)
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Integrate (4) and obtain trajectories in state space

I(S) = γ

β
ln S − S + C

with C ∈ R

IC I(S0) = I0 ⇒ C = S0 + I0 −
γ

β
ln S0 and the solution to (1) is, as

a function of S

I(S) = S0 + I0 − S +
γ

β
ln

S
S0

R(S) = N − S − I(S) = R0 −
γ

β
ln

S
S0

(since N0 = S0 + I0 + R0)
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Trajectories of (2) in (S, I)-space, normalised, with IC (S0, 1 − S0)
and β/γ = 2.5
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Let us study
I(S) = S0 + I0 − S +

γ

β
ln

S
S0

We have
d
dSI(S) = γ

βS − 1

So, in the previous curves, the max of I(S) happens when S = γ/β
(S = 0.4 in the example)

At that point,

I(S) = I0 +
(

1 − 1
R0

− ln(R0)

R0

)
S0
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Theorem 1 (Epidemic or no epidemic?)
Let (S(t), I(t)) be a solution to (2) and R0 defined by

R0 =
β

γ
S0 (5)

▶ If R0 ≤ 1, then I(t) ↘ 0 when t → ∞
▶ If R0 > 1, then I(t) first reaches a maximum

I0 +
(

1 − 1
R0

− ln(R0)

R0

)
S0 (6)

then goes to 0 as t → ∞
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rhs_SIR_KMK <- function(t, x, p) {
with(as.list(c(x, p)), {

dS = - beta * S * I
dI = beta * S * I - gamma * I
dR = gamma * I
return(list(c(dS, dI, dR)))

})
}
# Initial condition for S (to compute R_0)
S0 = 1000
gamma = 1/14
# Set beta so that R_0 = 1.5
beta = 1.5 * gamma / S0
params = list(gamma = gamma, beta = beta)
IC = c(S = S0, I = 1, R = 0)
times = seq(0, 365, 1)
sol_KMK <- ode(IC, times, rhs_SIR_KMK, params)

p. 49 – The Kermack-McKendrick SIR model without demography



plot(sol_KMK[, "time"], sol_KMK[, "I"], type = "l",
main = TeX("Kermack-McKendrick SIR, $R_0=1.5$"),
xlab = "Time (days)", ylab = "Prevalence")
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The basic reproduction number R0

▶ Indicator often used in epidemiology. Verbally
average number of secondary cases of infection produced
when a single infectious individual is introduced in a wholly
susceptible population

▶ If R0 < 1, then each infectious individual infects on average less
than 1 person and the epidemic is quite likely to go extinct

▶ If R0 > 1, then each infectious individual infects on average
more than 1 person and an epidemic is quite likely to occur

p. 51 – The Kermack-McKendrick SIR model without demography



A few sample values of R0

R0 can be estimated from data

Infection Location Period R0
Measles Cirencester, England 1947-50 13-14

England and Wales 1950-68 16-18
Kansas, USA 1918-21 5-6
Ontario, Canada 1912-3 11-12
Willesden, England 1912-3 11-12
Ghana 1960-8 14-15
East Nigeria 1960-8 16-17

p. 52 – The Kermack-McKendrick SIR model without demography
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Final size of an epidemic

For a nonnegative valued integrable function w(t), denote

w0 = w(0), w∞ = lim
t→∞

w(t), ŵ =

∫ ∞

0
w(t) dt

In the subsystem

S′ = −βSI (2a)
I′ = βSI − γI (2b)

compute the sum of (2a) and (2b), making sure to show time
dependence

d
dt(S(t) + I(t)) = −γI(t)
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Integrate from 0 to ∞:∫ ∞

0

d
dt(S(t) + I(t)) dt = −

∫ ∞

0
γI(t)dt

The left hand side gives∫ ∞

0

d
dt(S(t) + I(t)) dt = S∞ + I∞ − S0 − I0 = S∞ − S0 − I0

since I∞ = 0

The right hand side takes the form

−
∫ ∞

0
γI(t)dt = −γ

∫ ∞

0
I(t)dt = −γ Î

We thus have
S∞ − S0 − I0 = −γ Î (7)
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Now consider (2a):
S′ = −βSI

Divide both sides by S:

S′(t)
S(t) = −βI(t)

Integrate from 0 to ∞:

ln S∞ − ln S0 = −β Î (8)

Express (7) and (8) in terms of −Î and equate

ln S∞ − ln S0
β

=
S∞ − S0 − I0

γ

Thus we have

(ln S0 − ln S∞)S0 = (S0 − S∞)R0 + I0R0 (9)
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Theorem 2 (Final size relation)
Let (S(t), I(t)) be a solution to (2) and R0 defined by (5)

The number S(t) of susceptible individuals is a nonincreasing
function and its limit S∞ is the only solution in (0, S0) of the
transcendental equation

(ln S0 − ln S∞)S0 = (S0 − S∞)R0 + I0R0 (9)

p. 56 – The Kermack-McKendrick SIR model without demography



The (transcendantal) final size equation

Rewrite the final size equation

(ln S0 − ln S∞)S0 = (S0 − S∞)R0 + I0R0 (9)

as

T(S∞) = (ln S0 − ln S∞)S0 − (S0 − S∞)R0 − I0R0 (10)

Thus, we seek the zeros of the function T(S∞)

p. 57 – The Kermack-McKendrick SIR model without demography



We seek S∞ in (0, S0] s.t. T(S∞) = 0, with

T(S∞) = (ln S0 − ln S∞)S0 − (S0 − S∞)R0 − I0R0 (10)

Note to begin that

lim
S∞→0

T(S∞) = lim
S∞→0

−S0 ln(S∞) = ∞

Differentiating T with respect to S∞, we get

T′(S∞) = R0 − S0/S∞

When S∞ → 0, R0 − S0/S∞ < 0, so T decreases to S∞ = S0/R0

So if R0 ≤ 1, the function T is decreasing on (0, S0), while it has a
minimum if R0 > 1
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Case R0 ≤ 1

T(S∞) = (ln S0 − ln S∞)S0 − (S0 − S∞)R0 − I0R0 (10)

▶ We have seen that T decreases on (0, S0]

▶ Also, T(S0) = −I0R0 < 0 (I0 = 0 is trivial and not considered)

▶ T is continuous

=⇒ there exists a unique S∞ ∈ (0, S0] s.t. T(S∞) = 0
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Case R0 > 1

T(S∞) = (ln S0 − ln S∞)S0 − (S0 − S∞)R0 − I0R0 (10)

▶ We have seen that T decreases on (0, S0/R0]

▶ For S∞ ∈ [S0/R0], T′ > 0

▶ As before, T(S∞) = −I0R0

▶ T is continuous

=⇒ there exists a unique S∞ ∈ (0, S0] s.t. T(S∞) = 0. More
precisely, in this case, S∞ ∈ (0, S0/R0)
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We solve numerically. We need a function
final_size_eq = function(S_inf, S0 = 999, I0 = 1, R_0 = 2.5) {

OUT = S0*(log(S0)-log(S_inf)) - (S0+I0-S_inf)*R_0
return(OUT)

}

and solve easily using uniroot, here with the values by default
that we have set for the function
uniroot(f = final_size_eq, interval = c(0.05, 999))
$root
[1] 106.8819
$f.root
[1] -2.649285e-07
$iter
[1] 10
$init.it
[1] NA
$estim.prec
[1] 6.103516e-05
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To use something else than the default values, e.g.,

N0 = 1000
I0 = 1
S0 = N0-I0
R_0 = 2.4
uniroot(

f = function(x)
final_size_eq(S_inf = x,

S0 = S0, I0 = I0,
R_0 = R_0),

interval = c(0.05, S0))
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A function to use this..

final_size = function(L) {
with(as.list(L), {
S_inf = uniroot(f = function(x) final_size_eq(S_inf = x,

S0 = S0, I0 = I0,
R_0 = R_0),

interval = c(0.05, S0))
return(S_inf$root)
})

}
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A figure with all the information

S = seq(0.1, S0, by = 0.1)
fs = final_size_eq(S, S0 = S0, I0 = I0, R_0 = R_0)
S_inf = uniroot(f = function(x) final_size_eq(S_inf = x,

S0 = S0, I0 = I0,
R_0 = R_0),

interval = c(0.05, S0))
plot(S, fs, type = "l", ylab = "Value of equation (10)")
abline(h = 0)
points(x = S_inf$root, y = 0, pch = 19)
text(x = S_inf$root, y = 0, labels = "S_inf", adj = c(-0.25,-1))

p. 64 – The Kermack-McKendrick SIR model without demography



R0 = 0.8

0 200 400 600 800 1000

0
20

00
40

00
60

00
80

00

S

V
al

ue
 o

f e
qu

at
io

n 
(1

0)

S_inf

p. 65 – The Kermack-McKendrick SIR model without demography



R0 = 2.4

0 200 400 600 800 1000

0
20

00
40

00
60

00

S

V
al

ue
 o

f e
qu

at
io

n 
(1

0)

S_inf

p. 66 – The Kermack-McKendrick SIR model without demography



A little nicer

values = expand.grid(
R_0 = seq(0.01, 3, by = 0.01),
I0 = seq(1, 100, 1)

)
values$S0 = N0-values$I0
L = split(values, 1:nrow(values))
values$S_inf = sapply(X = L, FUN = final_size)
values$final_size = values$S0-values$S_inf+values$I0
values$attack_rate = (values$final_size / N0)*100

p = levelplot(attack_rate ~ R_0*I0, data = values,
xlab = TeX("$R_0$"), ylab = "I(0)",
col.regions = viridis(100))

print(p)

(requires lattice, viridis and latex2exp librairies)
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The simplest vaccination model

To implement vaccination in KMK, assume that vaccination
reduces the number of susceptibles

Let total population be N with S0 initially susceptible

Vaccinate a fraction p ∈ [0, 1] of susceptible individuals

Original IC (for simplicity, R(0) = 0)

IC : (S(0), I(0),R(0)) = (S0, I0, 0) (11)

Post-vaccination IC

IC : (S(0), I(0),R(0)) = ((1 − p)S0, I0, pS0) (12)
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Vaccination reproduction number

Without vaccination
R0 =

β

γ
S0 (5)

With vaccination, denoting Rv the reproduction number,

Rv =
β

γ
(1 − p)S0 (13)

Since p ∈ [0, 1], Rv ≤ R0
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Herd immunity

Therefore
▶ Rv < R0 if p > 0
▶ To control the disease, Rv must take a value less than 1

To make Rv less than 1

Rv < 1 ⇐⇒ p > 1 − 1
R0

(14)

By vaccinating a fraction p > 1 − 1/R0 of the susceptible
population, we thus are in a situation where an epidemic peak is
precluded (or, at the very least, the final size is reduced)

This is herd immunity
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Two potential variations on the Kermack-McKendrick
model

▶ Add vital dynamics, i.e., consider demographic processes

▶ Individuals do not die from the disease; after recovering,
individuals are immune from infection for some time

▶ We can of course combine both!
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Potential variations

S I R
b(N)

dS dI dR

βSI γI

S I R
βSI γI

νR

S I R
b(N)

dS dI dR

βSI γI
νR
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The model

S

I

R

b(N)

dS

dI

dR

βSI

γI
νR

S′ = b(N) + νR − dS − βSI (15a)
I′ = βSI − (d + γ)I (15b)

R′ = γI − (d + ν)R (15c)

Consider the initial value problem consisting
in (15) to which we couple initial conditions
S(0) = S0 ≥ 0, I(0) = I0 ≥ 0 and R(0) =
R0 ≥ 0

Typically, we assume N0 = S0 + I0 + R0 > 0 to
avoid a trivial case
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Birth and death are relative

Remark that the notions of birth and death are relative to the
population under consideration

E.g., consider a model for human immunodeficiency virus (HIV) in
an at-risk population of intravenous drug users. Then
▶ birth is the moment the at-risk behaviour starts
▶ death is the moment the at-risk behaviour stops, whether

from “real death” or because the individual stops using drugs
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Choosing a form for demography

Before we proceed with the analysis proper, we must discuss the
nature of the assumptions on demography

To do this, we consider the behaviour of the total population

N(t) = S(t) + I(t) + R(t)
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Behaviour of the total population

Summing the equations in (15)

N′ = b(N)− dN (16)

There are three common ways to define b(N) in (16)
1. b(N) = b
2. b(N) = bN
3. b(N) = bN − cN2

Case 3 leads to logistic dynamics of the total population and is not
discussed here
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Case of a birth rate constant per capita
If b(N) = bN, then birth in (16) satisfies N′/N = b; we say that
birth is constant per capita

In this case, (16) takes the form

N′ = bN − dN = (b − d)N

with initial condition N(0) = N0

The solution to this scalar autonomous ODE is easy

N(t) = N0e(b−d)t, t ≥ 0

Thus there are 3 possibilities:
▶ if b > d, N(t) → ∞, the total population explodes
▶ if b = d, N(t) ≡ N0, the total population remains constant
▶ if b < d, N(t) → 0, the total population collapses
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From now on, assume b(N) = b

▶ We want a reasonable case, we could therefore suppose that
b(N) = d, which would lead to a constant total population

▶ However, this is a little reductive, so we choose instead
b(N) = b, which, we will see, works as well even though it can
initially be thought of as not being very realistic
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The model (for good this time)

S

I

R

b
dS

dI

dR

βSI

γI
νR

S′ = b + νR − dS − βSI (17a)
I′ = βSI − (d + γ)I (17b)

R′ = γI − (d + ν)R (17c)

Consider the initial value problem consisting
in (17) to which we couple initial conditions
S(0) = S0 ≥ 0, I(0) = I0 ≥ 0 and R(0) =
R0 ≥ 0

Typically, we assume N0 = S0 + I0 + R0 > 0 to
avoid a trivial case
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Is the system well-posed?

For an ODE epidemiological model

▶ Do solutions to (17) exist and are they unique?

▶ Is the positive cone invariant under the flow of (17)?

▶ Are solutions to (17) bounded? Some models have unbounded
solutions but they are rare and will need to be considered
specifically
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Solutions exist and are unique

▶ The vector field is always C1, implying that solutions exist and
are unique

If we had instead considered an incidence of the form
f(S, I,N) = βSI/N and, say, demography with b(N) = bN, then
some discussion might have been needed if b < d
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Invariance of R3
+ under the flow (1)

Let us start by assuming that I(0) = I0 = 0. Then (17b) remains
I′ = 0, meaning that the SR-plane (i.e., the set {I = 0}) is
positively invariant under the flow of (17)

On that plane, (17) reduce to

S′ = b + νR − dS (18a)
R′ = −(d + ν)R (18b)

=⇒ a solution with I0 > 0 cannot enter the plane {I = 0}.
Indeed, suppose that I0 > 0 but ∃t⋆ > 0 such that I(t⋆) = 0. Then
at (S(t⋆), I(t⋆) = 0,R(t⋆)), there are two solutions to (17): the one
we just generated as well as the one governed by (18)

This contradicts uniqueness of solutions to (17)
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Invariance of R3
+ under the flow (2)

We saw that I(t) > 0 if I(0) > 0

Suppose now that S = 0. Equation (17a) is then

S′ = b + νR > 0

So if S(0) = S0 > 0, then S(t) > 0 for all t. If, on the other hand,
S0 = 0, then S(t) > 0 for t > 0 small; from what we just saw, this
is then also true for all t > 0

We say the vector field points inward

=⇒ S cannot become zero

Do the same for R
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To summarise, for invariance

For simplicity, denote R⋆ = R \ {0}

▶ If (S(0), I(0),R(0)) ∈ R+ × R⋆
+ × R+, then ∀t > 0,

(S(t), I(t),R(t)) ∈ (R⋆
+)

3

▶ If (S(0), I(0),R(0)) ∈ R+ × {0} × R+, then ∀t ≥ 0,

(S(t), I(t),R(t)) ∈ R⋆
+ × {0} × R+

The model is therefore satisfactory in that it does not allow
solutions to become negative
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Remark – Know your audience

This reasoning has its place in an MSc of PhD manuscript: you
need to demonstrate that you know what to do and how to do it

In a research paper, this is not really necessary and actually often
superfluous; it is easy to show that solutions exist uniquely and
that the positive orthant is invariant under the flow of the system
is typically sufficient
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The total population is asymptotically constant

Since b(N) = b, the total population equation (16) takes the form

N′ = b − dN

This equation has a unique equilbrium N⋆ = b/d and it is very easy
to check that this equilibrium is GAS: this is a scalar autonomous
equation, so solutions are monotone; they increase to N⋆ if
N0 < N⋆ and decrease to N⋆ if N0 > N⋆

So we can work at the limit N⋆ where R = N⋆ − (S + I) and thus
drop the equation for R
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Boundedness

It follows from what we just saw that the positive cone R3
+ is

(positively) invariant under the flow of (17)

Since N(t) → N⋆, we deduce that solutions of (17) are bounded
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Seeking equilibria
We seek S = S⋆, I = I⋆,R = R⋆ such that

0 = b + νR − dS − βSI (19a)
0 = βSI − (d + γ)I (19b)
0 = γI − (d + ν)R (19c)

From (19b), either I⋆ = 0 or βS− (d+ γ) = 0, i.e., S⋆ = (d+ γ)/β

When I⋆ = 0, substituting I⋆ = 0 into (19c) implies that R⋆ = 0
and, in turn, substituting I⋆ = R⋆ = 0 into (19c) gives S⋆ = b/d.
This gives the disease-free equilibrium (DFE)

E0 := (S⋆, I⋆,R⋆) =

(
b
d , 0, 0

)
(20)

We return to S⋆ = (d + γ)/β in a while

p. 89 – The endemic SIRS model with demography



Classic method for computing R0

R0 is the surface in parameter space where the DFE loses its LAS

To find R0, we therefore study the LAS of the DFE

In an arbitrary (S, I,R), the Jacobian matrix of (17) takes the form

J(S,I,R) =

−d − βI −βS ν
βI βS − (d + γ) 0
0 γ −(d + ν)

 (21)
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The LAS of the DFE depends on the sign of the real parts of the
eigenvalues of (21) at that equilibrium point, so we evaluate

JE0 =

−d −βS⋆ ν
0 βS⋆ − (d + γ) 0
0 γ −(d + ν)

 (22)

Block upper triangular matrix =⇒ eigenvalues are −d < 0,
−(d + ν) < 0 and βS⋆ − (d + γ)

=⇒ LAS of the DFE determined by sign of βS⋆ − (d + γ)
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Sign of βS⋆ − (d + γ)

Recall that at the DFE (20), S⋆ = b/d, so

sign(βS⋆ − (d + γ)) = sign
(
β

b
d − (d + γ)

)
So the DFE is LAS if

β
b
d < d + γ ⇐⇒ β

d + γ

b
d < 1

Denote
R0 =

β

d + γ

b
d (23)

(We sometimes emphasise that b/d = N⋆, the total population,
and thus write R0 = βN⋆/(d + γ))
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Seeking equilibria (2)

Now consider the second EP where S⋆ = (d + γ)/β = N⋆/R0

Write (19c) as R⋆ = γI⋆/(d + ν)

Since S⋆ + I⋆ + R⋆ = N⋆, this means that

N⋆ − S⋆ − I⋆ = γI⋆/(d + ν)

so substituting S⋆ = N⋆/R0,(
1 +

γ

d + ν

)
I⋆ =

(
1 − 1

R0

)
N⋆

So finally
I⋆ =

(
1 − 1

R0

)
d + ν

d + ν + γ
N⋆
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The EEP

The endemic equilibrium (EEP) of (17) is

E⋆ := (S⋆, I⋆,R⋆) =(
1
R0

N⋆,

(
1 − 1

R0

)
d + ν

d + ν + γ
N⋆,N⋆ − (S⋆ + I⋆)

)
(24)

Remark that E⋆ is not biologically relevant when R0 ≤ 1
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Theorem 3
Let the basic reproduction number be

R0 =
β

d + γ
N⋆ (23)

and consider the EP of (17): the DFE

E0 =

(
b
d , 0, 0

)
(20)

and the EEP

E⋆ =

(
1
R0

N⋆,

(
1 − 1

R0

)
d + ν

d + ν + γ
N⋆,N⋆ − (S⋆ + I⋆)

)
(24)

▶ If R0 < 1, then E0 is LAS and E⋆ is not biologically relevant
▶ If R0 > 1, then E0 is unstable and E⋆ is biologically relevant

p. 95 – The endemic SIRS model with demography



As you can probably guess, if R0 > 1, then E⋆ is not only
biologically relevant by actually also LAS
Recall the Jacobian

J(S,I,R) =

−d − βI −βS ν
βI βS − (d + γ) 0
0 γ −(d + ν)

 (21)

=

−βI −βS ν
βI βS − γ 0
0 γ −ν

− dI

From this, we get that −d is an eigenvalue of J
▶ there is a theorem that tells us that if λ ∈ σ(M), then

λ+ k ∈ σ(M + kI) (σ(M) is the spectrum of M, the set
of eigenvalues of M)

▶ the first matrix on the second line has all column sums zero so
has a zero eigenvalue
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We could continue and after some blood, sweat and tears, get that
JE⋆ has its eigenvalues with negative real parts when E⋆ is
biologically relevant, i.e., when R0 > 1

With even more blood, sweat and tears, we can actually show that
the result is global

We express that on the next slide
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Theorem 4
Let the basic reproduction number be defined by (23) and consider
the DFE (20) and the EEP (24)

▶ If R0 < 1, then E0 is globally asymptotically stable (GAS)
and E⋆ is not biologically relevant

▶ If R0 > 1, then E0 is unstable and E⋆ is GAS

In other words
▶ when R0 < 1, then all solutions go to the DFE, the disease

goes extinct
▶ when R0 > 1, then all solutions go to the EEP, the disease

becomes endemic
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library(deSolve)
rhs_SIRS <- function(t, x, p) {

with(as.list(c(x, p)), {
dS = b + nu * R - d * S - beta * S * I
dI = beta * S * I - (d + gamma) * I
dR = gamma * I - (d + nu) * R
return(list(c(dS, dI, dR)))

})
}
# Initial conditions
N0 = 1000
I0 = 1
R0 = 0
IC = c(S = N0-(I0+R0), I = I0, R = R0)
# "Known" parametres
d = 1/(80*365.25)
b = N0 * d
gamma = 1/14
nu = 1/365.25
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# Set beta s.t. R_0 = 1.5
R_0 = 1.5
beta = R_0 * (d + gamma) / (N0-I0-R0)
params = list(b = b, d = d, gamma = gamma, beta = beta, nu = nu)
times = seq(0, 365, 1)
# Call the numerical integrator
sol_SIRS <- ode(y = IC, times = times, func = rhs_SIRS,

parms = params, method = "ode45")
# Plot the result
plot(sol_SIRS[,"time"], sol_SIRS[,"I"],

type = "l", lwd = 2,
xlab = "Time (days)", ylab = "Prevalence")

p. 100 – The endemic SIRS model with demography



0 100 200 300 400 500

0
10

20
30

40
50

60
70

Time (days)

P
re

va
le

nc
e

p. 101 – The endemic SIRS model with demography



I just did ...

What I advise not to do: illustrate a mathematical result without
adding anything to the result itself

Let us make things a bit better. See the code
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We could continue, but with a model this simple, there is little
more to do: the 3 parameters of the system are combined within
R0 and the latter summarises the dynamics well

We are going to show something important: the bifurcation
diagram

We saw that when R0 < 1, I → 0, whereas when R0 > 1,
I → (1 − 1/R0)N. Let us represent this (code)
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An SIRS model with vaccination

Take SIRS model (17) and assume the following

▶ Vaccination takes newborn individuals and moves them
directly into the removed compartment, without them
becoming infected/infectious

▶ A fraction p is vaccinated at birth

p. 106 – The endemic SIRS model with demography



The model

S

I

R

(1 − p)b

pb

dS

dI

dR

βSI

γI
νR

S′ = (1 − p)b + νR − dS − βSI (25a)
I′ = βSI − (d + γ)I (25b)

R′ = bp + γI − (d + ν)R (25c)

Consider the initial value problem consisting
in (25) to which we couple initial conditions
S(0) = S0 ≥ 0, I(0) = I0 ≥ 0 and R(0) =
R0 ≥ 0

Typically, we assume N0 = S0 + I0 + R0 > 0 to
avoid a trivial case
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This modification doesn’t change much

Equation (16) for the total population is unchanged

The Jacobian (21) at arbitrary point is also unchanged

The DFE is affected, though; as a consequence, so is the
reproduction number
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The DFE for the SIRS vaccination model
Considering (25) at equilibrium and substituting I⋆ = 0 into this
system gives

0 = (1 − p)b + νR⋆ − dS⋆

0 = bp − (d + ν)R⋆

which we rewrite as the linear system(
d −ν
0 d + ν

)(
S⋆

R⋆

)
=

(
(1 − p)b

bp

)
Thus (

S⋆

R⋆

)
=

1
d(d + ν)

(
d + ν ν

0 d

)(
(1 − p)b

pb

)
=

1
d(d + ν)

(
(d + ν)(1 − p)b + pbν

pbd

)
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As a consequence, the DFE takes the form

Ev
0 := (S⋆, I⋆,R⋆) =

((
1 − p +

pν
d + ν

)
N⋆, 0, pd

d + ν
N⋆

)
(26)

Substituting (26) into the eigenvalue that determines stability of
the DFE, βS⋆ − (d + γ), we get

βS⋆ − (d + γ) < 0 ⇐⇒ β

d + γ
S⋆ < 1

⇐⇒ β

d + γ

(
1 − p +

pν
d + ν

)
N⋆ < 1

So we define

Rv
0 =

β

d + γ

(
1 − p +

pν
d + ν

)
N⋆ (27)
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Herd immunity

Therefore
▶ Rv

0 < R0 if p > 0
▶ To control the disease, Rv must take a value less than 1, i.e.,

Rv < 1 ⇐⇒ p > 1 − 1
R0

(28)

By vaccinating a fraction p > 1 − 1/R0 of newborns, we thus are
in a situation where the disease is eventually eradicated

This is herd immunity
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To simplify or not to simplify?

▶ In the KMK epidemic model (1) and the SIRS endemic model
(17), since the total population is constant or asymptotically
constant, it is possible to omit one of the state variables since
N⋆ = S + I + R

▶ We often use R = N⋆ − S − I

▶ This can greatly simplify some computations

▶ Whether to do it or not is a matter of preference
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To normalise or not to normalise?

▶ In the KMK epidemic model (1) and the SIRS endemic model
(17), since the total population is constant or asymptotically
constant, it is possible to normalise to N = 1

▶ This can greatly simplify some computations

▶ However, I am not a big fan: it is important to always have the
“sizes” of objects in mind

▶ If you do normalise, at least for a paper destined to
mathematical biology, always do a “return to biology”, i.e.,
interpret your results in a biological light, which often implies to
return to original values

p. 113 – Last remarks



Where we are

▶ An epidemic SIR model (the KMK SIR) in which the presence or
absence of an epidemic wave is characterised by the value of R0

▶ The KMK SIR has explicit solutions (in some sense). This is an
exception!

▶ An endemic SIRS model in which the threshold R0 = 1 is such
that, when R0 < 1, the disease goes extinct, whereas when
R0 > 1, the disease becomes established in the population
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