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Objective of this course

▶ Illustrate some concepts in Mathematical Epidemiology

▶ The course is not a comprehensive introduction to mathematical epidemiology

▶ I hope to give you some notions (and maybe recruit you into the field)

p. 1 – Objective/Method of this course



I will try to give you two perspectives

▶ As a modeller and mathematician these are fun problems to look at. You need to
know the theory in order to carry out relevant work

▶ As a public health practitioner these are important problems to look at. As a
modeller, you will be called on to provide guidance to public health authorities. Know
what you can and cannot do. Know how to communicate with said authorities

(As a general rule, know your audience and adapt to it, don’t expect it to adapt to you)

p. 2 – Objective/Method of this course



These slides

▶ There are three slide sets. Each slide set contains way too many slides for a single
lecture, I will cover only a subset. Use the rest if you want to learn more. All the work
cited in a slide set is collected in a Bibliography at the end of the slide set

▶ Some slides show R or julia code used to produce the figures shown; they can
safely be ignored if you have no interest in numerics (you should, but who am I to say!)

▶ As much as possible, I am homogeneising notation, denoting similar parameters with
the same greek/roman letter

▶ The slides are in Rnw: they are a mix of R and LATEX, which is run through R then
LATEX. You have access to everything used to make them...

p. 3 – Objective/Method of this course
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Incidence & Prevalence (when?)

Incidence: number of new cases in a population generated within a certain time period

Prevalence: number of cases of a disease at a single time point in a population

=⇒ I (t) in an epidemiological model is prevalence, not incidence

p. 5 – Mathematical Epidemiology



Exposition versus Exposed

- Some bright bulb (not sure who) in days of yore: let’s call exposed someone who has
contracted the disease but is not yet showing symptoms ( =⇒ SEIR model)

- “Real” epidemiologist: let’s trace people who were exposed to the virus, i.e., people
having come into contact with the virus (whether they have contracted the disease or
not)

- Interestingly, I am embarked on a quixotic quest to make people use L instead of E ,
only to be told by real epidemiologists that they don’t care :) (see this paper, though:
Origins of the problematic E in SEIR epidemic models, D. Burke, IDM 2024)

p. 6 – Mathematical Epidemiology

https://doi.org/10.1016/j.idm.2024.03.003


Some terminology for “where”

▶ Epidemic: diseases that are visited upon a population

▶ Pandemic: epidemic that has spread across a large region, e.g., multiple continents
or worldwide

▶ Endemic: disease that resides within a population

▶ We don’t say “panendemic”

p. 7 – Mathematical Epidemiology



The different stages of propagation

p. 8 – Mathematical Epidemiology
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Daniel Bernoulli (1760)

▶ BNF scan or pdf

▶ Probably the first epidemic model

▶ About petite vérole (smallpox) inocu-
lation

p. 9 – Mathematical Epidemiology

https://gallica.bnf.fr/ark:/12148/bpt6k3558n/f220.item
https://julien-arino.github.io/assets/pdf/Bernoulli-1760.pdf


Ross (early 1900)

▶ On 20 August 1897, observed malaria parasites in
the gut of a mosquito fed several days earlier on a
malaria positive human

▶ Nobel Prize for Medicine 1902

▶ Started considering malaria eradication using
mathematical models; for some history, read this
2012 paper

p. 10 – Mathematical Epidemiology

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320609/pdf/ppat.1002588.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3320609/pdf/ppat.1002588.pdf


Kermack and McKendrick (1927+)

Model in these slides is a particular case in

▶ Kermack & McKendrick. A contribution to the mathematical theory of epidemics
(1927)

That paper was followed by a series of “Contributions to the mathematical theory of
epidemics.”

▶ II. The problem of endemicity (1932)

▶ III. Further studies of the problem of endemicity (1933)

▶ IV. Analysis of experimental epidemics of the virus disease mouse ectromelia
(1937)

▶ V. Analysis of experimental epidemics of mouse-typhoid; a bacterial disease
conferring incomplete immunity (1939)

p. 11 – Mathematical Epidemiology

https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1932.0171
https://doi.org/10.1098/rspa.1933.0106
https://doi.org/10.1017/S0022172400034902
https://doi.org/10.1017/S0022172400011918
https://doi.org/10.1017/S0022172400011918


Macdonald, Dietz and malaria

▶ Read for instance this paper, which presents a history of the development of the
so-called Ross-Macdonald model

▶ Klaus Dietz also worked a lot on malaria

p. 12 – Mathematical Epidemiology

https://doi.org/10.1371/journal.ppat.1002588


Some activity later, but not much until 1990s

▶ In recent years, explosion

▶ Since the beginning of COVID-19: just nuts..

p. 13 – Mathematical Epidemiology



Some landmarks in mathematical epidemiology (IMBO)

▶ Macdonald. The epidemiology and control of malaria. 1957

▶ Baroyan, Rvachev et al. Deterministic epidemic models for a territory with a
transport network. Kibernetika, 1967

Hethcote. Qualitative analyses of communicable disease models. MBS 28, 1976

▶ Hethcote & Yorke. Gonorrhea Transmission Dynamics and Control. LNBM 56, 1984

▶ Anderson & May. Infectious diseases of humans: dynamics and control. 1991

▶ Capasso. Mathematical Structures of Epidemic Systems. LNBM 97, 1993

▶ Hethcote. The mathematics of infectious diseases. SIAM Review, 2000

▶ van den Driessche & Watmough. Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. MBS, 2002

p. 14 – Mathematical Epidemiology
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A more recent trend

▶ Some rare numerical work ≤ 1980s, mostly simulation of math models

▶ Baroyan, Rvachev et al. Computer modelling of influenza epidemics for the whole
country (USSR). Advances in Applied Probability (1971)

▶ Rvachev & Longini. A mathematical model for the global spread of influenza.
Mathematical Biosciences (1986)

▶ Flahault, Letrait et al. Modelling the 1985 influenza epidemic in France. Statistics
in Medicine (1988)

▶ More and more frequent now, to the point that some modelling studies are purely
simulation-based

p. 15 – Mathematical Epidemiology

https://doi.org/10.2307/1426167
https://doi.org/10.2307/1426167
https://doi.org/10.1016/0025-5564(85)90064-1
https://doi.org/10.1002/sim.4780071107


Agent-based models (ABM)

▶ Early in the life of these models, they were called IBM (individual-based models)

▶ Over the years, a ”philosophical” distinction has emerged:

▶ IBM are mathematical models that consider individuals as the units; e.g., DTMC,
CTMC, branching processes, etc.

▶ ABM are computational models whose study is, for the most part, only possible
numerically

p. 16 – Mathematical Epidemiology



Network models

▶ Network models endow vertices with simple systems and couple them through graphs

▶ Can be ABM, but some networks can also be studied analytically

p. 17 – Mathematical Epidemiology
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Has happened all along, undergoing a transformation

▶ Epidemiology has long relied on data

▶ Many developments in statistics originate there

▶ Data has traditionally been better for chronic diseases than for infectious ones

▶ Near-real-time surveillance of infectious diseases ongoing since the 1980s (e.g.,
Réseau Sentinelles)

▶ SARS-CoV-1 saw the beginning of a move towards real-time emerging infectious
disease data

▶ With SARS-CoV-2, the system has really progressed a lot, both in terms of “citizen
science” and governmental initiatives

p. 18 – Mathematical Epidemiology
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Compartmental models

▶ Have become synonymous with epidemiological models

▶ Many epidemiological models are compartmental models, but the development of
compartmental models in the 1970-1980s was not at all specific to epidemiology

▶ See in particular the works of John Jacquez, Carl Simon, GG Walter

▶ Unjustly fell into disuse: there are some very nice results in the area

p. 19 – Mathematical Epidemiology

https://www.semanticscholar.org/author/J.-Jacquez/2321059
https://scholar.google.ca/citations?user=dv_z_mAAAAAJ
https://www.semanticscholar.org/author/G.-Walter/1799059


Compartment (Jacquez 1979)

A compartment is an amount of some material which acts kinetically like
a distinct, homogeneous, well-mixed amount of material. A compartmental
system consists of one or more compartments which interact by exchanging
the material. There may be inputs into one or more compartments from outside
the system and there may be excretions from the compartments of the system.

(Paper worth reading if just for the Introduction)

p. 20 – Mathematical Epidemiology

https://doi-org.uml.idm.oclc.org/10.1016/B978-0-12-434180-7.50021-8


qi

ii (t)

fjifij

f0i

▶ qi size of the compartment, i.e., quantity
of kinetically homogeneous material
present in i ; qi ≥ 0

▶ fij and fji transfer coefficients/functions

▶ f0i excretion coefficient/function

▶ ii (t) entries from outside the system

Above is a flow diagram, which summarises the different flows acting on the
compartment

p. 21 – Mathematical Epidemiology
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What is the size of an epidemic?

▶ If we are interested in the possibility that an epidemic occurs

▶ Does an epidemic peak always take place?

▶ If it does take place, what is its size?

▶ If an epidemic traverses a population, is everyone affected/infected?

p. 23 – Kermack-McKendrick-type epidemic models
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The Kermack-McKendrick SIR model without demography

▶ The period of time under consideration is sufficiently short that demography can be
neglected (we also say the model has no vital dynamics)

▶ Individuals are either susceptible to the disease or infected by (and infectious with)
the disease

▶ After recovering or dying from the disease, individuals are removed from the
infectious compartment (R)

▶ Incidence is of mass action type and takes the form βSI

p. 25 – Kermack-McKendrick-type epidemic models



The state variables

We formulate the model as a system of differential equations

Differential equations: unknowns are functions (instead of scalars, like in algebraic
equations)

At time t ≥ 0 (we typically assume time starts at t = 0, but could also consider
t ≥ t0 > 0), the state variables, in the current model, are the numbers of individuals
who are

▶ susceptible to the disease: S(t)

▶ infected and infectious with the disease: I (t)

▶ removed from the infectious comparment: R(t)

Often, we drop the dependence on t if it is not explicitly required and write S , I ,R

p. 26 – Kermack-McKendrick-type epidemic models



Important – Incidence functions

Incidence is the rate at which new cases arise, the incidence function then describes
how contacts lead to new infections

If there are S susceptible individuals and I infectious individuals in the population, we
use a function of the form

f (S , I )

The function can also explicitly depend on the total population N, i.e., f (S , I ,N)

We return to incidence functions in Lecture 06

For now, just know the most common incidence functions are

▶ mass action incidence f (S , I ,N) = βSI

▶ standard (or proportional) incidence f (S , I ,N) = βSI/N

p. 27 – Kermack-McKendrick-type epidemic models

no.se


The Kermack-McKendrick model

This model is typically called the Kermack-McKendrick (KMK) SIR model

d

dt
S(t) = −βS(t)I (t)

d

dt
I (t) = βS(t)I (t)− γI (t)

d

dt
R(t) = γI (t)

S(t) I (t) R(t)
βS(t)I (t) γI (t)

p. 28 – Kermack-McKendrick-type epidemic models



The Kermack-McKendrick model

As indicated, we often drop dependence on t of the state variables; we also write
X ′ := dX (t)/dt. So the KMK model is usually written

S ′ = −βSI (1a)

I ′ = βSI − γI (1b)

R ′ = γI (1c)

S I R
βSI γI

p. 29 – Kermack-McKendrick-type epidemic models
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Reduction of the model

3 compartments, but when considered in detail, we notice that removed do not have a
direct influence on the dynamics of S or I , in the sense that R does not appear in (1a)
or (1b)

Furthermore, the total population (including deceased who are also in R)
N = S + I + R satisfies

N ′ = (S + I + R)′ = 0

Thus, N is constant and

S(t) + I (t) + R(t) = N0, t ≥ 0. (2)

so the dynamics of R can be deduced from R = N − (S + I ). So we can consider

S ′ = −βSI (3a)

I ′ = βSI − γI (3b)

p. 30 – Kermack-McKendrick-type epidemic models



Equilibria

Let us consider the equilibria of

S ′ = −βSI (3a)

I ′ = (βS − γ)I (3b)

From (3b)

▶ either S⋆ = γ/β

▶ or I ⋆ = 0

Substitute into (3a)

▶ in the first case, (S⋆, I ⋆) = (γ/β, 0)

▶ in the second case, any S⋆ ≥ 0 is an EP

The second case is an issue: the usual linearisation does not work when there is a
continuum of equilibria as the EP are not isolated

p. 31 – Kermack-McKendrick-type epidemic models



What is the problem with non-isolated EP?

Proposition 1

The Kermack-McKendrick model SIR model (1) has the continuum of equilibria

EKMK
0 := {(S⋆, I ⋆,R⋆) = (S∞, 0,N0 − S∞), S∞ ∈ [0,N0]} (5)

p. 32 – Kermack-McKendrick-type epidemic models



Proof

Let us consider (1) and start with I = I ⋆ = 0. Substitute this value into (1a) at
equilibrium, giving 0 = −γS⋆I ⋆(= 0), meaning that any value of S⋆ satisfies this
relation. From the conservation of the total population (2), the equilibrium EKMK

0

takes the form given by (5)

Now consider S = S⋆ = γ/β. Substituting this value into (1a) at equilibrium gives
0 = −γI ⋆, from which it follows that I ⋆ = 0, and, using the conservation of total
population (2),

(S⋆, I ⋆,R⋆) =

(
γ

β
, 0,N0 −

γ

β

)
(6)

is an equilibrium of (1). The equilibrium (6) is biologically relevant only when
N0 − γ/β ≥ 0. Note that (5) includes (6) when the latter is biologically relevant

p. 33 – Kermack-McKendrick-type epidemic models



Adapting slightly the definitions in [15], consider the ordinary differential equation

x ′ = f (x) (7)

where x(t) ∈ W and f : W → E is a function such that solutions to (7) exist uniquely,
e.g., a C 1 function, from an open set W of the vector space E into E

Denote x(t, x0) the solution to (7) through the initial value x(t0) = x0

p. 34 – Kermack-McKendrick-type epidemic models



A point x⋆ ∈ W is an equilibrium if f (x⋆) = 0

Definition 2 (Locally stable equilibrium)

An equilibrium point x⋆ of (7) is locally stable (LS) if for every neighbourhood N (x⋆)
of x⋆ in W , there is a neighbourhood N1 ⊆ N (x⋆) of x⋆ such that every solution
x(t, x0) with x0 ∈ N1 is defined and in N (x⋆) for all t > t0

Definition 3 (Locally asymptotically stable equilibrium)

If N1 can be chosen so that in addition to the properties in Definition 2,
limt→∞ x(t, x0) = x⋆ for all x0 ∈ N1, then x⋆ is locally asymptotically stable (LAS)

p. 35 – Kermack-McKendrick-type epidemic models



DFE (5) of (1) are not isolated: any (open) neighbourhood of an equilibrium contains
infinitely many other equilibria

S

R

S + R = N0

S = N0

R = N0

x⋆

Neighbourhood N (x⋆) of x⋆ ∈ EKMK
0 lying on the S − R plane (the neighbourhood

extends above and below the S −R plane in the I direction, not shown here). The thin
line is EKMK

0 , the thick line is EKMK
0 ∩N (x⋆)

p. 36 – Kermack-McKendrick-type epidemic models



Proposition 4

Consider a disease-free equilibrium x⋆ ∈ EKMK
0 of (1). Then x⋆ is LS but not LAS

This means in particular that considering the Jacobian of (1) at the DFE makes no
sense!

p. 37 – Kermack-McKendrick-type epidemic models



Proof

Let x⋆1 ∈ EKMK
0 be an equilibrium of (1). Consider SN (x⋆1 ) ⊂ EKMK

0 , open subset of
EKMK
0 containing x⋆1 . Now take some x⋆2 ∈ SN (x⋆1 ). Since x⋆2 ∈ SN (x⋆1 ) ⊂ EKMK

0 , x⋆2 is
an equilibrium of (1) and thus x(t, x⋆2 ) = x⋆2 ∈ SN (x⋆1 ) for all t ≥ t0. As a
consequence, x⋆1 is locally stable

⇒ any open neighbourhood N (x⋆1 ) contains SN = N (x⋆1 ) ∩ EKMK
0

Consider, then, some x⋆2 ∈ SN . Since x⋆2 ∈ SN , x⋆2 is an equilibrium and as a
consequence, limt→∞ x(t, x⋆2 ) = x⋆2 . Therefore, any open neighbourhood of x⋆1
contains points x0 not such that limt→∞ x(t, x0) = x⋆1 =⇒ x⋆1 is LS but not LAS

p. 38 – Kermack-McKendrick-type epidemic models



The next generation matrix method in this context

Consider the method in [21]

To construct R0, they require local stability

Theorem 2 in [21] pertaining to LAS, on the other hand, has one assumption
(assumption A5) that the DFE be locally asymptotically stable, with the assumption
that all eigenvalues of the linearisation near a disease-free equilibrium have negative
real parts

Clearly, this cannot be true with (1)

p. 39 – Kermack-McKendrick-type epidemic models



Another approach – Study dI/dS

S ′ = −βSI (3a)

I ′ = βSI − γI (3b)

What is the dynamics of dI/dS?

dI

dS
=

dI

dt

dt

dS
=

I ′

S ′ =
βSI − γI

−βSI
=

γ

βS
− 1 (8)

provided S ̸= 0

Note – Recall that S and I are S(t) and I (t).. (8) thus describes the relation between
S and I over solutions to the original ODE (3)

p. 40 – Kermack-McKendrick-type epidemic models



Integrate (8) and obtain trajectories in state space

I (S) =
γ

β
lnS − S + C

with C ∈ R

IC I (S0) = I0 ⇒ C = S0 + I0 −
γ

β
lnS0 and the solution to (1) is, as a function of S

I (S) = S0 + I0 − S +
γ

β
ln

S

S0

R(S) = N − S − I (S) = R0 −
γ

β
ln

S

S0

(since N0 = S0 + I0 + R0)

p. 41 – Kermack-McKendrick-type epidemic models



Trajectories of (3) in (S , I )-space, normalised, with IC (S0, 1− S0) and β/γ = 2.5
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Let us study

I (S) = S0 + I0 − S +
γ

β
ln

S

S0

We have
d

dS
I (S) =

γ

βS
− 1

So, in the previous curves, the max of I (S) happens when S = γ/β (S = 0.4 in the
example)

At that point,

I (S) = I0 +

(
1− 1

R0
− ln(R0)

R0

)
S0

p. 43 – Kermack-McKendrick-type epidemic models



Theorem 5 (Epidemic or no epidemic?)

Let (S(t), I (t)) be a solution to (3) and R0 defined by

R0 =
β

γ
S0 (9)

▶ If R0 ≤ 1, then I (t) ↘ 0 when t → ∞
▶ If R0 > 1, then I (t) first reaches a maximum

I0 +

(
1− 1

R0
− ln(R0)

R0

)
S0 (10)

then goes to 0 as t → ∞

p. 44 – Kermack-McKendrick-type epidemic models



rhs_SIR_KMK <- function(t, x, p) {
with(as.list(c(x, p)), {
dS = - beta * S * I

dI = beta * S * I - gamma * I

dR = gamma * I

return(list(c(dS, dI, dR)))

})
}
# Initial condition for S (to compute R_0)

S0 = 1000

gamma = 1/14

# Set beta so that R_0 = 1.5

beta = 1.5 * gamma / S0

params = list(gamma = gamma, beta = beta)

IC = c(S = S0, I = 1, R = 0)

times = seq(0, 365, 1)

sol_KMK <- ode(IC, times, rhs_SIR_KMK, params)

p. 45 – Kermack-McKendrick-type epidemic models



plot(sol_KMK[, "time"], sol_KMK[, "I"],

type = "l", lwd = 2,

main = TeX("Kermack-McKendrick SIR, $R_0=1.5$"),

xlab = "Time (days)", ylab = "Prevalence")
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The basic reproduction number R0

▶ Indicator often used in epidemiology. Verbally
average number of secondary cases of infection produced when a single infec-
tious individual is introduced in a wholly susceptible population

▶ If R0 < 1, then each infectious individual infects on average less than 1 person and
the epidemic is quite likely to go extinct

▶ If R0 > 1, then each infectious individual infects on average more than 1 person and
an epidemic is quite likely to occur

p. 47 – Kermack-McKendrick-type epidemic models



A few sample values of R0

R0 can be estimated from data (from the Anderson & May book)

Infection Location Period R0

Measles Cirencester, England 1947-50 13-14
England and Wales 1950-68 16-18
Kansas, USA 1918-21 5-6
Ontario, Canada 1912-3 11-12
Willesden, England 1912-3 11-12
Ghana 1960-8 14-15
East Nigeria 1960-8 16-17

p. 48 – Kermack-McKendrick-type epidemic models
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Final size of an epidemic

For a nonnegative valued integrable function w(t), denote

w0 = w(0), w∞ = lim
t→∞

w(t), ŵ =

∫ ∞

0
w(t) dt

In the subsystem

S ′ = −βSI (3a)

I ′ = βSI − γI (3b)

compute the sum of (3a) and (3b), making sure to show time dependence

d

dt
(S(t) + I (t)) = −γI (t)

p. 49 – Kermack-McKendrick-type epidemic models



Integrate from 0 to ∞:∫ ∞

0

d

dt
(S(t) + I (t)) dt = −

∫ ∞

0
γI (t)dt

The left hand side gives∫ ∞

0

d

dt
(S(t) + I (t)) dt = S∞ + I∞ − S0 − I0 = S∞ − S0 − I0

since I∞ = 0

The right hand side takes the form

−
∫ ∞

0
γI (t)dt = −γ

∫ ∞

0
I (t)dt = −γ Î

We thus have
S∞ − S0 − I0 = −γ Î (11)
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Now consider (3a):
S ′ = −βSI

Divide both sides by S :
S ′(t)

S(t)
= −βI (t)

Integrate from 0 to ∞:
lnS∞ − lnS0 = −β Î (12)

Express (11) and (12) in terms of −Î and equate

lnS∞ − lnS0
β

=
S∞ − S0 − I0

γ

Thus we have
(lnS0 − lnS∞)S0 = (S0 − S∞)R0 + I0R0 (13)
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Theorem 6 (Final size relation)

Let (S(t), I (t)) be a solution to (3) and R0 defined by (9)

The number S(t) of susceptible individuals is a nonincreasing function and its limit S∞
is the only solution in (0, S0) of the transcendental equation

(lnS0 − lnS∞)S0 = (S0 − S∞)R0 + I0R0 (13)
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The (transcendantal) final size equation

Rewrite the final size equation

(lnS0 − lnS∞)S0 = (S0 − S∞)R0 + I0R0 (13)

as
T (S∞) = (lnS0 − lnS∞)S0 − (S0 − S∞)R0 − I0R0 (14)

Thus, we seek the zeros of the function T (S∞)
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We seek S∞ in (0,S0] s.t. T (S∞) = 0, with

T (S∞) = (lnS0 − lnS∞)S0 − (S0 − S∞)R0 − I0R0 (14)

Note to begin that
lim

S∞→0
T (S∞) = lim

S∞→0
−S0 ln(S∞) = ∞

Differentiating T with respect to S∞, we get

T ′(S∞) = R0 − S0/S∞

When S∞ → 0, R0 − S0/S∞ < 0, so T decreases to S∞ = S0/R0

So if R0 ≤ 1, the function T is decreasing on (0, S0), while it has a minimum if R0 > 1
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Case R0 ≤ 1

T (S∞) = (lnS0 − lnS∞)S0 − (S0 − S∞)R0 − I0R0 (14)

▶ We have seen that T decreases on (0,S0]

▶ Also, T (S0) = −I0R0 < 0 (I0 = 0 is trivial and not considered)

▶ T is continuous

=⇒ there exists a unique S∞ ∈ (0, S0] s.t. T (S∞) = 0
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Case R0 > 1

T (S∞) = (lnS0 − lnS∞)S0 − (S0 − S∞)R0 − I0R0 (14)

▶ We have seen that T decreases on (0,S0/R0]

▶ For S∞ ∈ [S0/R0], T
′ > 0

▶ As before, T (S∞) = −I0R0

▶ T is continuous

=⇒ there exists a unique S∞ ∈ (0, S0] s.t. T (S∞) = 0. More precisely, in this case,
S∞ ∈ (0,S0/R0)
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We solve numerically. We need a function

final_size_eq = function(S_inf, S0 = 999, I0 = 1, R_0 = 2.5) {
OUT = S0*(log(S0)-log(S_inf)) - (S0+I0-S_inf)*R_0

return(OUT)

}

and solve easily using uniroot:

uniroot(f = final_size_eq, interval = c(0.05, 999))

## $root

## [1] 106.8819

##

## $f.root

## [1] -2.649285e-07

##

## $iter

## [1] 10

##

## $init.it

## [1] NA

##

## $estim.prec

## [1] 6.103516e-05
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A function to use this..

final_size = function(L) {
with(as.list(L), {
S_inf = uniroot(f = function(x)

final_size_eq(S_inf = x,

S0 = S0, I0 = I0,

R_0 = R_0),

interval = c(0.05, S0))

return(S_inf$root)

})
}
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A figure with all the information

N0 = 1000

I0 = 1

S0 = N0-I0

R_0 = 0.8

S = seq(0.1, S0, by = 0.1)

fs = final_size_eq(S, S0 = S0, I0 = I0, R_0 = R_0)

S_inf = uniroot(f = function(x) final_size_eq(S_inf = x,

S0 = S0, I0 = I0,

R_0 = R_0),

interval = c(0.05, S0))

plot(S, fs, type = "l", ylab = "Value of equation (10)")

abline(h = 0)

points(x = S_inf$root, y = 0, pch = 19)

text(x = S_inf$root, y = 0, labels = "S_inf", adj = c(-0.25,-1))
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R0 = 0.8
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R0 = 2.4

0 200 400 600 800 1000

0
20

00
40

00
60

00

S

V
al

ue
 o

f e
qu

at
io

n 
(1

0)

S_inf

p. 61 – Kermack-McKendrick-type epidemic models



A little nicer

values = expand.grid(

R_0 = seq(0.01, 3, by = 0.01),

I0 = seq(1, 100, 1)

)

values$S0 = N0-values$I0

L = split(values, 1:nrow(values))

values$S_inf = sapply(X = L, FUN = final_size)

values$final_size = values$S0-values$S_inf+values$I0

values$attack_rate = (values$final_size / N0)*100

p = levelplot(attack_rate ~ R_0*I0, data = values,

xlab = TeX("$R_0$"), ylab = "I(0)",

col.regions = viridis(100))

print(p)

(requires lattice, viridis and latex2exp librairies)
p. 62 – Kermack-McKendrick-type epidemic models



Attack rate (in %)

R0

I(
0)

20

40

60

80

0.5 1.0 1.5 2.0 2.5

0

20

40

60

80

100

p. 63 – Kermack-McKendrick-type epidemic models



Kermack-McKendrick-type epidemic models
The Kermack-McKendrick (KMK) model
Mathematical analysis of KMK
The final size of a KMK epidemic
Herd immunity in KMK
The SLIAR model
Computing the final size more efficiently
A variation on the SLIAR model
A model with vaccination
Antiviral resistance
A COVID-19 model



The simplest vaccination model

To implement vaccination in KMK, assume that vaccination reduces the number of
susceptibles

Let total population be N with S0 initially susceptible

Vaccinate a fraction p ∈ [0, 1] of susceptible individuals

Original IC (for simplicity, R(0) = 0)

IC : (S(0), I (0),R(0)) = (S0, I0, 0) (15)

Post-vaccination IC

IC : (S(0), I (0),R(0)) = ((1− p)S0, I0, pS0) (16)
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Vaccination reproduction number

Without vaccination

R0 =
β

γ
S0 (9)

With vaccination, denoting Rv the reproduction number,

Rv =
β

γ
(1− p)S0 (17)

Since p ∈ [0, 1], Rv ≤ R0
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Herd immunity

Therefore

▶ Rv < R0 if p > 0

▶ To control the disease, Rv must take a value less than 1

To make Rv less than 1

Rv < 1 ⇐⇒ p > 1− 1

R0
(18)

By vaccinating a fraction p > 1− 1/R0 of the susceptible population, we thus are in a
situation where an epidemic peak is precluded (or, at the very least, the final size is
reduced)

This is herd immunity
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SIR is a little too simple for many diseases:

▶ No incubation period

▶ A lot of infectious diseases (in particular respiratory) have mild and less mild
forms depending on the patient

=⇒ model with SIR but also L(atent) and (A)symptomatic individuals, in which I are
now symptomatic individuals
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Basic reproduction number & Final size

We find the basic reproduction number

R0 = β

(
p

α
+

δ(1− p)

η

)
S0 =

βρ

α
S0 (19)

where

ρ = α

(
p

α
+

δ(1− p)

η

)

The final size relation takes the form

S0(lnS0 − lnS∞) = R0(S0 − S∞) +
R0I0
ρ

(20)
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Adding treatment
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A method for computing R0 in epidemic models

▶ This method is not universal! It works in a relatively large class of models, but not
everywhere

▶ If it doesn’t work, the next generation matrix method does work, but should be
considered only for obtaining the reproduction number, not to deduce LAS

▶ Here, I change the notation in the paper, for convenience

p. 77 – Kermack-McKendrick-type epidemic models



Standard form of the system

Suppose system can be written in the form

S ′ = b(S , I ,R)− DSβ(S , I ,R)hI (21a)

I ′ = ΠDSβ(S , I ,R)hI − VI (21b)

R ′ = f(S , I ,R) +WI (21c)

where S ∈ Rm, I ∈ Rn and R ∈ Rk are susceptible, infected and removed
compartments, respectively

IC are ≥ 0 with at least one of the components of I (0) positive
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S ′ = b(S , I ,R)− DSβ(S , I ,R)hI (21a)

▶ b : Rm
+ × Rn

+ × Rk
+ → Rm continuous function encoding recruitment and death of

uninfected individuals

▶ D ∈ Rm×m diagonal with diagonal entries σi > 0 the relative susceptibilities of
susceptible compartments, with convention that σ1 = 1

▶ Scalar valued function β : Rm
+ × Rn

+ × Rk
+ → R+ represents infectivity, with, e.g.,

β(S , I ,R) = β for mass action

▶ h ∈ Rn row vector of relative horizontal transmissions
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I ′ = ΠDSβ(S , I ,R)hI − VI (21b)

▶ Π ∈ Rn×m has (i , j) entry the fraction of individuals in j th susceptible
compartment that enter i th infected compartment upon infection

▶ D ∈ Rm×m diagonal with diagonal entries σi > 0 the relative susceptibilities of
susceptible compartments, with convention that σ1 = 1

▶ Scalar valued function β : Rm
+ × Rn

+ × Rk
+ → R+ represents infectivity, with, e.g.,

β(S , I ,R) = β for mass action

▶ h ∈ Rn row vector of relative horizontal transmissions

▶ V ∈ Rn×n describes transitions between infected states and removals from these
states due to recovery or death
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R ′ = f(S , I ,R) +WI (21c)

▶ f : Rm
+ × Rn

+ × Rk
+ → Rk continuous function encoding flows into and out of

removed compartments because of immunisation or similar processes

▶ W ∈ Rk×n has (i , j) entry the rate at which individuals in the j th infected
compartment move into the i th removed compartment
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Suppose E0 is a locally stable disease-free equilibrium (DFE) of the system without
disease, i.e., an EP of

S ′ = b(S , 0,R)

R ′ = f(S , 0,R)

Theorem 7

Let
R0 = β(S0, 0,R0)hV−1ΠDS0 (22)

▶ If R0 < 1, the DFE E0 is a locally asymptotically stable EP of (21)

▶ If R0 > 1, the DFE E0 of (21) is unstable

If no demography (epidemic model), then just R0, of course
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Final size relations

Assume no demography, then system should be writeable as

S ′ = −DSβ(S , I ,R)hI (23a)

I ′ = ΠDSβ(S , I ,R)hI − VI (23b)

R ′ = WI (23c)

For w(t) ∈ Rn
+ continuous, define

w∞ = lim
t→∞

w(t) and ŵ =

∫ ∞

0
w(t) dt
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Define the row vector

Rm ∋ Γ = (Γ1, . . . , Γm) = β(S0, 0,R0)hV−1ΠD

then
R0 = ΓS(0)
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Suppose incidence is mass action, i.e., β(S , I ,R) = β and m > 1

Then for i = 1, . . . ,m, express Si (∞) as a function of S1(∞) using

Si (∞) = Si (0)

(
S1(∞)

S1(0)

)σi/σ1

then substitute into

1

σi
ln

(
Si (0)

Si (∞)

)
= ΓD−1 (S(0)− S(∞)) + βhV−1I (0)

=
1

σ1
ln

(
S1(0)

S1(∞)

)
which is a final size relation for the general system when Si (0) > 0
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If incidence is mass action and m = 1 (only one susceptible compartment), reduces to
the KMK form

ln

(
S0
S∞

)
=

R0

S0
(S0 − S∞) + βhV−1I0 (24)
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In the case of more general incidence functions, the final size relations are inequalities
of the form, for i = 1, . . . ,m,

ln

(
Si (0)

Si (∞)

)
≥ σiΓD−1 (S(0)− S(∞)) + σiβ(K )hV−1I (0)

where K is the initial total population
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The SLIAR model

▶ Paper we have already seen: Arino, Brauer, PvdD, Watmough & Wu. Simple
models for containment of a pandemic, Journal of the Royal Society Interface (2006)

▶ However, suppose additionally that L are also infectious
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Here, S = S , I = (L, I ,A)T and R = R, so m = 1, n = 3 and

h = [ε 1 δ], D = 1, Π =

1
0
0

 and V =

 κ 0 0
−pκ α 0

−(1− p)κ 0 η


Incidence is mass action so β(E0) = β and thus

R0 = βhV−1ΠDS0

= β [ε 1 δ]

 1/κ 0 0
p/α 1/α 0

(1− p)/η 0 1/η

1
0
0

 S0

= βS0

(
ε

κ
+

p

α
+

δ(1− p)

η

)
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For final size, since m = 1, we can use (24):

ln

(
S0
S∞

)
=

R0

S0
(S0 − S∞) + βhV−1I0

Suppose I0 = (0, I0, 0), then

ln

(
S0
S∞

)
= R0

S0 − S∞
S0

+
β

α
I0

If I0 = (L0, I0,A0), then

ln

(
S0
S∞

)
= R0

S0 − S∞
S0

+ β

(
ε

κ
+

p

α
+

δ(1− p)

η

)
L0 +

βδ

η
A0 +

β

α
I0
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A model with vaccination

SU

SV

LU

LV

IU

IV

R

βSU(IU + σI IV )

σSβSV (IU + σI IV )

κULU

κV LV

fU α
U IU

fV
αV

IV

(1
−
fU
)α

U
IU

(1−
fV )α

V IV
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A model with vaccination

Fraction γ of S0 are vaccinated before the epidemic; vaccination reduces probability
and duration of infection, infectiousness and reduces mortality

SU
′ = −βSU [IU + σI IV ] (25a)

SV
′ = −σSβSV [IU + σI IV ] (25b)

LU
′ = βSU [IU + σI IV ]− κULU (25c)

LV
′ = σSβSV [IU + σI IV ]− κV LV (25d)

IU
′ = κULU − αU IU (25e)

IV
′ = κV LV − αV IV (25f)

R ′ = fUαU II + fVαV IV (25g)

with SU(0) = (1− γ)S0 and SV (0) = γS0
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Here, m = 2, n = 4,

h = [0 0 1 σI ], D =

(
1 0
0 σS

)
, Π =


1 0
0 1
0 0
0 0


and

V =


κU 0 0 0
0 κV 0 0

−κU 0 αU 0
0 −κV 0 αV
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So

Γ =

[
β

αU

σIσSβ

αV

]
, Rc = S0β

(
1− γ

αU
+

σIσSγ

αV

)
and the final size relation is

ln

(
(1− γ)SU(0)

SU(∞)

)
=

β

αU
[(1− γ)SU(0)− SU(∞)]

+
σIβ

αV
[γSV (0)− SV (∞)] +

β

αU
I0

SV (∞) = γSU(0)

(
SU(∞)

(1− γ)S0

)σS
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Adapting treatment to counter emergence of resistance

This work was undertaken at the request of the Public Health Agency of Canada
during the pandemic preparadness phase prior to the 2009 p-H1N1 pandemic

Problem: we have antivirals to use against influenza, either prophylactically or
curatively. Using these antivirals may promote the emergence of antiviral-resistant
strains. How do we minimise this risk?
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Extends the SLIAR model to take into account non-exponentially distributed stage
durations (see course 02)
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The original model (well, almost the first one)

S L1 L2

I1

A1

I2

A2

RI

RA

D

ΦS εL1

(1−
π)εL

2

πε
L 2

γI1

γA1

(1
−
δ)
γI 2

γA2

δγI2
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Reinterpreting terms

Here D stands for detected, U is undetected
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Working out when the first COVID-19 case occurred

▶ Details of emergence and precise timeline before amplification started unknown

▶ Amplification in Wuhan

▶ Cluster of pneumonia cases mostly related to the Huanan Seafood Market

▶ 27 December 2019: first report to local government

▶ 31 December 2019: publication

▶ 8 January 2020: identification of SARS-CoV-2 as causative agent

▶ ∼ 23 January 2020: lockdown Wuhan and Hubei province + face mask mandates

▶ By 2020-01-29, virus in all provinces of mainland CHN
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Evidence of earlier spread

▶ Report to Wuhan authorities on 27 December 2019

▶ First export detections in Thailand and Japan on 13 and 16 January 2020 (with
actual importations on 8 and 6 January)

=⇒ amplification must have been occuring for a while longer

▶ France: sample taken from 42-year-old male (last foreign travel to Algeria in August
2019) who presented to ICU on 27 December 2019

▶ Retrospective studies in United Kingdom and Italy also showed undetected
COVID-19 cases in prepandemic period
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Untangling the first case issue

▶ Robert, Rossman & Jaric. Dating first cases of COVID-19. PLoS Pathogens (2021)
Find likely timing of first case of COVID-19 in China as November 17 (95% CI
October 4)

▶ Pekar, Worobey, Moshiri, Scheffler & Wertheim. Timing the SARS-CoV-2 index
case in Hubei province. Science (2021)
Period between mid-October and mid-November 2019 is plausible interval when the
first case of SARS-CoV-2 emerged in Hubei province

Important when trying to understand global spread, so let me illustrate with the model
I used, taking into account model evolution since
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Back-calculating the start of spread (example of China)

Cumulative confirmed case counts in China as reported to WHO was c = 547 cases on
tc = 2020-01-22

Let u be a point in parameter space. Solve ODE numerically over [0, t], with S(0) the
population of China, L1(0) = 1 and other state variables 0. This gives a solution
x(t, t0 = 0, u)

Extracting L2(t, t0 = 0, u) from this solution, obtain cumulative number of new
detections as

C (t) =

∫ t

t0=0
pε2L2(s, t0, u) ds

Let t⋆ be s.t. C (t⋆) = 547; then ti = 2020-01-22− t⋆
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Endemic SIRS-type models with demography

What if there’s another guest at the party?

Last remarks



Two potential variations on the Kermack-McKendrick model

▶ Add vital dynamics, i.e., consider demographic processes

▶ Individuals do not die from the disease; after recovering, individuals are immune
from infection for some time

▶ We can of course combine both!
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Potential variations

S I R
b(N)

dS dI dR

βSI γI

S I R
βSI γI

νR

S I R
b(N)

dS dI dR

βSI γI

νR
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The model

S

I

R

b(N)

dS

dI

dR

βSI

γI

νR

S ′ = b(N) + νR − dS − βSI (26a)

I ′ = βSI − (d + γ)I (26b)

R ′ = γI − (d + ν)R (26c)

Consider the initial value problem consisting in (26) to which
we adjoin initial conditions S(0) = S0 ≥ 0, I (0) = I0 ≥ 0 and
R(0) = R0 ≥ 0

Typically, we assume N0 = S0 + I0 +R0 > 0 to avoid a trivial
case
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Birth and death are relative

Remark that the notions of birth and death are relative to the population under
consideration

E.g., consider a model for human immunodeficiency virus (HIV) in an at-risk
population of intravenous drug users. Then

▶ birth is the moment the at-risk behaviour starts

▶ death is the moment the at-risk behaviour stops, whether from “real death” or
because the individual stops using drugs
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Choosing a form for demography

Before we proceed with the analysis proper, we must discuss the nature of the
assumptions on demography

To do this, we consider the behaviour of the total population

N(t) = S(t) + I (t) + R(t)
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Behaviour of the total population

Summing the equations in (26)

N ′ = b(N)− dN (27)

There are three common ways to define b(N) in (27)

1. b(N) = b

2. b(N) = bN

3. b(N) = bN − cN2

Case 3 leads to logistic dynamics of the total population and is not discussed here
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Case of a birth rate constant per capita

If b(N) = bN, then birth in (27) satisfies N ′/N = b; we say that birth is constant per
capita

In this case, (27) takes the form

N ′ = bN − dN = (b − d)N

with initial condition N(0) = N0

The solution to this scalar autonomous ODE is easy

N(t) = N0e
(b−d)t , t ≥ 0

Thus there are 3 possibilities:

▶ if b > d , N(t) → ∞, the total population explodes

▶ if b = d , N(t) ≡ N0, the total population remains constant

▶ if b < d , N(t) → 0, the total population collapses
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From now on, assume b(N) = b

▶ We want a reasonable case, we could therefore suppose that b(N) = d , which would
lead to a constant total population

▶ However, this is a little reductive, so we choose instead b(N) = b, which, we will
see, works as well even though it can initially be thought of as not being very realistic
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The model (for good this time)

S

I

R

b

dS

dI

dR

βSI

γI

νR

S ′ = b + νR − dS − βSI (28a)

I ′ = βSI − (d + γ)I (28b)

R ′ = γI − (d + ν)R (28c)

Consider the initial value problem consisting in (28) to which
we adjoin initial conditions S(0) = S0 ≥ 0, I (0) = I0 ≥ 0 and
R(0) = R0 ≥ 0

Typically, we assume N0 = S0 + I0 +R0 > 0 to avoid a trivial
case
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Is the system well-posed?

For an ODE epidemiological model

▶ Do solutions to (28) exist and are they unique?

▶ Is the positive cone invariant under the flow of (28)?

▶ Are solutions to (28) bounded? Some models have unbounded solutions but they
are rare and will need to be considered specifically
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Solutions exist and are unique

▶ The vector field is always C 1, implying that solutions exist and are unique

If we had instead considered an incidence of the form f (S , I ,N) = βSI/N and, say,
demography with b(N) = bN, then some discussion might have been needed if b < d
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Invariance of R3
+ under the flow (1)

Let us start by assuming that I (0) = I0 = 0. Then (28b) remains I ′ = 0, meaning that
the SR-plane (i.e., the set {I = 0}) is positively invariant under the flow of (28)

On that plane, (28) reduce to

S ′ = b + νR − dS (29a)

R ′ = −(d + ν)R (29b)

=⇒ a solution with I0 > 0 cannot enter the plane {I = 0}. Indeed, suppose that
I0 > 0 but ∃t⋆ > 0 such that I (t⋆) = 0. Then at (S(t⋆), I (t⋆) = 0,R(t⋆)), there are
two solutions to (28): the one we just generated as well as the one governed by (29)

This contradicts uniqueness of solutions to (28)
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Invariance of R3
+ under the flow (2)

We saw that I (t) > 0 if I (0) > 0

Suppose now that S = 0. Equation (28a) is then

S ′ = b + νR > 0

So if S(0) = S0 > 0, then S(t) > 0 for all t. If, on the other hand, S0 = 0, then
S(t) > 0 for t > 0 small; from what we just saw, this is then also true for all t > 0

We say the vector field points inward

=⇒ S cannot become zero

Do the same for R
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To summarise, for invariance

For simplicity, denote R⋆ = R \ {0}

▶ If (S(0), I (0),R(0)) ∈ R+ × R⋆
+ × R+, then ∀t > 0,

(S(t), I (t),R(t)) ∈ (R⋆
+)

3

▶ If (S(0), I (0),R(0)) ∈ R+ × {0} × R+, then ∀t ≥ 0,

(S(t), I (t),R(t)) ∈ R⋆
+ × {0} × R+

The model is therefore satisfactory in that it does not allow solutions to become
negative
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Remark – Know your audience

This reasoning has its place in an MSc of PhD manuscript: you need to demonstrate
that you know what to do and how to do it

In a research paper, this is not really necessary and actually often superfluous; the
statement it is easy to show that solutions exist uniquely and that the positive orthant
is invariant under the flow of the system is typically sufficient

(However, be sure to cover your bases: don’t show the proof in the paper but have it
in your notes.. it is easy to show can be a dangerous statement if it is not easy...)
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The total population is asymptotically constant

Since b(N) = b, the total population equation (27) takes the form

N ′ = b − dN

This equation has a unique equilbrium N⋆ = b/d and it is very easy to check that this
equilibrium is GAS: this is a scalar autonomous equation, so solutions are monotone;
they increase to N⋆ if N0 < N⋆ and decrease to N⋆ if N0 > N⋆

So we can work at the limit N⋆ where R = N⋆ − (S + I ) and thus drop the equation
for R
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Boundedness

It follows from what we just saw that the positive cone R3
+ is (positively) invariant

under the flow of (28)

Since N(t) → N⋆, we deduce that solutions of (28) are bounded
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Seeking equilibria

We seek S = S⋆, I = I ⋆,R = R⋆ such that

0 = b + νR − dS − βSI (30a)

0 = βSI − (d + γ)I (30b)

0 = γI − (d + ν)R (30c)

From (30b), either I ⋆ = 0 or βS − (d + γ) = 0, i.e., S⋆ = (d + γ)/β

When I ⋆ = 0, substituting I ⋆ = 0 into (30c) implies that R⋆ = 0 and, in turn,
substituting I ⋆ = R⋆ = 0 into (30c) gives S⋆ = b/d . This gives the disease-free
equilibrium (DFE)

E0 := (S⋆, I ⋆,R⋆) =

(
b

d
, 0, 0

)
(31)

We return to S⋆ = (d + γ)/β in a while
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Classic method for computing R0

R0 is the surface in parameter space where the DFE loses its LAS

To find R0, we therefore study the LAS of the DFE

In an arbitrary (S , I ,R), the Jacobian matrix of (28) takes the form

J(S,I ,R) =

−d − βI −βS ν
βI βS − (d + γ) 0
0 γ −(d + ν)

 (32)
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The LAS of the DFE depends on the sign of the real parts of the eigenvalues of (32)
at that equilibrium point, so we evaluate

JE0 =

−d −βS⋆ ν
0 βS⋆ − (d + γ) 0
0 γ −(d + ν)

 (33)

Block upper triangular matrix =⇒ eigenvalues are −d < 0, −(d + ν) < 0 and
βS⋆ − (d + γ)

=⇒ LAS of the DFE determined by sign of βS⋆ − (d + γ)
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Sign of βS⋆ − (d + γ)

Recall that at the DFE (31), S⋆ = b/d , so

sign(βS⋆ − (d + γ)) = sign

(
β
b

d
− (d + γ)

)
So the DFE is LAS if

β
b

d
< d + γ ⇐⇒ β

d + γ

b

d
< 1

Denote

R0 =
β

d + γ

b

d
(34)

(We sometimes emphasise that b/d = N⋆, the total population, and thus write
R0 = βN⋆/(d + γ))
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Seeking equilibria (2)

Now consider the second EP where S⋆ = (d + γ)/β = N⋆/R0

Write (30c) as R⋆ = γI ⋆/(d + ν)

Since S⋆ + I ⋆ + R⋆ = N⋆, this means that

N⋆ − S⋆ − I ⋆ = γI ⋆/(d + ν)

so substituting S⋆ = N⋆/R0,(
1 +

γ

d + ν

)
I ⋆ =

(
1− 1

R0

)
N⋆

So finally

I ⋆ =

(
1− 1

R0

)
d + ν

d + ν + γ
N⋆
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The EEP

The endemic equilibrium (EEP) of (28) is

E⋆ := (S⋆, I ⋆,R⋆) = (
1

R0
N⋆,

(
1− 1

R0

)
d + ν

d + ν + γ
N⋆,N⋆ − (S⋆ + I ⋆)

)
(35)

Remark that E⋆ is not biologically relevant when R0 ≤ 1
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Theorem 8

Let the basic reproduction number be

R0 =
β

d + γ
N⋆ (34)

and consider the EP of (28): the DFE

E0 =

(
b

d
, 0, 0

)
(31)

and the EEP

E⋆ =

(
1

R0
N⋆,

(
1− 1

R0

)
d + ν

d + ν + γ
N⋆,N⋆ − (S⋆ + I ⋆)

)
(35)

▶ If R0 < 1, then E0 is LAS and E⋆ is not biologically relevant

▶ If R0 > 1, then E0 is unstable and E⋆ is biologically relevant
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As you can probably guess, if R0 > 1, then E⋆ is not only biologically relevant but
actually also LAS

Recall the Jacobian

J(S,I ,R) =

−d − βI −βS ν
βI βS − (d + γ) 0
0 γ −(d + ν)

 (32)

=

−βI −βS ν
βI βS − γ 0
0 γ −ν

− dI

From this, we get that −d is an eigenvalue of J

▶ there is a theorem that tells us that if λ ∈ σ(M), then λ+ k ∈ σ(M + kI)
(σ(M) is the spectrum of M, the set of eigenvalues of M)

▶ the first matrix on the second line has all column sums zero so has a zero
eigenvalue
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We could continue and after some blood, sweat and tears, get that JE⋆ has its
eigenvalues with negative real parts when E⋆ is biologically relevant, i.e., when R0 > 1

With even more blood, sweat and tears, we can actually show that the result is global

We express that on the next slide
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Theorem 9

Let the basic reproduction number be defined by (34) and consider the DFE (31) and
the EEP (35)

▶ If R0 < 1, then E0 is globally asymptotically stable (GAS) and E⋆ is not
biologically relevant

▶ If R0 > 1, then E0 is unstable and E⋆ is GAS

In other words

▶ when R0 < 1, then all solutions go to the DFE, the disease goes extinct

▶ when R0 > 1, then all solutions go to the EEP, the disease becomes endemic
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library(deSolve)

rhs_SIRS <- function(t, x, p) {
with(as.list(c(x, p)), {
dS = b + nu * R - d * S - beta * S * I

dI = beta * S * I - (d + gamma) * I

dR = gamma * I - (d + nu) * R

return(list(c(dS, dI, dR)))

})
}
# Initial conditions

N0 = 1000

I0 = 1

R0 = 0

IC = c(S = N0-(I0+R0), I = I0, R = R0)

# "Known" parametres

d = 1/(80*365.25)

b = N0 * d
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gamma = 1/14

nu = 1/365.25

# Set beta s.t. R_0 = 1.5

R_0 = 1.5

beta = R_0 * (d + gamma) / (N0-I0-R0)

params = list(b = b, d = d, gamma = gamma, beta = beta, nu = nu)

times = seq(0, 500, 1)

# Call the numerical integrator

sol_SIRS <- ode(y = IC, times = times, func = rhs_SIRS,

parms = params, method = "ode45")

# Plot the result

plot(sol_SIRS[,"time"], sol_SIRS[,"I"],

type = "l", lwd = 2,

xlab = "Time (days)", ylab = "Prevalence")
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I just did ...

What I advise not to do: illustrate a mathematical result without adding anything to
the result itself

Let us make things a bit better. See the code
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We could continue, but with a model this simple, there is little more to do: the 3
parameters of the system are combined within R0 and the latter summarises the
dynamics well

We are going to show something important: the bifurcation diagram

We saw that when R0 < 1, I → 0, whereas when R0 > 1, I → (1− 1/R0)N. Let us
represent this (code)
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An SIRS model with vaccination

Take SIRS model (28) and assume the following

▶ Vaccination takes newborn individuals and moves them directly into the removed
compartment, without them becoming infected/infectious

▶ A fraction p is vaccinated at birth
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The model

S

I

R

(1− p)b

pb

dS

dI

dR

βSI

γI

νR

S ′ = (1− p)b + νR − dS − βSI (36a)

I ′ = βSI − (d + γ)I (36b)

R ′ = bp + γI − (d + ν)R (36c)

Consider the initial value problem consisting in (36) to which
we adjoin initial conditions S(0) = S0 ≥ 0, I (0) = I0 ≥ 0 and
R(0) = R0 ≥ 0

Typically, we assume N0 = S0 + I0 +R0 > 0 to avoid a trivial
case
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This modification doesn’t change much

Equation (27) for the total population is unchanged

The Jacobian (32) at arbitrary point is also unchanged

The DFE is affected, though; as a consequence, so is the reproduction number
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The DFE for the SIRS vaccination model
Considering (36) at equilibrium and substituting I ⋆ = 0 into this system gives

0 = (1− p)b + νR⋆ − dS⋆

0 = bp − (d + ν)R⋆

which we rewrite as the linear system(
d −ν
0 d + ν

)(
S⋆

R⋆

)
=

(
(1− p)b

bp

)
Thus (

S⋆

R⋆

)
=

1

d(d + ν)

(
d + ν ν
0 d

)(
(1− p)b

pb

)
=

1

d(d + ν)

(
(d + ν)(1− p)b + pbν

pbd

)
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As a consequence, the DFE takes the form

E v
0 := (S⋆, I ⋆,R⋆) =

((
1− p +

pν

d + ν

)
N⋆, 0,

pd

d + ν
N⋆

)
(37)

Substituting (37) into the eigenvalue that determines stability of the DFE,
βS⋆ − (d + γ), we get

βS⋆ − (d + γ) < 0 ⇐⇒ β

d + γ
S⋆ < 1

⇐⇒ β

d + γ

(
1− p +

pν

d + ν

)
N⋆ < 1

So we define

Rv
0 =

β

d + γ

(
1− p +

pν

d + ν

)
N⋆ (38)
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Herd immunity

Therefore

▶ Rv
0 < R0 if p > 0

▶ To control the disease, Rv must take a value less than 1, i.e.,

Rv < 1 ⇐⇒ p > 1− 1

R0
(39)

By vaccinating a fraction p > 1− 1/R0 of newborns, we thus are in a situation where
the disease is eventually eradicated

This is herd immunity (bis repetita)
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Incubation periods

▶ SIS and SIR: progression from S to I is instantaneous

▶ Several incubation periods:

Disease Incubation period

Yersinia Pestis 2-6 days
Ebola haemorrhagic fever (HF) 2-21 days
Marburg HF 5-10 days
Lassa fever 1-3 weeks
Tse-tse weeks–months
HIV/AIDS months–years

p. 148 – Endemic SIRS-type models with demography



Hypotheses

▶ There is demography

▶ New individuals are born at a constant rate b

▶ There is no vertical transmssion: all “newborns” are susceptible

▶ The disease is non lethal, it causes no additional mortality

▶ New infections occur at the rate f (S , I ,N)

▶ There is a period of incubation for the disease

▶ There is a period of time after recovery during which the disease confers immunity
to reinfection (immune period)
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SLIRS

S

L

I

R

b
dS

dL

dI

dR

f (S , I ,N)

εL

γI

ν
R

The model is as follows:

S ′ = b + νR − dS − f (S , I ,N) (40a)

L ′ = f (S , I ,N)− (d + ε)L (40b)

I ′ = εL− (d + γ)I (40c)

R ′ = γI − (d + ν)R (40d)

Meaning of the parameters:

▶ 1/ε average duration of the incubation period

▶ 1/γ average duration of infectious period

▶ 1/ν average duration of immune period

p. 150 – Endemic SIRS-type models with demography



Endemic SIRS-type models with demography
The SIRS model(s)
Mathematical analysis of the SIRS model
Some numerics with the SIRS model
Herd immunity in the SIRS model
SLIRS model with constant population
Computing R0 more efficiently
A better vaccination model?





The basic reproduction number R0

Used frequently in epidemiology (not only math epi)

Definition 10 (R0)

The basic reproduction number R0 is the average number of secondary cases generated
by the introduction of an infectious individual in a wholly susceptible population

▶ If R0 < 1, then on average, each infectious individual infects less than one other
person, so the epidemic has chances of dying out

▶ If R0 > 1, then on average, each infectious individual infects more than one other
person and the disease can become established in the population (or there will be
a major epidemic)
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Computation of R0

Mathematically, R0 is a bifurcation parameter aggregating some of the model
parameters and such that the disease free equilibrium (DFE) loses its local asymptotic
stability when R0 = 1 is crossed from left to right

▶ As a consequence, R0 is found by considering the spectrum of the Jacobian
matrix of the system evaluated at the DFE

▶ The matrix quickly becomes hard to deal with (size and absence of “pattern”) and
the form obtained is not unique, which is annoying when trying to interpret R0
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Preliminary setup of PvdD & Watmough 2002

x = (x1, . . . , xn)
T , xi ≥ 0, with the first m < n compartments the infected ones

Xs the set of all disease free states:

Xs = {x ≥ 0|xi = 0, i = 1, . . . ,m}

Distinguish new infections from all other changes in population

▶ Fi (x) rate of appearance of new infections in compartment i

▶ V+
i (x) rate of transfer of individuals into compartment i by all other means

▶ V−
i (x) rate of transfer of individuals out of compartment i

Assume each function continuously differentiable at least twice in each variable

x ′i = fi (x) = Fi (x)− Vi (x), i = 1, . . . , n

where Vi = V−
i − V+

i
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Some assumptions

▶ (A1) If x ≥ 0, then Fi ,V
+
i ,V−

i ≥ 0 for i = 1, . . . , n

Since each function represents a directed transfer of individuals, all are non-negative

▶ (A2) If xi = 0 then V−
i = 0. In particular, if x ∈ Xs , then V−

i = 0 for i = 1, . . . ,m

If a compartment is empty, there can be no transfer of individuals out of the
compartment by death, infection, nor any other means
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▶ (A3) Fi = 0 if i > m

The incidence of infection for uninfected compartments is zero

▶ A4 If x ∈ Xs then Fi (x) = 0 and V+
i (x) = 0 for i = 1, . . . ,m

Assume that if the population is free of disease then the population will remain free of
disease; i.e., there is no (density independent) immigration of infectives
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One last assumption for the road

Let x0 be a DFE of the system, i.e., a (locally asymptotically) stable equilibrium
solution of the disease free model, i.e., the system restricted to Xs . We need not
assume that the model has a unique DFE

Let Df (x0) be the Jacobian matrix [∂fi/∂xj ]. Some derivatives are one sided, since x0
is on the domain boundary

(A5) If F (x) is set to zero, then all eigenvalues of Df (x0) have negative real parts

Note: if the method ever fails to work, it is usually with (A5) that lies the problem
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Stability of the DFE as function of R0

Theorem 11

Suppose the DFE exists. Let then

R0 = ρ(FV−1)

with matrices F and V obtained as indicated. Assume conditions (A1) through (A5)
hold. Then

▶ if R0 < 1, then the DFE is LAS

▶ if R0 > 1, the DFE is unstable

Important to stress local nature of stability that is deduced from this result. We will
see later that even when R0 < 1, there can be several positive equilibria
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Direction of the bifurcation at R0 = 1

µ bifurcation parameter s.t. R0 < 1 for µ < 0 and R0 > 1 for µ > 0 and x0 DFE for
all values of µ and consider the system

x ′ = f (x , µ) (41)

Write
Dx f (x0, 0) = D(F(x0)− V(x0))|R0=1

as block matrix

DF(x0) =

(
F 0
0 0

)
, DV(x0) =

(
V 0
J3 J4

)
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Write [αℓk ], ℓ = m + 1, . . . , n, k = 1, . . . ,m the (ℓ−m, k) entry of −J−1
4 J3 and let v

and w be left and right eigenvectors of Dx f (x0, 0) s.t. vw = 1

Let

a =
m∑

i ,j ,k=1

viwjwk

(
1

2

∂2fi
∂xj∂xk

(x0, 0) +
n∑

ℓ=m+1

αℓk
∂2fi

∂xj∂xℓ
(x0, 0)

)
(42)

b = vDxµf (x0, 0)w =
n∑

i ,j=1

viwj
∂2fi
∂xj∂µ

(x0, 0) (43)
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Theorem 12

Consider model (41) with f (x , µ) satisfying conditions (A1)–(A5) and µ as described
above

Assume that the zero eigenvalue of Dx f (x0, 0) is simple

Define a and b by (42) and (43); assume that b ̸= 0. Then ∃δ > 0 s.t.

▶ if a < 0, then there are LAS endemic equilibria near x0 for 0 < µ < δ

▶ if a > 0, then there are unstable endemic equilibria near x0 for −δ < µ < 0
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Example of the SLIRS model (40)

Variation of the infected variables in (40) are described by

L ′ = f (S , I ,N)− (ε+ d)L

I ′ = εL− (d + γ)I

Write

I ′ =

(
L
I

)′
=

(
f (S , I ,N)

0

)
−
(

(ε+ d)L
(d + γ)I − εL

)
=: F − V (44)
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Denote

f ⋆
L :=

∂

∂L
f

∣∣∣∣
(S ,I ,R)=E0

f ⋆
I :=

∂

∂I
f

∣∣∣∣
(S,I ,R)=E0

the values of the partials of the incidence function at the DFE E0

Compute the Jacobian matrices of vectors F and V at the DFE E0

F =

(
f ⋆
L f ⋆

I

0 0

)
and V =

(
ε+ d 0
−ε d + γ

)
(45)
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Thus

V−1 =
1

(d + ε)(d + γ)

(
d + γ 0
ε d + ε

)

Also, in the case N is constant, ∂f /∂L = 0 and thus

FV−1 =
f ⋆
I

(d + ε)(d + γ)

(
ε d + ε
0 0

)

As a consequence,

R0 = ε
f ⋆
I

(d + ε)(d + γ)
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Theorem 13

Let

R0 =
εf ⋆

I

(d + ε)(d + γ)
(46)

Then

▶ if R0 < 1, the DFE is LAS

▶ if R0 > 1, the DFE is unstable

It is important here to stress that the result we obtain concerns the local asymptotic
stability. We see later that even when R0 < 1, there can be several locally
asymptotically stable equilibria
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Application

The DFE is
(S̄ , L̄, Ī , R̄) = (N, 0, 0, 0)

▶ Mass action incidence (frequency-dependent contacts):

f ⋆
I = βS̄ ⇒ R0 =

ϵβN

(ϵ+ d)(γ + d)

▶ Standard incidence (proportion-dependent contacts):

f ⋆
I =

βS̄

N
⇒ R0 =

ϵβ

(ϵ+ d)(γ + d)
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Links between SLIRS-type models

S ′ = b + νR − dS − f (S , I ,N)

L ′ = f (S , I ,N)− (d + ε)L

I ′ = εL− (d + γ)I

R ′ = γI − (d + ν)R

SLIR SLIRS where ν = 0
SLIS Limit of SLIRS when ν → ∞
SLI SLIR where γ = 0
SIRS Limit of SLIRS when ε → ∞
SIR SIRS where ν = 0
SIS Limit of SIRS when ν → ∞

Limit SLIS when ε → ∞
SI SIS where ν = 0
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Values of R0

(S̄ , Ī , N̄) values of S , I and N at DFE. Denote f̄I = ∂f /∂I (S̄ , Ī , N̄).

SLIRS εf̄I
(d+ε)(d+γ)

SLIR εf̄I
(d+ε)(d+γ)

SLIS εf̄I
(d+ε)(d+γ)

SLI εf̄I
(d+ε)(d+γ)

SIRS εf̄I
d+γ

SIR f̄I
d+γ

SIS f̄I
d+γ

SI f̄I
d+γ
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SLIRS with vaccination

S I R

V

b

dS dI dR

dV

βSI/N

ϕS

φV σ
β
V
I/
N

γI

νR
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The usual situation
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What can happen with vaccination – Backward bifurcation
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What if there’s another guest at the party?
Two Ross-Macdonald-type models
A little complexification of Ross-Macdonald
A model for cholera
A model for zoonotic transmission of waterborne disease



See, e.g., Simoy & Aparicio, Ross-Macdonald models: Which one should we use?, Acta
Tropica (2020)

Ross introduced the model in 1911. Later “tweaked” by Macdonald to include
mosquito latency period

Here, I show a version in the paper cited, with some notation changed
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SH IH RH

SV IV

βH IV
SH
H γH IH

βVSV
IH
H

bH

bV

dHSH dH IH dHRH

dVSV dV IV
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Reproduction number

R0 =
βHβV

(γH + γV )dV

V ⋆

H⋆
(47)

where H⋆ and V ⋆ are the total host and vector populations, respectively
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SH LH IH RH

SV LV IV

βH IV
SH
H εHLH γH IH

βVSV
IH
H

εV LV

bH

bV

dHSH dHLH dH IH dHRH

dVSV dV LV dV IV
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Reproduction number

R0 =
βHβV

(γH + γV )dV

εV
dV + εV

εH
dH + εH

V ⋆

H⋆
(48)

where H⋆ and V ⋆ are the total host and vector populations, respectively

Here
fX =

εX
dX + εX

are the fractions of latent individuals (of type X = {V ,H}) who survive the latency
period
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Recall this guy?

SH IH RH

SV IV

βH IV
SH
H γH IH

βVSV
IH
H

bH

bV

dHSH dH IH dHRH

dVSV dV IV
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Let us add a few arrows

SH IH RH

SV IV

ΦH γH IH

ΦV

ρH IH

νHRH

bH

bV

dHSH dH IH dHRH

dVSV dV IV
p. 179 – What if there’s another guest at the party?



Arino, Ducrot & Zongo, A metapopulation model for malaria with
transmission-blocking partial immunity in hosts, Journal of Mathematical Biology
(2012)

Incidence functions take the form

ΦH = bH(H,V )σVH
IV
V

and

ΦV = bV (H,V )

(
σHV

IH
H

+ σ̂HV
RH

H

)
where bH and bV are numbers per unit time of mosquito bites a human has and the
number of humans a mosquito bites, respectively
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Parameters of the incidence function

▶ σHV probability of transmission of the parasite (in gametocyte form) from an
infectious human to a susceptible mosquito

▶ σ̂HV probability of transmission of the parasite (in gametocyte form) from a
semi-immune human to a susceptible mosquito

▶ σVH probability of transmission of the parasite (in sporozoite form) from an
infectious mosquito to a susceptible human

Additional parameter that can be factored in (all per unit time)

▶ aH maximum number of mosquito bites a human can receive

▶ aV number of times one mosquito would “want to” bite humans

▶ a average number of bites given to humans by each mosquito
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People to read for malaria models (IMOBO)

See also the work of

▶ Gideon Ngwa at the University of Buea

▶ Nakul Chitnis at the Swiss Tropical and Public Health Institute

Many others...
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More complex models may be needed for malaria

Timing of processes is critical in malaria

Plasmodium life cycle in the mosquito is commensurate with mosquito lifetime

Need models that are able to account for that, because ODEs are not really good at
this (see beginning of Stochastic systems lecture)

Mathematics becomes more complicated
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Codeço’s model

S I

B

dHH

dHS γI

bBB dBB

β B
K+B S

ζI

S ′ = dH(H − S)− β
B

K + B
S (49a)

I ′ = β
B

K + B
S − γI (49b)

B ′ = (bB − dB)B + ζI (49c)

K concentration of cholera in water giving
50% chance of catching it

Note that the dashed arrow from I to B is not a flow: individuals do not convert into
vibrio cholerae
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Zoonotic transmission of waterborne disease

Zoonoses are animal diseases that are transmitted to humans

Model here used for instance to model Giardia transmission from possums to humans
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Susceptible humans Infectious humans

Susceptible animals Infectious animals

Live oo/cysts in water

P2P transmission

conversion of oo/cysts to infection

recovery

A2A transmission

recovery

Death of oo/cysts in water

pick up rate

deposit rate
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SH IH

SA IA

W

βH

ρ

γH IH

βA

γAIA

µW

η

αI
A
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The full model

SA
′ = −βASAIA + γAIA (50a)

IA
′ = βASAIA − γAIA (50b)

W ′ = αIA − ηW (SH + IH)− µW (50c)

SH
′ = −ρηWSH − βHSH IH + γH IH (50d)

IH
′ = ρηWSH + βHSH IH − γH IH (50e)

Considered with NA = SA + IA and NH = SH + IH constant
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Simplified model

Because NA and NH are constant, (50) can be simplified:

IA
′ = βANAIA − γAIA − βAI

2
A (51a)

W ′ = αIA − ηWNH − µW (51b)

IH
′ = ρηW (NH − IH) + βHNH IH − γH IH − βH I

2
H (51c)

Three EP: DFE (0, 0, 0); endemic disease in humans because of H2H transmission;
endemic in both H and A because of W
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Three EP: DFE (0, 0, 0); endemic disease in humans because of H2H transmission;
endemic in both H and A because of W

Let

R0A =
βA
γA

NA and R0H =
βH
γH

NH (52)

▶ DFE LAS if R0A < 1 and R0H < 1, unstable if R0A > 1 or R0H > 1

▶ If R0H > 1 and R0A < 1, (51) goes to EP with endemicity only in humans

▶ Endemic EP with both A and H requires R0A > 1 and R0H < 1

Note that proof is not global
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To simplify or not to simplify?

▶ In the KMK epidemic model (1) and the SIRS endemic model (28), since the total
population is constant or asymptotically constant, it is possible to omit one of the
state variables since N⋆ = S + I + R

▶ We often use R = N⋆ − S − I

▶ This can greatly simplify some computations

▶ Whether to do it or not is a matter of preference
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To normalise or not to normalise?

▶ In the KMK epidemic model (1) and the SIRS endemic model (28), since the total
population is constant or asymptotically constant, it is possible to normalise to N = 1

▶ This can greatly simplify some computations

▶ However, I am not a big fan: it is important to always have the “sizes” of objects in
mind

▶ If you do normalise, at least for a paper destined to mathematical biology, always do
a “return to biology”, i.e., interpret your results in a biological light, which often
implies to return to original values
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Where we are

▶ An epidemic SIR model (the KMK SIR) in which the presence or absence of an
epidemic wave is characterised by the value of R0

▶ The KMK SIR has explicit solutions (in some sense). This is an exception!

▶ An endemic SIRS model in which the threshold R0 = 1 is such that, when R0 < 1,
the disease goes extinct, whereas when R0 > 1, the disease becomes established in the
population

▶ Some simple variations on these models

▶ A few models for vector-borne or water-borne diseases
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Can I have this wrapped up to go?

To finish, we use the command purl to generate an R file
(course-01-introduction-math-epi.R) in the CODE directory with all the code
chunks in this Rnw file

# From https://stackoverflow.com/questions/36868287/purl-within-knit-duplicate-label-error

rmd_chunks_to_r_temp <- function(file){
callr::r(function(file, temp){
out_file = sprintf("../CODE/%s", gsub(".Rnw", ".R", file))

knitr::purl(file, output = out_file, documentation = 1)

}, args = list(file))

}
rmd_chunks_to_r_temp("course-01-introduction-math-epi.Rnw")

## [1] "../CODE/course-01-introduction-math-epi.R"

p. 196 – Last remarks



About that R file

Source the file course-01-introduction-math-epi.R (in the CODE directory) in R

to reproduce all the results in these slides

Some small changes are required; for instance, when sourcing (instead of knitting or
interactively), some figures are created but not printed, so in the R file, you need to
print them “manually” (set the output to some variable and print them)

pp = ggplot(...)

print(pp)
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