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Time to events

We suppose that a system can be in two states, S1 and S2
▶ At time t = 0, the system is in state S1.
▶ An event happens at some time t = τ , which triggers the switch from state S1 to

state S2.

Let us call T the random variable
“time spent in state S1 before switching into state S2”
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The states can be anything:
▶ S1: working, S2: broken;
▶ S1: infected, S2: recovered;
▶ S1: alive, S2: dead;
▶ . . .

We take a collection of objects or individuals that are in state S1 and want some law
for the distribution of the times spent in S1, i.e., a law for T

For example, we make light bulbs and would like to tell our customers that on average,
our light bulbs last 200 years..

For this, we conduct an infinite number of experiments, and observe the time that it
takes, in every experiment, to switch from S1 to S2
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A distribution of probability is a model

From the sequence of experiments, we deduce a model, which in this context is called
a probability distribution

We assume that T is a continuous random variable
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Probability density function
Since T is continuous, it has a continuous probability density function f
▶ f ≥ 0
▶ ∫ +∞

−∞ f(s)ds = 1
▶ P(a ≤ T ≤ b) =

∫ b
a f(t)dt

t

f(t)
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Cumulative distribution function
The cumulative distribution function (c.d.f.) is a function F(t) that characterizes the
distribution of T, and defined by

F(s) = P(T ≤ s) =
∫ s

−∞
f(x)dx

t

f(t)
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Survival function

Another characterization of the distribution of the random variable T is through the
survival (or sojourn) function

The survival function of state S1 is given by

S(t) = 1− F(t) = P(T > t) (1)

This gives a description of the sojourn time of a system in a particular state (the time
spent in the state)

S is a nonincreasing function (since S = 1− F with F a c.d.f.), and S(0) = 1 (since T
is a nonnegative random variable)
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The average sojourn time τ in state S1 is given by

τ = E(T) =
∫ ∞

0
tf(t)dt

Since limt→∞ tS(t) = 0, it follows that

τ =

∫ ∞

0
S(t)dt

Expected future lifetime:

1
S(t0)

∫ ∞

0
t f(t + t0) dt

S(t)− S(a) = P {survive during (a, t) having survived until a}

= exp

(
−
∫ t

a
h(u)du

)
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Hazard rate

The hazard rate (or failure rate) is

h(t) = lim
∆t→0

S(t)− S(t +∆t)
∆t

= lim
∆t→0

PT < t +∆t|T ≥ t
∆t

=
f(t)
S(t)

It gives probability of failure between t and ∆t, given survival to t.

We have
h(t) = − d

dt lnS(t)
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Competing risks

Suppose now that the system starts in state A at time t = 0 and that depending on
which of the two events E1 or E2 takes place first, it switches to state B1 or B2,
respectively

Consider the random variables TA, time spent in state A (or sojourn time in A), TAB1 ,
time before switch to B1 and TAB2 , time before switch to B2

If we consider state A, we cannot observe the variables TAB1 or TAB2 . What is
observable is the sojourn time in A

T∗
A = min (TAB1 ,TAB2)

(where ∗ indicates that a quantity is observable)
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Taux d’échec par type d’évènement

We have two (or more) types of events whose individual failure rates have to be
accounted for

hj(t) = lim
∆t→0

P(T < t +∆t, S = Sj|T ≥ t)
∆t

where P(T < t+∆t, S = Sj|T ≥ t) is the probability of failure due to cause Sj (j = 1, 2
ici), i.e., S is a discrete r.v. representing the event that is taking place
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By the law of total probability, since only one of the event can take place, if there are n
risks, then

h(t) =
n∑

i=1
hj(t)

or, identically,
S(t) = exp

(
−
∫ t

0

∑
n
j=1hj(s) ds

)
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As a consequence, if a process is subject to two competing exponential risks with
respective distributions with parameters θ1 and θ2, the the mean sojourn time in the
initial state before being affected by one of the two risks is

1
θ1 + θ2
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The exponential distribution

The random variable T has an exponential distribution if its probability density
function takes the form

f(t) =
{

0 if t < 0,
θe−θt if t ≥ 0,

(2)

with θ > 0. Then the survival function for state S1 is of the form S(t) = e−θt, for
t ≥ 0, and the average sojourn time in state S1 is

τ =

∫ ∞

0
e−θtdt = 1

θ
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Particularities of the exponential distribution

The standard deviation of an exponential distribution is also 1/θ. When estimating θ,
it is impossible to distinguish the mean and the standard deviation

The exponential distribution is memoryless: its conditional probability obeys

P(T > s + t | T > s) = P(T > t), ∀s, t ≥ 0

The exponential and geometric distributions are the only memoryless probability
distributions

The exponential distribution has a constant hazard function
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The Dirac delta distribution

If for some constant ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

meaning that T has a Dirac delta distribution δω(t), then the average sojourn time is

τ =

∫ ω

0
dt = ω
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A model for a cohort with one cause of death

Consider a cohort of individuals born at the same time, e.g., the same year

▶ At time t = 0, there are initially N0 > 0 individuals
▶ All causes of death are compounded together
▶ The time until death, for a given individual, is a random variable T, with

continuous probability density distribution f(t) and survival function P(t)

N(t) the cohort population at time t ≥ 0

N(t) = N0P(t) (3)

N0P(t) proportion of initial population still alive at time t
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Case where T is exponentially distributed
Suppose that T has an exponential distribution with mean 1/d (or parameter d),
f(t) = de−dt. Then the survival function is P(t) = e−dt, and (3) takes the form

N(t) = N0e−dt (4)

Now note that
d
dtN(t) = −dN0e−dt

= −dN(t)

with N(0) = N0.

⇒ The ODE N′ = −dN makes the assumption that the life expectancy at birth is
exponentially distributed
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Survival function, S(t) = P(T > t), for an exponential distribution with mean 80 years
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Case where T has a Dirac delta distribution

Suppose that T has a Dirac delta distribution at t = ω, giving the survival function

P(t) =
{

1, 0 ≤ t ≤ ω,

0, t > ω.

Then (3) takes the form

N(t) =
{

N0, 0 ≤ t ≤ ω,

0, t > ω.
(5)

All individuals survive until time ω, then they all die at time ω.

Here, we have N′ = 0 everywhere except at t = ω, where it is undefined.
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An SIS model
Hypotheses

▶ Individuals typically recover from the disease
▶ The disease does not confer immunity
▶ There is no birth or death (from the disease or natural)
⇒ Constant total population N ≡ N(t) = S(t) + I(t)

▶ Infection is of standard incidence type
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Recovery

▶ Traditional models suppose that recovery occurs with rate constant γ

▶ Here, of the individuals that become infective at time t0, a fraction P(t− t0)
remain infective at time t ≥ t0

▶ ⇒ For t ≥ 0, P(t) is a survival function. As such, it verifies P(0) = 1 and P is
nonnegative and nonincreasing
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Model for infectious individuals

Since N is constant, S(t) = N− I(t) and we need only consider the following equation
(where S is used for clarity)

I(t) = I0(t) +
∫ t

0
β

S(u)I(u)
N P(t− u)du (6)

▶ I0(t) number of individuals who were infective at time t = 0 and still are at time t.

▶ I0(t) is nonnegative, nonincreasing, and such that limt→∞ I0(t) = 0.
▶ P(t− u) proportion of individuals who became infective at time u and who still

are at time t.
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Expression under the integral

Integral equation for the number of infective individuals:

I(t) = I0(t) +
∫ t

0
β
(N− I(u))I(u)

N P(t− u)du (6)

The term
β
(N− I(u))I(u)

N P(t− u)

▶ β(N− I(u))I(u)/N is the rate at which new infectives are created, at time u,
▶ multiplying by P(t− u) gives the proportion of those who became infectives at

time u and who still are at time t.
Summing over [0, t] gives the number of infective individuals at time t.
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Case of an exponentially distributed time to recovery

Suppose P(t) such that sojourn time in the infective state has exponential distribution
with mean 1/γ, i.e., P(t) = e−γt.

Initial condition function I0(t) takes the form

I0(t) = I0(0)e−γt,

with I0(0) the number of infective individuals at time t = 0. Obtained by considering
the cohort of initially infectious individuals, giving a model such as (3).

Equation (6) becomes

I(t) = I0(0)e−γt +

∫ t

0
β
(N− I(u))I(u)

N e−γ(t−u)du. (7)
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Taking the time derivative of (7) yields

I′(t) = −γI0(0)e−γt − γ

∫ t

0
β
(N− I(u))I(u)

N e−γ(t−u)du

+ β
(N− I(t))I(t)

N

= −γ
(

I0(0)e−γt +

∫ t

0
β
(N− I(u))I(u)

N e−γ(t−u)du
)

+ β
(N− I(t))I(t)

N
= β

(N− I(t))I(t)
N − γI(t),

which is the classical logistic type ordinary differential equation (ODE) for I in an SIS
model without vital dynamics (no birth or death).
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Case of a step function survival function

Consider case where the time spent infected has survival function

P(t) =
{

1, 0 ≤ t ≤ ω,

0, t > ω.

i.e., the sojourn time in the infective state is a constant ω > 0.
In this case (6) becomes

I(t) = I0(t) +
∫ t

t−ω
β
(N− I(u))I(u)

N du. (8)

Here, it is more difficult to obtain an expression for I0(t). It is however assumed that
I0(t) vanishes for t > ω.
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When differentiated, (8) gives, for t ≥ ω,

I′(t) = I′0(t) + β
(N− I(t))I(t)

N − β
(N− I(t− ω)) I(t− ω)

N .

Since I0(t) vanishes for t > ω, this gives the delay differential equation (DDE)

I′(t) = β
(N− I(t))I(t)

N − β
(N− I(t− ω))I(t− ω)

N .
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Conclusion

▶ The time of sojourn in classes (compartments) plays an important role in
determining the type of model that we deal with

▶ All ODE models, when they use terms of the form κX, make the assumption that
the time of sojourn in compartments is exponentially distributed

▶ At the other end of the spectrum, delay differential with discrete delay make the
assumption of a constant sojourn time, equal for all individuals

▶ Both can be true sometimes.. but reality is more likely somewhere in between
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A discrete-time Markov chain takes the form

p(n + 1) = p(n)P, n = 1, 2, 3, . . .

where p(n) = (p1(n), p2(n), . . . , pr(n)) is a (row) probability vector and P = (pij) is a
r× r transition matrix

P =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr


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Stochastic matrices
Definition 1
The nonnegative r× r matrix M is stochastic if

∑r
j=1 aij = 1 for all i = 1, 2, . . . , r

Definition 2
Let M be a stochastic matrix M. Then all eigenvalues λ of M are such that |λ| ≤ 1.
Furthermore, λ = 1 is an eigenvalue of M

Theorem 3
If M,N are stochastic matrices, then MN is a stochastic matrix

Theorem 4
If M is a stochastic matrix, then for any k ∈ N, Mk is a stochastic matrix
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Asymptotic behavior

Let p(0) be the initial distribution (row) vector. Then

p(1) = p(0)P
p(2) = p(1)P

= (p(0)P)P
= p(0)P2

Iterating, we get that for any n,

p(n) = p(0)Pn

Therefore,
lim

n→+∞
p(n) = lim

n→+∞
p(0)Pn = p(0) lim

n→+∞
Pn
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Regular Markov chain

Definition 5
A regular Markov chain is one in which Pk is positive for some integer k > 0, i.e., Pk

has only positive entries, no zero entries

Definition 6
A nonnegative matrix M is primitive if, and only if, there is an integer k > 0 such that
Mk is positive

Theorem 7
A Markov chain is regular if, and only if, the transition matrix P is primitive
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Important result for regular Markov chains

Theorem 8
If P is the transition matrix of a regular Markov chain, then

1. the powers Pn approach a stochastic matrix W
2. each row of W is the same (row) vector w = (w1, . . . ,wr)

3. the components of w are positive

So if the Markov chain is regular

lim
n→+∞

p(n) = p(0) lim
n→+∞

Pn = p(0)W
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The vector w is the left eigenvector corresponding to the eigenvalue 1 of P. (We
already know that the (right) eigenvector corresponding to 1 is 1l.)

Indeed, if p(n) converges, then p(n + 1) = p(n)P, so w is a fixed point of the system.
We thus write

wP = w

and solve for w, which amounts to finding w as the left eigenvector corresponding to
the eigenvalue 1

Alternatively, we can find w as the (right) eigenvector associated to the eigenvalue 1
for the transpose of P

PTwT = wT

(normalise if need be)
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Linking matrix and graph theory
Definition 9
A digraph G is strongly connected if there is a path between all pairs of vertices

Definition 10
A matrix M ∈Mn is irreducible if there does not exist a matrix P ∈Mn s.t. P−1AP
block triangular

Theorem 11
A ∈Mn irreducible ⇐⇒ G(A) strongly connected
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Drunk man’s walk 1.0 (regular case)

▶ chain of states S1, . . . , Sp
▶ if in state Si, i = 2, . . . , p− 1, probability 1/2 of going left (to Si−1) and 1/2 of

going right (to Si+1)
▶ if in state S1, probability 1 of going to S2
▶ if in state Sp, probability 1 of going to Sp−1
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Transition matrix for DMW 1.0

P =



0 1 0 0 0 · · · 0
1/2 0 1/2 0
0 1/2 0 1/2
... . . . . . . . . . ...

1/2 0 1/2
0 1 0


Clearly a primitive matrix, so a regular Markov chain. We find (easy to do by hand)

wT =

(
1

2(p− 1) ,
1

p− 1 , . . . ,
1

p− 1 ,
1

2(p− 1)

)
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Setting up the transition matrix

# Total population
nb_states = 10 # Small so we can see output
# Parameters
proba_left = 0.5
proba_right = 0.5
proba_stay = 1-(proba_left+proba_right)
# Make the transition matrix
T = mat.or.vec(nr = nb_states, nc = nb_states)
for (row in 2:(nb_states-1)) {

T[row,(row-1)] = proba_left
T[row,(row+1)] = proba_right
T[row, row] = proba_stay

}
# First row only has move right
T[1,2] = 1
# Last row only has move left
T[nb_states, (nb_states-1)] = 1
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Analysis using markovchain library

library(markovchain)
mcRW <- new("markovchain",

states = sprintf("S_%d", 1:nb_states),
transitionMatrix = T,
name = "RW_reg")

> summary(mcRW)
RW_reg Markov chain that is composed by:
Closed classes:
S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10
Recurrent classes:
{S_1,S_2,S_3,S_4,S_5,S_6,S_7,S_8,S_9,S_10}
Transient classes:
NONE
The Markov chain is irreducible
The absorbing states are: NONE
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> steadyStates(mcRW)
S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_

8 S_9
[1,] 0.05555556 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111

0.1111111 0.1111111
S_10

[1,] 0.05555556

Jives with
wT =

(
1

2(p− 1) ,
1

p− 1 , . . . ,
1

p− 1 ,
1

2(p− 1)

)
we had computed
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meanRecurrenceTime: outputs a named vector with the expected time to first return
to a state when the chain starts there. States present in the vector are only the
recurrent ones. If the matrix is ergodic (i.e. irreducible), then all states are present in
the output and order is the same as states order for the Markov chain
> meanRecurrenceTime(mcRW)
S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10
18 9 9 9 9 9 9 9 9 18

period: returns a integer number corresponding to the periodicity of the Markov
chain (if it is irreducible)
> period(mcRW)
[1] 2

(period of state x ∈ S is gcd{n ∈ N+ : Tn(x, x) > 0})
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meanFirstPassageTime: Given an irreducible (ergodic) markovchain object, this
function calculates the expected number of steps to reach other states
> meanFirstPassageTime(mcRW)

S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10
S_1 0 1 4 9 16 25 36 49 64 81
S_2 17 0 3 8 15 24 35 48 63 80
S_3 32 15 0 5 12 21 32 45 60 77
S_4 45 28 13 0 7 16 27 40 55 72
S_5 56 39 24 11 0 9 20 33 48 65
S_6 65 48 33 20 9 0 11 24 39 56
S_7 72 55 40 27 16 7 0 13 28 45
S_8 77 60 45 32 21 12 5 0 15 32
S_9 80 63 48 35 24 15 8 3 0 17
S_10 81 64 49 36 25 16 9 4 1 0

p. 43 – Discrete-time Markov chains



Discrete-time Markov chains
Regular DTMC
Random walk v1.0 (regular case)
Absorbing DTMC



Absorbing states, absorbing chains

Definition 12
A state Si in a Markov chain is absorbing if whenever it occurs on the nth generation
of the experiment, it then occurs on every subsequent step. In other words, Si is
absorbing if pii = 1 and pij = 0 for i ̸= j

Definition 13
A Markov chain is absorbing if it has at least one absorbing state, and if from every
state it is possible to go to an absorbing state

Definition 14
In an absorbing Markov chain, a state that is not absorbing is called transient
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Some questions on absorbing chains

Suppose we have a chain like the following

1. Does the process eventually reach an absorbing state?
2. Average number of times spent in a transient state, if starting in a transient state?
3. Average number of steps before entering an absorbing state?
4. Probability of being absorbed by a given absorbing state, when there are more

than one, when starting in a given transient state?
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Reaching an absorbing state

Answer to question 1:

Theorem 15
In an absorbing Markov chain, the probability of reaching an absorbing state is 1
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Standard form of the transition matrix

For an absorbing chain with k absorbing states and r− k transient states, the transition
matrix can be written as

P =

(
Ik 0
R Q

)
Absorbing states Transient states

Absorbing states Ik 0
Transient states R Q

Ik the k× k identity, 0 ∈ Rk×(r−k), R ∈ R(r−k)×k, Q ∈ R(r−k)×(r−k)
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The matrix Ir−k − Q is invertible. Let
▶ N = (Ir−k − Q)−1 be the fundamental matrix of the Markov chain
▶ Ti be the sum of the entries on row i of N
▶ B = NR

Answers to our remaining questions:
2. Nij is the average number of times the process is in the jth transient state if it

starts in the ith transient state
3. Ti is the average number of steps before the process enters an absorbing state if it

starts in the ith transient state
4. Bij is the probability of eventually entering the jth absorbing state if the process

starts in the ith transient state

See for instance book of Kemeny and Snell

p. 48 – Discrete-time Markov chains
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Drunk man’s walk 2.0 (absorbing case)

▶ chain of states S1, . . . , Sp
▶ if in state Si, i = 2, . . . , p− 1, probability 1/2 of going left (to Si−1) and 1/2 of

going right (to Si+1)
▶ if in state S1, probability 1 of going to S1
▶ if in state Sp, probability 1 of going to Sp
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Transition matrix for DMW 2.0

P =



1 0 0 0 0 · · · 0
1/2 0 1/2 0
0 1/2 0 1/2
... . . . . . . . . . ...

1/2 0 1/2
0 0 1


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Put P in standard form

Absorbing states are S1 and Sp, write them first, then write other states

S1 Sp S2 S3 S4 · · · Sp−2 Sp−1
S1 1 0 0 0 0 · · · 0 0
Sp 0 1 0 0 0 · · · 0 0
S2 1/2 0 0 1/2 0 · · · 0 0
S3 0 0 1/2 0 1/2 · · · 0 0
...

Sp−2 0 0 0 0 0 · · · 0 1/2
Sp−1 0 1/2 0 0 0 · · · 1/2 0
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So we find
P =

(
I2 0
R Q

)
where 0 a 2× (p− 2)-matrix, R a (p− 2)× 2 matrix and Q a (p− 2)× (p− 2) matrix
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R =


1/2 0
0 0
... ...
0 0
0 1/2


and

Q =



0 1/2 0
1/2 0 1/2
0 1/2 0

. . . . . . . . .

0 1/2 0 1/2
0 1/2 0


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Ip−2 − Q =



1 −1/2 0
−1/2 1 −1/2

0 −1/2 1
. . . . . . . . .

0 −1/2 1 −1/2
0 −1/2 1


This is a symmetric tridiagonal Toeplitz matrix

(symmetric: obvious; tridiagonal: there are three diagonal bands; Toeplitz: each
diagonal band is constant)

Could invert it explicitly, let us not bother
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Setting up the transition matrix

# Total population
nb_states = 10 # Small so we see output
# Parameters
proba_left = 0.5
proba_right = 0.5
proba_stay = 1-(proba_left+proba_right)
# Make the transition matrix
T = mat.or.vec(nr = nb_states, nc = nb_states)
for (row in 2:(nb_states-1)) {

T[row,(row-1)] = proba_left
T[row,(row+1)] = proba_right
T[row, row] = proba_stay

}
# First and last rows only have stay
T[1,1] = 1
T[nb_states, nb_states] = 1
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Analysis using markovchain library
library(markovchain)
mcRW <- new("markovchain",

states = sprintf("S_%d", 1:nb_states),
transitionMatrix = T,
name = "RW_abs")

> summary(mcRW)
RW_abs Markov chain that is composed by:
Closed classes:
S_1
S_10
Recurrent classes:
{S_1},{S_10}
Transient classes:
{S_2,S_3,S_4,S_5,S_6,S_7,S_8,S_9}
The Markov chain is not irreducible
The absorbing states are: S_1 S_10
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> canonicForm(mcRW)
RW_abs

A 10 - dimensional discrete Markov Chain defined by the following states:
S_1, S_10, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9
The transition matrix (by rows) is defined as follows:

S_1 S_10 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9
S_1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S_10 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S_2 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
S_3 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0
S_4 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0
S_5 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0
S_6 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0
S_7 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0
S_8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5
S_9 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
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> meanAbsorptionTime(mcRW)
S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9

8 14 18 20 20 18 14 8
> absorptionProbabilities(mcRW)

S_1 S_10
S_2 0.8888889 0.1111111
S_3 0.7777778 0.2222222
S_4 0.6666667 0.3333333
S_5 0.5555556 0.4444444
S_6 0.4444444 0.5555556
S_7 0.3333333 0.6666667
S_8 0.2222222 0.7777778
S_9 0.1111111 0.8888889
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hittingProbabilities: given a markovchain object, this function calculates the
probability of ever arriving from state i to j
> hittingProbabilities(mcRW)

S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9
S_10

S_1 1.0000000 0.0000 0.0000000 0.0000000 0.000 0.000 0.0000000 0.0000000 0.0000
0.0000000

S_2 0.8888889 0.4375 0.5000000 0.3333333 0.250 0.200 0.1666667 0.1428571 0.1250
0.1111111

S_3 0.7777778 0.8750 0.6785714 0.6666667 0.500 0.400 0.3333333 0.2857143 0.2500
0.2222222

S_4 0.6666667 0.7500 0.8571429 0.7500000 0.750 0.600 0.5000000 0.4285714 0.3750
0.3333333

S_5 0.5555556 0.6250 0.7142857 0.8333333 0.775 0.800 0.6666667 0.5714286 0.5000
0.4444444

S_6 0.4444444 0.5000 0.5714286 0.6666667 0.800 0.775 0.8333333 0.7142857 0.6250
0.5555556

S_7 0.3333333 0.3750 0.4285714 0.5000000 0.600 0.750 0.7500000 0.8571429 0.7500
0.6666667

S_8 0.2222222 0.2500 0.2857143 0.3333333 0.400 0.500 0.6666667 0.6785714 0.8750
0.7777778

S_9 0.1111111 0.1250 0.1428571 0.1666667 0.200 0.250 0.3333333 0.5000000 0.4375
0.8888889

S_10 0.0000000 0.0000 0.0000000 0.0000000 0.000 0.000 0.0000000 0.0000000 0.0000
1.0000000
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DTMC SIS system

Since S = P⋆− I, consider only the infected. To simulate as DTMC, consider a random
walk on I (≃ Gambler’s ruin problem)

Denote λI = β(P⋆ − I)I∆t, µI = γI∆t and σI = 1− (λI + µI)∆t
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To make things easy to see: Pop=5
# Make the transition matrix
T = mat.or.vec(nr = (Pop+1), nc = (Pop+1))
for (row in 2:Pop) {

I = row-1
mv_right = gamma*I*Delta_t # Recoveries
mv_left = beta*I*(Pop-I)*Delta_t # Infections
T[row,(row-1)] = mv_right
T[row,(row+1)] = mv_left

}
# Last row only has move left
T[(Pop+1),Pop] = gamma*(Pop)*Delta_t
# Check that we don't have too large values
if (max(rowSums(T))>1) {

T = T/max(rowSums(T))
}
diag(T) = 1-rowSums(T)
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Analysis using markovchain library

library(markovchain)
mcSIS <- new("markovchain",

states = sprintf("I_%d", 0:Pop),
transitionMatrix = T,
name = "SIS")

> summary(mcSIS)
SIS Markov chain that is composed by:
Closed classes:
I_0
Recurrent classes:
{I_0}
Transient classes:
{I_1,I_2,I_3,I_4,I_5}
The Markov chain is not irreducible
The absorbing states are: I_0
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> canonicForm(mcSIS)
SIS

A 6 - dimensional discrete Markov Chain defined by the following states:
I_0, I_1, I_2, I_3, I_4, I_5
The transition matrix (by rows) is defined as follows:

I_0 I_1 I_2 I_3 I_4 I_5
I_0 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
I_1 0.1666667 0.5000000 0.3333333 0.0000000 0.0000000 0.0000000
I_2 0.0000000 0.3333333 0.1666667 0.5000000 0.0000000 0.0000000
I_3 0.0000000 0.0000000 0.5000000 0.0000000 0.5000000 0.0000000
I_4 0.0000000 0.0000000 0.0000000 0.6666667 0.0000000 0.3333333
I_5 0.0000000 0.0000000 0.0000000 0.0000000 0.8333333 0.1666667
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# The vector of steady states. Here, all mass should be in I_0
> steadyStates(mcSIS)

I_0 I_1 I_2 I_3 I_4 I_5
[1,] 1 0 0 0 0 0

> hittingProbabilities(mcSIS)
I_0 I_1 I_2 I_3 I_4 I_5

I_0 1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
I_1 1 0.8333333 0.6666667 0.5454545 0.4615385 0.3529412
I_2 1 1.0000000 0.8888889 0.8181818 0.6923077 0.5294118
I_3 1 1.0000000 1.0000000 0.9090909 0.8461538 0.6470588
I_4 1 1.0000000 1.0000000 1.0000000 0.8974359 0.7647059
I_5 1 1.0000000 1.0000000 1.0000000 1.0000000 0.8039216

Read by row: if the process starts in Ii (row i− 1), probability that state Ij (column
j− 1) is visited
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> meanAbsorptionTime(mcSIS)
I_1 I_2 I_3 I_4 I_5

24.30 33.45 37.55 39.65 40.85
> absorptionProbabilities(mcSIS)

I_0
I_1 1
I_2 1
I_3 1
I_4 1
I_5 1
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Sojourn times

Discrete-time Markov chains

Continuous time Markov chains



Continuous-time Markov chains

CTMC similar to DTMC except in way they handle time between events (transitions)

DTMC: transitions occur each ∆t

CTMC: ∆t→ 0 and transition times follow an exponential distribution parametrised by
the state of the system

CTMC are roughly equivalent to ODE
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Continuous time Markov chains
ODE ↔ CTMC
Simulating CTMC (in theory)
Simulating CTMC (in practice)
Parallelising your code in R



Converting your compartmental ODE model to CTMC

Easy as π :)

▶ Compartmental ODE model focuses on flows into and out of compartments
▶ ODE model has as many equations as there are compartments
▶ Compartmental CTMC model focuses on transitions
▶ CTMC model has as many transitions as there are arrows between (or into or out

of) compartments
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ODE to CTMC : focus on different components

S I S I

−βSI

+γI

+βSI

−γI

βSI

γI

ODE CTMC

focus focus
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SIS without demography

Transition Effect Weight Probability
S→ S− 1, I→ I + 1 new infection βSI βSI

βSI + γI
S→ S + 1, I→ I− 1 recovery of an in-

fectious
γI γI

βSI + γI

States are S, I
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SIS with demography

Transition Effect Weight Probability
S→ S + 1 birth of a suscepti-

ble
b b

b+d(S+I)+βSI+γI

S→ S− 1 death of a suscep-
tible

dS dS
b+d(S+I)+βSI+γI

S → S − 1, I →
I + 1

new infection βSI βSI
b+d(S+I)+βSI+γI

I→ I− 1 death of an infec-
tious

dI dI
b+d(S+I)+βSI+γI

S → S + 1, I →
I− 1

recovery of an in-
fectious

γI γI
b+d(S+I)+βSI+γI

States are S, I

p. 70 – Continuous time Markov chains



Kermack & McKendrick model

Transition Effect Weight Probability
S→ S− 1, I→ I + 1 new infection βSI βSI

βSI + γI
I→ I− 1, R→ R + 1 recovery of an in-

fectious
γI γI

βSI + γI

States are S, I,R
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Gillespie’s algorithm

▶ A.k.a. the stochastic simulation algorithm (SSA)
▶ Derived in 1976 by Daniel Gillespie
▶ Generates possible solutions for CTMC
▶ Extremely simple, so worth learning how to implement; there are however

packages that you can use (see later)
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Gillespie’s algorithm

Suppose system has state x(t) with initial condition x(t0) = x0 and propensity
functions ai of elementary reactions

set t← t0 and x(t)← x0
while t ≤ tf
- ξt ←

∑
j aj(x(t))

- Draw τt from T ∼ E(ξt)
- Draw ζt from U([0, 1])
- Find r, smallest integer s.t.

∑j
k=1 ak(x(t)) > ζt

∑
j aj(x(t)) = ζtξt

- Effect the next reaction (the one indexed r)
- t← t + τt
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Drawing at random from an exponential distribution
If you do not have an exponential distribution random number generator.. We want τt
from T ∼ E(ξt), i.e., T has probability density function

f(x, ξt) = ξte−ξtx1x≥0

Use cumulative distribution function F(x, ξt) =
∫ x
−∞ f(s, ξt) ds

F(x, ξt) = (1− e−ξtx)1x≥0

which has values in [0, 1]. So draw ζ from U([0, 1]) and solve F(x, ξt) = ζ for x

F(x, ξt) = ζ ⇔ 1− e−ξtx = ζ

⇔ e−ξtx = 1− ζ

⇔ ξtx = − ln(1− ζ)

⇔ x =
− ln(1− ζ)

ξt
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Gillespie’s algorithm (SIS model with only I eq.)

set t← t0 and I(t)← I(t0)
while t ≤ tf
- ξt ← β(P⋆ − i)i + γi
- Draw τt from T ∼ E(ξt)
- v← [β(P⋆ − i)i, ξt] /ξt
- Draw ζt from U([0, 1])
- Find pos such that vpos−1 ≤ ζt ≤ vpos
- switch pos

- 1: New infection, I(t + τt) = I(t) + 1
- 2: End of infectious period, I(t + τt) = I(t)− 1

- t← t + τt
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Sometimes Gillespie goes bad

▶ Recall that the inter-event time is exponentially distributed
▶ Critical step of the Gillespie algorithm:

▶ ξt ← weight of all possible events (propensity)
▶ Draw τt from T ∼ E(ξt)

▶ So the inter-event time τt → 0 if ξt becomes very large for some t
▶ This can cause the simulation to grind to a halt
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Example: a birth and death process

▶ Individuals born at per capita rate b
▶ Individuals die at per capita rate d
▶ Let’s implement this using classic Gillespie

(See simulate_birth_death_CTMC.R on course GitHub repo)
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Gillespie’s algorithm (birth-death model)

set t← t0 and N(t)← N(t0)
while t ≤ tf
- ξt ← (b + d)N(t)
- Draw τt from T ∼ E(ξt)
- v← [bN(t), ξt] /ξt
- Draw ζt from U([0, 1])
- Find pos such that vpos−1 ≤ ζt ≤ vpos
- switch pos

- 1: Birth, N(t + τt) = N(t) + 1
- 2: Death, N(t + τt) = N(t)− 1

- t← t + τt

p. 78 – Continuous time Markov chains



b = 0.01 # Birth rate
d = 0.01 # Death rate
t_0 = 0 # Initial time
N_0 = 100 # Initial population

# Vectors to store time and state. Initialise with initial condition.
t = t_0
N = N_0

t_f = 1000 # Final time

# We'll track the current time and state (could also just check last entry in t
# and N, but will take more operations)
t_curr = t_0
N_curr = N_0
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while (t_curr<=t_f) {
xi_t = (b+d)*N_curr
# The exponential number generator does not like a rate of 0 (when the
# population crashes), so we check if we need to quit
if (N_curr == 0) {

break
}
tau_t = rexp(1, rate = xi_t)
t_curr = t_curr+tau_t
v = c(b*N_curr, xi_t)/xi_t
zeta_t = runif(n = 1)
pos = findInterval(zeta_t, v)+1
switch(pos,

{
N_curr = N_curr+1 # Birth

},
{

N_curr = N_curr-1 # Death
})

N = c(N, N_curr)
t = c(t, t_curr)

}
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Last one did not go well

▶ Wanted 1000 time units (days?)
▶ Interrupted at t = 344.4432 because I lost patience

(Penultimate slide: sim stopped because the population went extinct, I did not
stop it!)

▶ At stop time
▶ N = 103, 646
▶ |N| = 208, 217 (and |t| as well, of course!)
▶ time was moving slowly

> tail(diff(t))
[1] 1.282040e-05 5.386999e-04 5.468540e-04 1.779985e-04 6.737294e-05 2.618084e-04
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ODE ↔ CTMC
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Tau-leaping (and packages) to the rescue!

▶ Approximation method (compared to classic Gillespie, which is exact)
▶ Roughly: consider ”groups” of events instead of individual events
▶ Good news: GillespieSSA2 and adaptivetau, two standard packages for SSA

in R, implement tau leaping
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Simulating a CTMC

library(GillespieSSA2)
IC <- c(S = (Pop-I_0), I = I_0)
params <- c(gamma = gamma, beta = beta)
reactions <- list(

reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)
set.seed(NULL)
sol <- ssa(

initial_state = IC,
reactions = reactions,
params = params,
method = ssa_exact(),
final_time = t_f,

)
plot(sol$time, sol$state[,"I"], type = "l",

xlab = "Time (days)", ylab = "Number infectious")
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Parallelisation

To see multiple realisations: good idea to parallelise, then interpolate results. Write a
function, e.g., run_one_sim that .. runs one simulation

On the GitHub repo for the course, see
▶ SIS_CTMC_parallel.R
▶ SIS_CTMC_parallel_multiple_R0.R

p. 89 – Continuous time Markov chains

https://raw.githubusercontent.com/julien-arino/3MC-mathematical-modelling-in-biology/main/CODE/Julien/SIS_CTMC_parallel.R
https://raw.githubusercontent.com/julien-arino/3MC-mathematical-modelling-in-biology/main/CODE/Julien/SIS_CTMC_parallel_multiple_R0.R


run_one_sim = function(params) {
IC <- c(S = (params$Pop-params$I_0), I = params$I_0)
params_local <- c(gamma = params$gamma, beta = params$beta)
reactions <- list(

# propensity function effects name for reaction
reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)
set.seed(NULL)
sol <- ssa(
initial_state = IC,
reactions = reactions,
params = params_local,
method = ssa_exact(),
final_time = params$t_f,
log_firings = TRUE # This way we keep track of events
)
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# Interpolate result (just I will do)
wanted_t = seq(from = 0, to = params$t_f, by = 0.01)
sol$interp_I = approx(x = sol$time, y = sol$state[,"I"], xout = wanted_t)
names(sol$interp_I) = c("time", "I")
# Return result
return(sol)

}
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nb_cores <- detectCores()
if (nb_cores > 124) {

nb_cores = 124
}
cl <- makeCluster(nb_cores)
clusterEvalQ(cl,{

library(GillespieSSA2)
})
clusterExport(cl,

c("params",
"run_one_sim"),
envir = .GlobalEnv)

SIMS = parLapply(cl = cl,
X = 1:params$number_sims,
fun = function(x) run_one_sim(params))

stopCluster(cl)
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Benefit of parallelisation

Run the parallel code for 100 sims between ‘tictoc::tic()‘ and ‘tictoc::toc()‘, giving
‘66.958 sec elapsed‘, then the sequential version
tictoc::tic()
SIMS = lapply(X = 1:params$number_sims,

FUN = function(x) run_one_sim(params))
tictoc::toc()

which gives ‘318.141 sec elapsed‘ on a 6C/12T Intel(R) Core(TM) i9-8950HK CPU @
2.90GHz (4.75× faster) or ‘12.067 sec elapsed‘ versus ‘258.985 sec elapsed‘ on a
32C/64T AMD Ryzen Threadripper 3970X 32-Core Processor (21.46× faster !)
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