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We return here to something discussed in Lecture 03 (Stochastic
models)

See in particular the work of Horst Thieme

If one considers time of sojourn in compartments from a more
detailed perspective, one obtains integro-differential models

We use here continuous random variables. See chapters 12 and 13
in Thieme’s book for arbitrary distributions
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A model with vaccine efficacy and waning

▶ Exponential distribution of recovery times (rate γ)

▶ Susceptible individuals are vaccinated (number of vaccinated
at time t is denoted V(t))

▶ Vaccination wanes, a fraction P(t) of the vaccinated at time
t = 0 remain protected by the vaccine

▶ Vaccination is imperfect, 0 ≤ 1−σ ≤ 1 is the vaccine efficacy

▶ JA, Cooke, PvdD & Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a
general waning function DCDS-B 4(2): 479-495 (2004)
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Model structure
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Parametres

▶ d > 0: mortality rate
▶ γ ≥ 0: recovery rate
▶ β > 0: infectiousness of the disease
▶ ϕ ≥ 0: vaccination rate of susceptible individuals
▶ α ∈ [0, 1): fraction of newborns vaccinates
▶ 0 ≤ 1 − σ ≤ 1: efficacy of the vaccine. From now on, assume

0 ≤ σ < 1
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▶ Disease transmission: standard incidence

▶ Vaccination of newborns

▶ Birth and death rate equal (⇒constant total population)
Assumptions on P: P(t) is a nonnegative and nonincreasing
function with P(0+) = 1, and such that

∫∞
0 P(u)du is positive and

finite

Constant total population ⇒ S(t) = N − I(t)− V(t); further, we
switch to proportions: S, I and V represent the proportions in the
population, and N = 1 (S used in equations for conciseness)
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The SIS model with vaccination

dI(t)
dt = β(S(t) + σV(t))I(t)− (d + γ)I(t) (1a)

V(t) = V0(t) (1b)

+

∫ t

0
(ϕS(u) + αd)P(t − u)e−d(t−u)e−σβ

∫ t
u I(x)dxdu

▶ αd proportion of vaccinated newborns,
▶ ϕS(u) proportion of vaccinated susceptibles,
▶ P(t − u) fraction of the proportion vaccinated still in the V

class t − u time units after going in,
▶ e−d(t−u) fraction of the proportion vaccinated not dead due to

natural causes,
▶ e−σβ

∫ t
u I(x)dx fraction of the proportion vaccinated not gone to

the infective class.
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Obtaining the initial condition

Let v(t, τ) be the (density) proportion of individuals in vaccination
class-age τ still vaccinated at time t, then(

∂

∂t +
∂

∂τ

)
v(t, τ) = −(σβI(t) + d + η(τ))v(t, τ) (2)

where V(t) =
∫∞

0 v(t, τ)dτ . η(τ) is the vaccine waning rate
coefficient, with proportion still in the vaccination class-age τ
being P(τ) = exp

(
−
∫ τ

0 η(q)dq
)
. It is assumed that P is a survival

function

Inflow in class-age zero is

v(t, 0) = ϕS(t) + αd

and v(0, τ) ≥ 0 is assumed
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Integrating (2) along characteristics, dividing the integral for V(t)
at t, substituting in the solutions, and changing integration
variables, we get

V0(t) = e−
∫ t

0 (σβI(x)+d)dx
∫ ∞

0
v(0, u)P(t + u)

P(u) du (3)

The ratio P(t + u)/P(u) = exp
(∫ t+u

u η(q)dq
)

is well defined for
t + u ≥ u ≥ 0 and bounded above by 1.

Since V(0) is finite, the integral in V0(t) converges, and thus V0(t)
is nonnegative, nonincreasing and limt→∞ V0(t) = 0
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Let
D = {(S, I,V); S ≥ 0, I ≥ 0,V ≥ 0, S + I + V = 1}

Theorem 1
The set D is positively invariant under the flow of (1) with
I(0) > 0, S(0) > 0
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With the assumed initial conditions in D, it can be shown that the
system defined by (1a) and (1b) is equivalent to the system
defined by (1a) and

d
dtV(t) = d

dtV0(t) + ϕS(t) + αd (4)

− (d + σβI(t))(V(t)− V0(t)) + Q(t)

where to simplify notation, we denote

Q(t) =
∫ t

0
(ϕS(u) + αd)dt(P(t − u))e−d(t−u)e−σβ

∫ t
u I(x)dxdu

The system defined by (1a) and (4) is of standard form, therefore
results of Hale (see Hale & Verduyn-Lunel) ensure the local
existence, uniqueness and continuation of solutions of model (1)
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R0

Define R0 with vaccination as

Rv = R0

[
1 + σϕP̃ − (1 − σ)αdP̃

1 + ϕP̃

]
(5)

where R0 = β
d+γ is the reproduction number in the absence of

vaccination and
P̃ = lim

t→∞

∫ t

0
P(v)e−dvdv

in such a way that P̃ < 1/d

▶ Rv ≤ R0 and, in absence of vaccination, Rv = R0
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Theorem 2
System (1) with an arbitrary loss of vaccination function P(t)
always admits the disease-free equilibrium
▶ If R0 < 1, then the DFE is the only equilibrium of the system

and the disease goes extinct
▶ If Rv < 1, the DFE is LAS; if Rv > 1, the DFE is unstable
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Reduction of the system using specific P(t) functions

As before, two examples

▶ The distribution of waning times is exponential, which leads
to an ODE system. Treated briefly here, just so as to
emphasize the presence of a so-called backward bifurcation, a
rather uncommon phenomenon in epidemiological models

▶ The waning time is a constant, which leads to a DDE model.
We show that the backward bifurcation is also present
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Case reducing to an ODE system

Assume P(v) = e−θv, θ > 0. V0(t) = V0(0)e−(d+θ)te−
∫ t

0 σβI(x)dx

from (3). Then (1a) and (4) give the ODE system

dI
dt = β(1 − I − (1 − σ)V)I − (d + γ)I (6a)

dV
dt = ϕ(1 − I − V)− σβIV − (d + θ)V + αd (6b)

which with no newborn vaccination (α = 0) is the model studied in
Kribs-Zaletta & Velasco-Hernandez, 2000 (extended to SIR with
vaccination: Arino, McCluskey and van den Driessche).
From Theorem 2 the DFE always exists, with

IDFE = 0, SDFE =
θ + d(1 − α)

d + θ + ϕ
,VDFE =

ϕ+ αd
d + θ + ϕ

p. 14 – Sojourn time in compartments



Backward bifurcation

Assume that R0 > 1, then endemic equilibria (positive I equilibria,
denoted by I⋆) can be obtained analytically from the quadratic
equation

P(I) = AI2 + BI + C = 0

where

A = −σβ

B = σ(β − (d + γ))− (d + θ + σϕ)

C = (d + γ)(d + θ + ϕ)(Rv − 1)/β

with
Rv = R0

d + θ + σϕ− α(1 − σ)d
d + θ + ϕ

from (5).
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Backward bifurcation leading to two endemic equilibria occurs for
σ > 0 if P ′(0) = B > 0, P(0) = C < 0 and B2 > 4AC (we always
have P(1) < 0)

▶ On an (Rv, I) bifurcation diagram, this occurs for Rc < Rv < 1,
where Rc is the value of Rv at the saddle node bifurcation point
where the two values of I coincide, i.e., I = Ic = B/(−2A)

▶ For Rv < Rc, there is no endemic equilibrium (EEP). For
Rv > 1, the constant term C > 0, and there is a unique EEP

▶ In the case of forward bifurcation, Rc = 1; this is the case in
particular if the vaccine is totally effective (σ = 0)
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By standard planar ODE arguments the following can be shown

Theorem 3
For the ODE system (6) with V(0) ≥ 0, I(0) > 0, and R0 > 1

(i) if Rv < Rc, then the disease dies out,

(ii) if Rc < Rv < 1, then the EEP with larger I is l.a.s., and the
EEP with smaller I is unstable

(iii) if Rv > 1, then the unique EEP is globally asymptotically
stable in D − {I = 0}
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Pertussis:
▶ 3 week average disease duration (γ = 0.04762)
▶ Average lifetime 75 years (d = 3.6530E − 05)
▶ Average number of adequate contacts per infective per day is

estimated at 0.4 (β = 0.4)
▶ Most newborns are vaccinated in the first few months of life

(α = 0.9)
▶ Vaccine is effective, σ = 0.1 (90% effective vaccine).
▶ Pertussis vaccine begins to wane after about 3 years and the

average waning time of the vaccine 1/θ is assumed to be 5
years, giving θ = 5.4794E − 04

With these parameter values, there is backward bifurcation for a
range of ϕ values given by 0.0254 ≤ ϕ ≤ 0.1506
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With the above parameter values, R0 = 8.3936 and
Rv(ϕ) = 0.8807 for ϕ = 0.1, which is in the range of backward
bifurcation since the critical value Rc(ϕ) = 0.8669 < Rv(ϕ) < 1
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Step function case: a delay integral model

Suppose that
P(v) =

{
1 if v ∈ [0, ω]
0 otherwise

Since V0(t) = 0 for t > ω, with S = 1− I−V the integral equation
(1b) becomes, for t > ω

V(t) =
∫ t

t−ω
(ϕ(1 − I(u)− V(u)) + αd)e−d(t−u)e−σβ

∫ t
u I(x)dxdu (7)
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Differentiating (7) (see equation (4)) gives the model as the two
dimensional system, for t > ω

d
dt I(t) = β(1 − I(t)− (1 − σ)V(t))I(t)− (d + γ)I(t) (8a)
d
dtV(t) = ϕ(1 − I(t)− V(t)) (8b)

− ϕ(1 − I(t − ω)− V(t − ω))e−dωe−σβ
∫ t

t−ω I(x)dx

− σβIV − dV + αd
(

1 − e−dωe−σβ
∫ t

t−ω I(x)dx
)

Hereafter, shift time by ω so that these equations hold for t > 0
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The well posedness of the problem follows from Theorem 1 and
from the fact that solutions of (1) exist and are unique. For a
constant waning period, the basic reproduction number from (5) is

Rv = R0
d + (σϕ− α(1 − σ)d)(1 − e−dω)

d + ϕ(1 − e−dω)
(9)

With IDF = 0, from Theorem 2

VDF =
(ϕ+ αd)(1 − e−dω)

d + ϕ(1 − e−dω)
, SDF =

d − αd(1 − e−dω)

d + ϕ(1 − e−dω)
(10)
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Finding the EEP’s

From nullclines, there exists one (or more) endemic equilbria
(EEP) iff there exists 0 < I⋆ ≤ 1 such that

V⋆ = f(I⋆) = g(I⋆) (11)

where
f(I) = 1 − 1/R0 − I

1 − σ
(12)

for σ < 1, and

g(I) = (ϕ(1 − I) + αd)(1 − e−dω−σβωI)

ϕ(1 − e−dω−σβωI) + d + σβI (13)
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Visualising and locating the bifurcation

From the nullcline equations, an EEP exists iff there exists an
I⋆ ∈ (0, 1] such that equations (11)-(13) hold. So we study the
zeros of

H(I) = 1 − 1/R0 − I
1 − σ

− (ϕ(1 − I) + αd)(1 − e−dω−σβωI)

ϕ(1 − e−dω−σβωI) + d + σβI

To state the problem in a formal way, let A = {α, β, γ, ω, ϕ, σ} be
the set of parameters of interest, and denote

H(I,A) = f(I)− g(I) (14)

to show the dependence on these parameters.
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We proceed as follows.
1. Choose a parameter ai ∈ A.
2. Fix all other aj’s (j ̸= i).
3. Choose ai,min, ai,max and ∆ai for ai.
4. For all ai,k = ai,min + k∆ai (k such that ai,k ≤ ai,max),

compute I⋆ such that H(I⋆, ai,k) = 0.
Step 4 is carried out using the MatLab fzero function.
Further precision can be gained by showing that

H(0) = Rv − 1
(1 − σ)R0

and that, for σ < 1

H(1) = − 1
(1 − σ)R0

− αd(1 − e−dω−σβω)

ϕ(1 − e−dω−σβω) + d + σβ
< 0
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Define Rc as previously. For R0 > 1 and Rv < 1, there are several
possibilities.
▶ If Rv < Rc, then there is no EEP. H(0) and H(1) are strictly

negative, and numerical simulations seem to indicate that H
has no roots in (0, 1] (i.e., that H < 0 on this interval).

▶ If Rc < Rv < 1, then there are endemic equilibria. Here, since
H(0) and H(1) are strictly negative, the only possibility is thus
to have an even number of zeros of H. Numerical simulations
appear to indicate that the number of endemic equilibria is 2.

In between these two situations Rv = Rc and there is one endemic
equilibrium I⋆. Using the same procedure as for the visualisation of
the bifurcation, it is possible to compute Rc by finding the value I⋆
such that H(I⋆,A) = 0 and H′(I⋆,A) = 0, for a given parameter
ai ∈ A.
If Rv > 1 then H(0) > 0 and so there is an odd number of
endemic equilibria. Numerical simulations indicate that there is a
unique EEP.
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Numerical bifurcation analysis

Same parameter values as in ODE case, except that the constant
waning time (the delay) ω has to be substituted for θ. We take
ω = 1825, i.e., corresponding to a 5 years waning time

These parameters give R0 = 8.3936 and Rv(ϕ) = 0.8819, which is
in the range of the backward bifurcation since (using the above
method) Rc(ϕ) = 0.8675

The bifurcation diagram is very like that depicted in earlier for the
ODE. Numerical simulations of the DDE model (using dde23)
indicate that there are no additional bifurcations; solutions either
go to the DFE or to the (larger) EEP
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(a) Values of I⋆ as a function of ω by solving H(I,A) = 0 with
ai = ω. (b) Value of I(t) versus time, obtained by numerical
integration of system (8) with initial data I(t) = c, for t ∈ [−ω, 0],
ω = 1825, c varying from 0 to 1 by steps of 0.02
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Age of infection

We have seen that infinite dimensionality could result from a
detailed description (or an unspecified one) of the sojourn time in
compartments

We used age of vaccination to find the initial condition of system
(1)

Here we take a closer look at this type of model

Originally, age of infection was introduced to account for
differences in infectivity depending on the time since an individual
became infected

For instance, it is known that infectiousness of HIV positive
patients vary as a function of time
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Age structure

Taking into account age can be important in some cases

▶ Demographic characteristics vary with age
▶ Interactions are in general more frequent between people of a

similar age. They are also more frequent in younger individuals
▶ Some diseases attack preferentially younger individuals
▶ The immunity of individuals changes with age, so for instance,

older people may be more susceptible to some diseases than
younger people

This is based on courses given by Jia Li during a Banff summer
school in 2004
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Note on age

Chronological age, as a structuring variable, is “easier” than
other structuring variables

Indeed, if a is (chronological) age, then

d
dta = 1
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Formulation of an SIR model

Let a be the age. Assume that natural death and recovery occur at
the rates µ and γ, respectively, both dependent on a

When an individual is sick, they are subject to disease-induced
death at the rate δ(a)

Governing equations are
(∂t + ∂a)S(t, a) = Λ(a)− (µ(a) + λ(t, a))S(t, a) (15a)
(∂t + ∂a)I(t, a) = −(µ(a) + γ(a) + δ(a))I(t, a) + λ(t, a)S(t, a) (15b)
(∂t + ∂a)R(t, a) = γ(a)I(t, a) (15c)
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Boundary conditions are

S(t, a0) = B (15d)
I(t, a0) = 0 (15e)

R(t, a0) = 0 (15f)

while initial conditions take the form

S(0, a) = Φ(a) (15g)
I(0, a) = Ψ(a) (15h)

R(0, a) = 0 (15i)
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Force of infection

Transmission λ(t, a) of the disease takes the form

λ(t, a) = r(a)
∫ ∞

a0

β(a, s)ρ(a, s) I(t, s)
N(t, s)ds

where
▶ r(a) is the number of contacts by individuals of age a per unit

time
▶ β(a, s) is the probability of disease transmission to a

susceptible of age a by an infectious of age s
▶ ρ(a, s) is the meeting rate between people of age a and people

of age s
▶ N(t, a) = S(t, a) + I(t, a) + R(t, a) is the distribution of total

population
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To simplify, assume that β(a, s) is separable

β(a, s) = f(a)g(s)

where f(a) is the susceptibility of individuals aged a and g(s) is the
force of infection of individuals aged s

Then
λ(t, a) = r(a)f(a)

∫ ∞

a0

g(s)ρ(a, s) I(t, s)
N(t, s)ds (16)
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Analysis of the SIR model

We seek the DFE by setting I = 0

We find (S, I,R) = (S0(a), 0, 0) with

S0(a) = Be−M(a) + e−M(a)
∫ a

a0

eM(x)Λ(x)dx

where
M(a) =

∫ a

a0

µ(s)ds
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Consider the perturbed solution u(t, a) = S(t, a)− S0(a). Assume
that the meeting rate ρ is also separable,

ρ(a, s) = p1(a)p2(s)

Then

λ̃(t, a) := r(a)f(a)p1(a)
∫ ∞

a0

g(s)p2(s)
S0(s) I(t, s)ds ≃ λ(t, a)

and we obtain the linearisation

(∂t + ∂a)u = −µ(a)u − λ̃(t, a)S0(a)
(∂t + ∂a)I = −(µ(a) + γ(a) + δ(a))I + λ̃(t, a)S0(a)
(∂t + ∂a)R = γ(a)I
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Let
u(t, a) = ũ(a)ec(t−a) I(t, a) = Ĩ(a)ec(t−a)

and denote

b(a) = S0(a)r(a)f(a)p1(a) W =

∫ ∞

a0

g(s)p2(s)
S0(s) e−cs̃I(s)ds
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Then

dũ(a)
da = −µ(a)ũ(a)− b(a)ecaW

d̃I(a)
da = −(µ(a) + γ(a))̃I(a) + b(a)ecaW

Ĩ(a) = We−M(a)−Γ(a)
∫ ∞

a0

eM(s)+Γ(s)b(s)ecsds

where Γ(a) =
∫ a

a0
γ(s)ds

Therefore

W = W
∫ ∞

a0

g(s)p2(s)
S0(s) e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds
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Let then

H(c) :=
∫ ∞

a0

g(s)p2(s)
S0(s) e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds

We seek roots of the characteristic equation H(c) = 1

We have
dH(c)

dc = −
∫ ∞

a0

g(s)p2(s)
S0(s) e−M(s)−Γ(s)

∫ s

a0

(s − v)eM(v)+Γ(v)b(v)e−c(s−v)dvds < 0

implying that H(c) is a decreasing function
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▶ Let c⋆ be a real solution to H(c) = 1. If H(0) > 1, then c > 0,
whereas if H(0) < 1, c < 0

▶ Suppose that c⋆ = α+ iβ is a complex root of H(c) = 1. Then

Re H(c) =
∫ ∞

a0

g(s)p2(s)
S0(s) e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−α(s−v) cos β(s − v)dvds

As a consequence, H(0) < 1 =⇒ α < 0

So H(0) = 1 is a threshold and we take R0 = H(0)
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Analyse par les semigroupes: modèle SIA

Pour illustrer l’utilisation de la méthode des semigroupes dans ce
contexte, on considère ici un modèle SIA décrivant l’évolution du
HIV/SIDA. Le modèle est pratiquement équivalent à (15), à
quelques différences près. On suppose que la classe I contient les
individus porteurs du HIV, mais non encore en stade SIDA. Il n’y a
pas de mortalité spécifique à cet état. Le taux γ(a) représente ici
la progression vers le stade SIDA. Lorsqu’un individu est en stade
SIDA (dans la classe A, pour AIDS), il est soumis à une mortalité
spécifique.
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(∂t + ∂a)S(t, a) = Λ(a)− (d(a) + λ(t, a))S(t, a) (17a)
(∂t + ∂a)I(t, a) = −(d(a) + γ(a))I(t, a) + λ(t, a)S(t, a) (17b)
(∂t + ∂a)A(t, a) = γ(a)A(t, a)− (d(a) + δ(a))A(t, a) (17c)

On suppose que

λ(t, a) = h(a)
∫ ∞

a0

ρ(a, a′) I(t, a′)
T(t, a′)da′

where T(t, a′) = S(t, a′) + I(t, a′).
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Un individu en stade SIDA n’a plus de contacts. Donc la
dynamique de S et de I ne dépend pas de la dynamique de A, et
l’on considère à présent le système consistant de ces deux
premières variables. Soit ω l’âge maximum. Le système en
proportions prend la forme

x :=
S
T y :=

I
T

Puisque l’on ne considère que S et I, on a x + y = 1, et par
conséquent le système s’écrit

(∂t + ∂a)y(t, a) = (1 − y)(−γ(a)y + λ(t, a)) (18a)

λ(t, a) = h(a)
∫ ω

0
p(a, a′)y(t, a′)da′ (18b)
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Soit X = {f ∈ L1(0, ω)}. On définit alors

(Af)(a) := − d
daf(a), f ∈ D(A)

avec D(a) = {f ∈ X, f est absolument continue, f(0) = 0}, et

F(f)(a) ≡ (1 − f(a))
(
−γ(a)f(a) + h(a)

∫ ω

0
p(a, a′)f(a′)da′

)
un opérateur de X → X. Soit Ω = {f ∈ X, 0 ≤ f ≤ 1 p.p.}. Alors
(18) s’écrit

dy
dt = Ay + F(y)

y(0) = y0 ∈ Ω
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Soit

(Bf)(a) = −df(a)
da −γ(a)f(a) (Pf)(a) = h(a)

∫ ω

0
p(a, a′)f(a′)da′

On a

(∂t +∂a)y = −γ(a)y+h(a)
∫ ω

0
ρ(a, a′)y(t, a′)da′ ⇔ dy

dt = (B+P)y

B + P génère un C0-semigroupe T(t), t ≥ 0, qui est eventually
uniformément continu.
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La résolvante de B + P est

R(λ;B + P) = (Sλ − I)−1G

avec
(Gf)(a) =

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
f(σ)dσ

(Sλf)(a) =
∫ ω

0

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
ρ(σ, ξ)dσf(ξ)dξ

where l’on a noté

Γ(a) = exp

(
−
∫ a

0
γ(a′)da′

)
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R0

R0 est le rayon spectral de l’opérateur

(Sf)(a) =
∫ ω

0

∫ a

0

Γ(a)
Γ(σ)

h(σ)p(σ, ξ)dσf(ξ)dξ
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Formation des paires

ρ(t, a, a′) proportion de partenaires d’un individu d’âge a qui sont
d’âge a′.
r(t, a) nombre moyen de partenaires qu’a un individu d’âge a.
T(t, a) nombre total d’individus d’âge a.

On doit vérifier les conditions suivantes.
▶ 0 ≤ ρ ≤ 1,
▶ ∫∞

0 ρ(t, a, a′)da′ = 1,
▶ ρ(t, a, a′)r(t, a)T(t, a) = ρ(t, a′, a)r(t, a′)T(t, a′),
▶ r(t, a)T(t, a)r(t, a′)T(t, a′) = 0 ⇒ ρ(t, a, a′) = 0.
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Spatial spread of an epidemic

Lopez et al, 1999. Propagation of epidemic waves when infection
happens within a short distance

▶ SIS and SIR models
▶ Consider a road of length L
▶ S(x, t), I(x, t) and (when relevant) R(x, t) are the densities of

individuals in the different compartments at location x ∈ [0, L]
at time t

▶ For simplicity, denote

∂

∂tX(x, t) = Xt(x, t)
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The SIR model on the road

St(x, t) = −β(x, t)S(x, t)− dS(x, t) + dN(x) + λ1I(x, t) (19a)
It(x, t) = λ(x, t)S(x, t)− dI(x, t)− (γ1 + γ2)I(x, t) (19b)

Rt(x, t) = γ2I(x, t)− dR(x, t) (19c)

where the force of infection is

λ(x, t) = 1
N

∫ L

0
β(x, x′)I(x, x′)dx′ (19d)

and the total population along the road is

N =

∫ L

0
N(x′)dx′ (19e)
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Take the SIS model as an example (γ2 = 0, γ1 = γ). Solve (19b)
in terms of λ:

I(x, t) = exp

(
−
∫ t

0
λ(x, s)− (d + γ)tds

)
×
∫ t

0
λ(x, t′)N(x)e

∫ t′
0 λ(x,s)+(d+γ)t′dsdt′

+ I(x, 0) exp
(
−
∫ t

0
λ(x, s)− (d + γ)tds

) (20)
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Substitute (20) into (19d)

λ(x, t) =
∫ L

0
β(x, x′)n(x′)

∫ t

0
λ(x′, t′)e−

∫ t
t′ λ(x′,s)−(d+γ)(t−t′)dsdt′dx′

+

∫ L

0
β(x, x′)i(x′, 0)e−

∫ t
0 λ(x′,s)−(d+γ)tdsdx′

where n(x) = N(x)/N and i(x, t) = I(x, t)/N. Without demography
(d = 0):

λ(x, t) =
∫ L

0
β(x, x′)n(x′)

∫ t

0
λ(x′, t′)e−

∫ t
t′ λ(x′,s)−γ(t−t′)dsdt′dx′

+

∫ L

0
β(x, x′)i(x′, 0)e−

∫ t
0 λ(x′,s)−γtdsdx′
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Thus the problem is in the form

Bλ(x, t) = λ(x, t)

In both cases, B is a Hammerstein-type operator in x
▶ SIR case: B is a nonlinear Volterra operator in t ⇒existence

and uniqueness of solutions
▶ SIS case: B is not a nonlinear Volterra operator in t.

However, it resembles one and the authors establish existence
and uniqueness of solutions
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Dans les deux cas, on a propagation d’un front d’onde puis on
approche un état d’équilibre. On a, dans le cas SIS,

λ(x) = lim
t→∞

Bλ(x, t) = B∞λ(x) =
∫ L

0
β(x, x′)n(x′) λ(x′,∞)

λ(x′,∞) + γ

qui ne dépend pas de t. Discutent alors de conditions faisant que
cette limite ne soit pas zéro, en cherchant les valeurs de z telles
que B∞λ(x) = zλ(x) ait une solution positive.

Montrent qu’il existe un zseuil = R0 qui distingue entre λ(x) ≡ 0 si
R0 < 1, et une solution positive unique si R0 > 1.
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