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Diseases have been known to be mobile for a while
The plague of Athens of 430 BCE

It first began, it is said, in the parts of Ethiopia above Egypt,
and thence descended into Egypt and Libya and into most of
the [Persian] King's country. Suddenly falling upon Athens,
it first attacked the population in Piraeus [..] and afterwards
appeared in the upper city, when the deaths became much
more frequent.

Thucydides (c. 460 BCE - c. 395 BCE)
History of the Peloponnesian War
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How infectious pathogens become mobile

» | used to show the following set of figures to illustrate the spatialisation of spread

» | tried to get Gemini to do the same but the “returning home” part was not working
at all

» So enjoy my fantastic skills instead
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So...

» Bakery-driven pathogen spread

» Joke aside, let's consider two examples

p. 12 — Spatio-temporal spread of infectious pathogens
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Spatial spread of pHIN1 in 2009

In March and April 2008 (used as surrogate for 2009 data),
» 2.35 million passengers flew from MX to 1018 cities in 164 countries
» 80.7% flew to US and Canada, 8.8% South and Central America, 8.7% Europe

» of 20 countries with highest volumes of passengers arriving from MX, 16 had
confirmed importations from MX on 5/25

» ROC curve of relationship between international air-traffic flows and HIN1
importation: countries receiving more than 1400 passengers from MX at
significantly elevated risk for importation

> Use this passenger threshold: international air-traffic volume > 92% sensitive and
> 92% specific in predicting importation (area under ROC curve 0.97)

Khan, JA, Hu et al, New England Journal of Medicine, 2009
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In a globalised world

» Public health policy decisions are taken at the jurisdictional level, typically national
(ISO 3166-1) or first-level sub-national (ISO 3166-2) — extremely rarely supra-nationally

(International Health Regulations (IHR) define processes regarding reporting of disease
outbreaks, make recommendations about handling of travellers, etc. See COVID-19:
even those of the rules that were somewhat prescriptive were not followed)

P Individuals are mobile and thus so are the pathogens they harbour
» Policy decisions have consequences outside the jurisdictions where they are taken!

» COVID-19 was a single outbreak, not one outbreak per country it affected

p. 21 — Spatio-temporal spread of infectious pathogens
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Why use metapopulations for disease models?

» Appropriate for the description of spatial spread of some diseases

» Ease of simulation

> Aggregation of data by governments is most often done at the jurisdictional level,
very easy to reconcile with locations in metapopulations
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A few pointers

» JA & PvdD. Disease spread in metapopulations. Fields Institute Communications
48:1-13 (2006)

> JA. Diseases in metapopulations. In Modeling and Dynamics of Infectious
Diseases, World Scientific (2009)

» JA. Spatio-temporal spread of infectious pathogens of humans. Infectious Disease
Modelling 2(2):218-228 (2017)

> JA, Bajeux & Kirkland. Number of source patches required for population
persistence in a source-sink metapopulation. Bulletin of Mathematical Biology
81: 1916-1942 (2019)
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https://julien-arino.github.io/assets/pdf/papers/2006_ArinoPvdD-FIC48.pdf
https://julien-arino.github.io/assets/pdf/papers/2009_Arino-metapopulations.pdf
https://doi.org/10.1016/j.idm.2017.05.001
https://doi.org/10.1007/s11538-019-00593-1
https://doi.org/10.1007/s11538-019-00593-1
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Metapopulations with explicit movement

Split continuous space into N discrete geographical locations (ptatches)

Each location contains compartments (homogeneous groups of individuals). E.g.,
preys, predators, etc.

Here, we consider a single compartment, the species of interest, with no further
compartmentalisation

Individuals may move between locations; mg, > 0 rate of movement of individuals
from location p=1,..., N to locationg=1,..., N

p. 24 — Metapopulations for disease spread modelling



Explicit movement (focus on P;)

or

/ .
P = E my;P; assuming my; = — E mj1

j=1 j=1
p. 25 — Metapopulations for disease spread modelling J#l
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Graph setting

Suppose
» |P| locations, vertices in a (directed) graph G
» Each location contains a certain number of compartments belonging to a common
set C of compartments
» Arcs of G represent the possibility for a given compartment to move between two
locations; any two locations are connected by a maximum of |C| edges

Graph is a digraph: movement is not always symmetric
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G = (P, A) is multi-digraph, where
» P is the set of vertices (locations)

> A is the set of arcs, i.e., an ordered multiset of pairs of elements of P

Any two vertices X, Y € P are connected by at most |C| arcs from X to Y and at
most |C| arcs from Y to X

Because there are |C| compartments and movements are compartment-specific, we also
define, for all c € C, P, and A. as well as the compartment-specific digraphs

gc - (PC7AC)

p. 27 — Metapopulations for disease spread modelling



Connection matrix

For a given compartment ¢ € C, a connection matrix can be associated to the digraph

Gc

This is the adjacency matrix of G., but we emphasize the reason why we use G, by
using the term connection

Choosing an ordering of elements of P, the (i, /) entry of the |P| x |P|-matrix
N = Nc(Ge) is one if RE(P;, Pj) and zero otherwise, i.e., if P; has no direct access to
Pj

For convenience, the ordering of the locations is generally assumed the same for all
compartments

p. 28 — Metapopulations for disease spread modelling



Srong connectedness and irreducibility

Definition 1 (Reducible/irreducible matrix)

A matrix A is reducible if there exists a permutation matrix P such that PT AP is
block upper triangular. A matrix that is not reducible is irreducible

Matrix A € F™" is irreducible if for all /,j =1,..., n, there exists k such that af-‘j >0,
where af-‘j is the (i, j)-entry in AX

Theorem 2
Strong connectedness <> irreducibility of the connection matrix C.
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The prototype SLIRS used in patches
vR

o L ol

L =7 R
Tos o Ja [«
S'=b+vR—®—dS
U'=d—(s+d)L

/' =cl— (y+d)l
R' =~ —(v+d)R

® force of infection. Depends on S, /, possibly N. In general

Mass action, = 35/, proportional incidence, ® = 5SI/N
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|P|-SLIRS model

Sp=bp+ VpRy — ®p — dpSp+3"cpMspgSq

L/ =&, — (ep+dp) Lp+zq€mepqL
I =¢eplp — (1p + dp)lp+zqe7>mlpq/
Rp = Yplp — (vp + dp) p+qumequq

with incidence Sol,
ﬁp qu 9 qp € {0’ 1}
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|S| |P|-SLIRS (multiple species)

p € P and s €S (a set of species)

Sgp = bp + vspRep — Psp — d5P55P+quPmSSPq55q
L/sp =&y — (e5p + dSP)LSP+quPmLququ

/Slp = esplop — (Vsp + dSP)ISP+quPm/SquSq

Rep = Vsplsp — (vsp + dsp)Rsp+qumequ Rsq

with incidence

Sspl
sp - Zﬁskp b kp dp € {07 1}

qp
kes N

(3e)

» JA, Davis, Hartley, Jordan, Miller & PvdD. A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology

22(2):129-142 (2005)

» JA, Jordan & PvdD. Quarantine in a multi-species epidemic model with spatial dynamics. Mathematical Biosciences 206(1):46-60 (2007)

[Arino et al., 2007]
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https://julien-arino.github.io/assets/pdf/papers/2005_ArinoDavisHartleyJordanMillerPvdD-MMB22.pdf
https://julien-arino.github.io/assets/pdf/papers/2007_ArinoJordanPvdD-MBS206.pdf

|P|>-SLIRS (residents-travellers)

Spq =bp + VpgRpg — Ppg — dpgSpg - ke p Mpak Spk
L;Jq =®pq — (Epg + dpg) Lpg+D _ep Mipak Lpk
Ing =€paLlpa = (Ypa + dog) log > ke Mipak Iok

R;nq =Ypalpa — (Vpq + dpg) Rog+>_ ke MRpgk Rpk

with incidence

Spql
= Bk 2LE,  gq={0,1}

Nge
keP

> Sattenspiel & Dietz. A structured epidemic model incorporating geographic mobility among regions (1995)
>  JA & PvdD. A multi-city epidemic model. Mathematical Population Studies 10(3):175-193 (2003)

»  JA & PvdD. The basic reproduction number in a multi-city compartmental epidemic model. In Positive Systems (2003)
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https://doi.org/10.1016/0025-5564(94)00068-B
https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPvdD-MPS10_correct.pdf
https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPvdD-LNCIS294.pdf

Steps for an analysis

Basic steps
1. Well-posedness of the system
2. Existence of disease free equilibria (DFE)

3. Computation of a reproduction number R, study local asymptotic stability of
DFE

4. If DFE unique, prove global asymptotic stability when Ry < 1
Additional steps

5. Existence of mixed equilibria, with some locations at DFE and others with disease
6. Computation of some bounds on Rg
7. EEP and its LAS & GAS properties
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Analysis — Toy system

For simplicity, consider |P|-SLIRS with B,(N,) = by

Sp=bp—®p = dpSp+ vpRp + 3 gepMspqSq
L;, =&, — (ep+dp)Lp+ qumepqu

I;/: =eplp — (vp + dp)lp + qupmlpqlq

R,,; =Yplp — (Vp + dp) Rp + qumequq

with incidence
®p = 5/35/3//3

System of 4|P| equations

p. 35 — Metapopulations for disease spread modelling



Don’t panic: size is not that bad..
System of 4|P| equations !!!
However, a lot of structure:
» |P| copies of individual units, each comprising 4 equations
» Dynamics of individual units well understood
» Coupling is linear

—> Good case of large-scale system

(matrix analysis is your friend)

p. 36 — Metapopulations for disease spread modelling
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Notation

» Xcp(t) number of individuals of compartment c in location p at time t

(Here and elsewhere: omit dependence on t unless it causes confusion)

> X, = (Xcl, . ,XC"p‘)T distribution of individuals of compartment ¢ € C among
the different locations
[E.g., for (5), Xs = (51,-.., 5|7>|)T]

-
> XP = (le, e ,X|'733|> composition of the population in location p € P
[E.g., for (5), XP = (Sp, Lp, Ip, Rp)"]
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Metapopulation models with linear movement

Use a linear autonomous movement operator

Then, for a given compartment ¢ € C and in a given location p € P

Xbp = fop(XP) + Z MepgXeq — Z Meqp [ Xep

qeP qeP
q#p q#p

where mcpq rate of movement of individuals in compartment ¢ € C from location
g € P to location p € P

p. 38 — Metapopulations for disease spread modelling



A more compact notation

To make

Xip = feop(XP) + Z MepgXeq — Z Megp | Xep
qeP qeP
q#p q#p

more compact, denote the rate of leaving location p as

Mepp = — E Megp

qeP
a#p

Then

Xép = fep(XP) + Z MepgXeq
qeP

p. 39 — Metapopulations for disease spread modelling



Vector form of the system

For compartment ¢ € C,

X! = f(X)+ MX, (8)
with
— > M1 Me2 - Me1|p)
kEP
M= (9)
Mepl1 Meplz = D Mep)
kEP

p. 40 — Metapopulations for disease spread modelling
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Definitions and notation for matrices

» M e R"™" a square matrix with entries denoted m;;

> M >0 if mj >0 forall /,j (could be the zero matrix); M > 0 if M > 0 and 3i,;
with m;; > 0; M > 0 if mj >0Vi,j=1,...,n. Same notation for vectors

» o(M)={\ € C; M\ = Av,v # 0} spectrum of M
> p(M) = max)co(m){|A|} spectral radius
> s(M) = maxyc(m){Re ()} spectral abscissa (or stability modulus)

» M is an M-matrix if it is a Z-matrix (m;; <0 for j # j) and M = sl — A, with
A>0and s > p(A)
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The movement matrix

The matrix
- Z Mck1r Me12 -+ Mec1yp|
keP
MC — (9)
Meplt Meplz = — 2 Mekp|
keP

is the movement matrix

It plays an extremely important role in the analysis of metapopulation systems, so we'll
spend some time discussing its properties

M describes
» existence of connections

» when they exist, their “intensity”
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Properties of the movement matrix M

First, remark — M. is a weighted Laplacian matrix (using out-degrees)

Lemma 3

1. 0 € o(M) corresponding to left e.v. 17 [o spectrum]
2. —M is a singular M-matrix

3. 0=5s(M) € o(M) [s spectral abscissa]
4. If M irreducible, then s(M) has multiplicity 1

For complete proof of Lemma 3 and Proposition 4 (next page), see Arino, Bajeux &
Kirkland, BMB 2019
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http://dx.doi.org/10.1007/s11538-019-00593-1
http://dx.doi.org/10.1007/s11538-019-00593-1

Proposition 4 (D a diagonal matrix)

1. sS(M+dl)=d, Vd €R

2. s(M + D) € (M + D) associated to v > 0. If M irreducible, s(M + D) has
multiplicity 1 and is associated to v > 0

3. Ifdiag(D) > 0, then D — M invertible M-matrix and (D — M)~1 >0

4. M irreducible and diag(D) > 0 = D — M nonsingular irreducible M-matrix and
(D-M)"1>0

p. 44 — Metapopulations for disease spread modelling
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Behaviour of the mobility component — No demography

Assume no within-location dynamics, just movement. Then (8) takes the form

X, = M.X, (10)

Theorem 5

For a given compartment c € C, suppose that the movement matrix M is irreducible.
Then for any X-(0) > 0, (10) satisfies

lim X.(t) = X* >0

t—00

Note that X} depends on (1, X.(0))
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Reduction to total population per location — Demography

Let

To=> X

ceC

be the total population in location p

It is often posssible to obtain, in each location p € P, an equation for the evolution of
the total population that takes the form

ng = DP(TP) + Z Z mcqucq (11)

ceC geP

where D,(T,) describes the demography in location p

p. 46 — Metapopulations for disease spread modelling



Nature of the demography

Most common types of demographic functions
» Dy(Tp) = bp — dp T, (asymptotically constant population)
Dp(Tp) =bpTp —dpTp
Dp(Tp) = dpTp — dp Tp = 0 (constant population)
Dp(Tp) =

p To(1 = Tp/Kp) (logistic demography)

We have assumed (since birth term is bp)

Dp(Tp) = bp - dp Tp
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Vector / matrix form of the equation

Assuming demography is of the form (12), write (11) in vector form

T =b—dT +) MX (13)

ceC
where
> b= (b,....bp)" €R
T=(T1,...,Tip))" € R
X =(Xe1,..., Xep)) " €RIP
d = diag (dl,...,d|7;‘) e RIPIxIPI
M, € RIPIXIPI

p. 48 — Metapopulations for disease spread modelling



The nice case

Suppose movement rates equal for all compartments, i.e.,

Mc=M

(stronger than the property of movement being similar for all compartments, which
only requires zero/nonzero patterns in all M, ¢ € C, to be the same)

Then
T'=b—dT +M> N,
ceC
=b—dT + MT (14)
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Equilibria

T=05b-—dT+MT=0
s (d-M)T=b
T =(d-M)"'b
given, of course, that d — M (or, equivalently, M — d) is invertible..

Is it?
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Nonsingularity of M — d

Using the spectrum shift of Theorem 4(1)

s <./\/l — min dp> = —mind,

pEP pEP

This gives a constraint: for total population to behave well (in general, we want this),
we must assume all death rates are positive

Assume they are (in other words, assume d nonsingular). Then M — d is nonsingular
and T* = (d — M)~!b unique
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Behaviour of the total population

Equal irreducible movement case

T* = (d — M)~!b attracts solutions of

T =b—dT + MT = f(T)

Indeed, we have
Df=M—-d

Since we now assume that d is nonsingular, we have by Theorem 4(1) that
s(M — minpep dp) = —minpep dp, <0

M irreducible — T* > 0 (provided b > 0, of course)
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Behaviour of total population (equal reducible movement)

Theorem 6
Assume M reducible. Let a be the number of minimal absorbing sets in the
corresponding connection graph G(M). Then

1. The spectral abscissa s(M) = 0 has multiplicity a

2. Associated to s(M) is a nonnegative eigenvector v s.t.

» v; >0 ifi is a vertex in a minimal absorbing set
» v, =0 ifi is a transient vertex

From Foster and Jacquez, Multiple zeros for eigenvalues and the multiplicity of traps
of a linear compartmental system, Mathematical Biosciences (1975)
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https://doi.org/10.1016/0025-5564(75)90096-6
https://doi.org/10.1016/0025-5564(75)90096-6

The not-so-nice case

Recall that
T'=b—dT + > McX,
ceC

Suppose movement rates similar for all compartments, i.e., the zero/nonzero
patterns in all matrices are the same but not the entries

Let
M = {222 m] M = [Tscx m]
Pq.p7q Pg.p=q
and
M= [Técx m} M= [222 m]
Pq,p#q pPq,p=q
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Cool, no? No!

Then we have
b—dT+MT<T <b—-—dT+MT

Me, roughly every 6 months: Oooh, coooool, a linear differential inclusion!
Me, roughly 10 minutes after making that previous statement: Quel con!

Indeed M and M are are not movement matrices (in particular, their column sums
are not all zero)

So no luck there..

We can still do stuff, however more on a case-by-case basis

p. 55 — Metapopulations for disease spread modelling
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Disease free equilibrium

The model is at equilibrium if the time derivatives are zero

Definition 7 (Metapopulation DFE)

In the case of system (5), location p € P is at a disease-free equilibrium (DFE) if
L, =1, =0, and the |P|-location model is at a metapopulation DFE if L, =/, =0
forall pe P

Here, we want to find the DFE for the |P|-location model. Later, the existence of
mixed equilibria, with some locations at the DFE and others at an endemic
equilibrium, is considered

(For (3), replace L, with Ls, and I, with Is,, for (4), replace L, by Ly, and I, by lpp.
To simplify notation, we could write L, and /)
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Assume (5) at metapopulation DFE. Then ¢, = 0 and

0=bp—dpSp+ VpRp + D yepMspaSq
0=—(vp+dp) Ro+ > 4epMRpqRy

Want to solve for S, R,. Here, it is best (crucial in fact) to remember some linear
algebra. Write system in vector form:

0=b—dS+vR+ M°S
0=—(v+d)R+ MR

where S, R, b € RIPI, d, v, M5, MR |P| x |P|-matrices (d, v diagonal)
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R at DFE

Recall second equation:

0=—(v+d)R+ MR (MR —v—d)R=0

So unique solution R = 0 if MR — v — d invertible Is it?

We have been here before!

From spectrum shift, (MR — v — d) = —minyep(vp + dp) <0
So, given L =1=0, R = 0 is the unique equilibrium and

lim R(t) =0

t—o00

— DFEhasL=1=R=0
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S at the DFE
DFEhasL=1=R=0and b—dS+ M°S =0, ie.,

S=(d—M>)"b

Recall: —M? singular M-matrix. From previous reasoning, d — M? has instability
modulus shifted right by minyep dp. So:

» d — M? invertible
» d — M?> nonsingular M-matrix

Second point = (d — M°)"1 >0 = (d — M>)"1b > 0 (would have > 0 if
M irreducible)

So DFE makes sense with

(S,L,1,R) = ((d . MS)*lb,o,o,o)

p. 59 — Metapopulations for disease spread modelling
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» Linear stability of the disease free equilibrium can be investigated by using the
next generation matrix method of [van den Driessche and Watmough, 2002]

» In general, Rg depends on the demographic, disease and mobility parameters
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Computing the basic reproduction number R
Use next generation method with == {Ly,...,Lip|, h,..., p}, = =F =V
T
F = (®1,...,9p,0,...,0)

(e1+di) L1 — > mpgly
qeP
(epp) +dipy) Lip) = X2 mujpiqlq
qeP

—e1ili+(m+di)h — Y mpgly
qeP

—Epibe+ O+ dp)lipr = 2 mipila
qe
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Differentiate w.r.t. =:

001 0% 0% 0
oL, alp, Ok dlp,
DF — 8¢|73‘ . 8¢|p| 6¢|p| 8¢‘p|
~ | oL dLp, Ok dlp,
0 - 0 0 0
0 0 0 0
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Note that
o, 0%, 0

oL, Ol
whenever k # p, so

2 o0 (o0 i
DF — (dlag (a—Lll,..,, 8L“;’|\> diag (T,f,..., 6,|':))
0 0
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Evaluate DF at DFE

/
If ®, = BpSplp, then If &, = ﬁp%, then

L 0% P

L, =0 > 9% ﬁ,,SI_o at DFE
oL N2

acb = BpS, L 0%,

p

oI, 5,, at DFE

In both cases, 9/JL block is zero so

F = DF(DFE) = (g diag (5% e ))
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Compute DV and evaluate at DFE

Vv (diagp(sp.+ dp) — Mt . 0 />
—diag,(ep) diag,(vp + dp) — M
where diag,(z,) := diag(z1, .. ., zjp|)

Inverse of V easy (2 x 2 block lower triangular):

vl (diag,(ep +dp) - mh™ 0 X
VQEl (diagp(’Yp + dp) - Ml)i

where

~ _1 _1
V2—11 - (diagp(vp +dp,) — M’) diag,(ep) (diagp(gp +d,) — ML)
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Ro as p(FV1)

Next generation matrix
i (0 F12> (\:/1—11 0 ): (F12\7211 F12\7221>
0 0)\Vv;' vt 0 0
where \N/U_1 is block jj in V™1, So
Ro=p <F12 \72]1)

ie.,

: 0P 0P _ -1
Ro = p(dlag < L |P|> (dlagp(’yp +d,) — M’)

oh " Dl
-1
diag,(cp) (diagp(sp +d,) — ML> )
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Local asymptotic stability of the DFE

Theorem 8
Define Ry for the |P|-SLIRS as

: oo oe : -1
Ro = p(dlag < L |P|) (dlagp('yp =) — MI>

Bk Bl
1
diag,(cp) (diagp(ap +d,) - ML> )

Then the DFE
(S,L,I,R) = ((d — M5)~1b,0,0, 0)

is locally asymptotically stable if Rg < 1 and unstable if Ry > 1

From PvdD & Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Bulletin of
Mathematical Biology 180(1-2): 29-48 (2002)
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Some remarks about R

The expression for Rg in Theorem 8 is exact

However, unless you consider a very small set of locations, you will not get a closed
form expression

Indeed, by Theorem 4(3) and more importantly (often M is irreducible),
Theorem 4(4), the two inverses in Rg are likely crowded (>> 0 in the irreducible case)

However, numerically, this works easy unless conditioning is bad
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Do not in Rg put all your .. interpretation?

An urban centre and satellite cities

Winnipeg as urban centre and 3 smaller satellite cities: Portage la Prairie, Selkirk and
Steinbach

» population density low to very low outside of Winnipeg

> MB road network well studied by MB Infrastructure Traffic Engineering Branch

JA & S Portet. Epidemiological implications of mobility between a large urban centre
and smaller satellite cities. Journal of Mathematical Biology 71(5):1243-1265 (2015)
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Known and estimated quantities

City | Pop. (2014) | Pop. (now) | Dist. | Avg. trips/day
Winnipeg (W) 663,617 749,607 - -
Portage la Prairie (1) 12,996 13,270 88 4,115
Selkirk (2) 9,834 10,504 34 7,983

Steinbach (3) 13,524 17,806 66 7,505
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Estimating movement rates

Assume m,, movement rate from city x to city y. Ceteris paribus, N, = —my, Ny, so
Ny (t) = Nyi(0)e~™=t. Therefore, after one day, Ny(1) = N, (0)e™ ™, i.e.,

me = ()

Now, Ny (1) = N(0) — T,x, where Ty, number of individuals going from x to y / day.

So -
_ _ ¥X
me= 0 (1 375

Computed for all pairs (W, i) and (i, W) of cities
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Sensitivity of Ry to variations of R§ € [0.5, 3]

Ry
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Lower connectivity can drive Rg

PLP and Steinbach have comparable populations but with parameters used, only PLP
can cause the general Rg to take values larger than 1 when R(‘)/V <1

This is due to the movement rate: if M = 0, then
Ro = max{Ry, R}, R3, R3},

since FV ™! is then block diagonal

Movement rates to and from PLP are lower — situation closer to uncoupled case and
’R}) has more impact on the general Rg
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Ry does not tell the whole story!

100

2
Ry=1
m——10% attack rate

90

80

70

60

50

40

30

Percentage of regular WPG-PLP travel rate
Percentage of regular WPG-PLP travel rate

Plots as functions of Ré in PLP and the reduction of movement between Winnipeg
and PLP. Left: general Rp. Right: Attack rate in Winnipeg
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The toy |P|-SLIRS

LAS results for Rg < 1 can sometimes be strengthened to GAS. One class of models
where this works often is when the population is either constant or asymptotically
constant and incidence is standard

Theorem 9

Let Ro be defined as in Theorem 8 and use proportional incidence ®, = 3,551,/ Np. If
Ro < 1, then the DFE of system (5) is globally asymptotically stable
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|S| |P|-SLIRS with multiple species

In the case in which movement is equal for all compartments and there is no disease
death, a comparison theorem argument can be used as in Theorem 9 to show that if
Ro < 1, then the DFE of the |S| |P|-SLIRS (3) is globally asymptotically stable.

Theorem 10

For system (3) with |S| species and |P| locations, with movement equal for all
compartments, define Rq appropriately and use proportional incidence. If Rg < 1, then
the DFE is globally asymptotically stable
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Metapopulation-specific problems — Two main types

» Inheritance problems — Which of the properties of the constituting units are
inherited by the metapopulation?

» Metapopulation-specific behaviours — Are there dynamic behaviours observed
in a metapopulation not observed in the constituting units?
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Inherited dynamical properties (a.k.a. | am lazy)
Given
Sl/(p = fkp(spv Ip)
iép = gfp(spa Ip)

with known properties, what is known of

S;<P = ka(SIN /P) + qupmkpqskq

iép = geP(Sm /P) + qupmépqifq

P Existence and uniqueness v’

» Invariance of RS under the flow v/

» Boundedness v

» Location of individual Rg; and general Rg ?
> GAS?
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An inheritance problem — Backward bifurcations

» Suppose a model that, isolated in a single patch, undergoes so-called backward

bifurcations
» This means the model admits subthreshold endemic equilibria

» What happens when you couple many such consistuting units?

YES, coupling together backward bifurcating units can lead to a system-level backward

bifurcation

JA, Ducrot & Zongo. A metapopulation model for malaria with transmission-blocking
partial immunity in hosts. Journal of Mathematical Biology 64(3):423-448 (2012)
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Metapopulation-induced behaviours ?

“Converse” problem to inheritance problem. Given
Skp = fkp(Sps Ip)
iép = 8up(Sp; Ip)
with known properties, does
5;<p = fkp(sm /P) + qupmkpqskq
iép = gép(sm /P) + qupmﬁpqiéq

exhibit some behaviours not observed in the uncoupled system?
E.g.: units have {Rgo <1 = DFE GAS, Rp > 1 = 1 GAS EEP} behaviour,
metapopulation has periodic solutions
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Mixed equilibria

Can there be situations where some locations are at the DFE and others at an EEP?

This is the problem of mixed equilibria

This is a metapopulation-specific problem, not one of inheritance of dynamical
properties!

p. 83 — Metapopulations for disease spread modelling



Types of equilibria

Definition 11 (Location level EP)

Location p € P at equilibrium is empty if XJ = 0, at the disease-free equilibrium if
X5 = (s,tlp, U HI (e ,0), where ki, ..., k, are some indices with 1 < v < |U{| and

Skyp?* * .,s;up are positive, and at an endemic equilibrium if X, > 0

Definition 12 (Metapopulation level EP)

A population-free equilibrium has all locations empty. A metapopulation
disease-free equilibrium has all locations at the disease-free equilibrium for the same
compartments. A metapopulation endemic equilibrium has all locations at an
endemic equilibrium
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Mixed equilibria

Definition 13
A mixed equilibrium is an equilibrium such that

» all locations are at a disease-free equilibrium but the system is not at a
metapopulation disease-free equilibrium

> or, there are at least two locations that have different types of location-level
equilibrium (empty, disease-free or endemic)

Eg.,
((S1,h, R1),(S2, by R2)) = ((+,0,0), (+,+, +))

is mixed and so is

(51, h, R1), (52, by R2)) = ((+,0,0),(+,0,+))
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Notation is specific here: p € P, A(p) and D(p) are the ancestry and descendents of p
in the movement digraph
Theorem 14
Suppose that movement is similar for all compartments (MSAC) and that the system is
at equilibrium

» If patch p € P is empty, then all patches in A(p) are empty

» [f patch p € P is at a disease free equilibrium, then the subsystem consisting of all
patches in {p, A(p)} is at a metapopulation disease free equilibrium

» If patch p € P is at an endemic equilibrium, then all patches in D(p) are also at
an endemic equilibrium

> If G€ is strongly connected for some compartment ¢ € C, then there does not exist
mixed equilibria

Note that MSAC =— A = Aand D =D forall ceC
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» JA. Spatio-temporal spread of infectious pathogens of humans. Infectious Disease
Modelling 2(2):218-228 (2017)

» JA. Mathematical epidemiology in a data-rich world. Infectious Disease Modelling
5:161-188 (2020)

» github repo modelling-with-data
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Not very difficult

As for the mathematical analysis: if you do things carefully and think about things a
bit, numerics are not hard. Well: not harder than numerics in low-D

Exploit vector structure
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Set up parameters

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1le+06
countries = c("Canada", "China", "India", "Pakistan", "Philippines")
T = matrix(data = c(0, 1268, 900, 489, 200,

1274, 0, 678, 859, 150,

985, 703, 0, 148, 58,

515, 893, 144, 0, 9,

209, 174, 90, 2, 0),

nrow = 5, ncol = 5, byrow = TRUE)

p. 89 — Metapopulations for disease spread modelling



Computing birth and death rates

Average life expectancy at birth (years): 81.30, 78.59, 67.74, 66.43, 72.19

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1le+06
countries = c("Canada", "China", "India", "Pakistan", "Philippines")
death_rates = 1/(365.25*%c(81.30, 78.59, 67.74, 66.43, 72.19))
birth_rates = pop*death_rates

p. 90 — Metapopulations for disease spread modelling



Work out movement matrix
Use the approximation explained in Arino & Portet (JMB 2015)

p = listQ
p$M = mat.or.vec(nr = dim(T) [1], nc = dim(T) [2])
for (from in 1:5) {
for (to in 1:5) {
p$M[to, from] =

}

p$M[from, from]

}

p3M = p$M - diag(colSums (p$M))

-log(1 - T[from, to]/popl[from])

0

For simplicity, let's assume all movement rates are equal
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p$P = dim(p$M) [1]

p$epsilon = rep((1/1.5), p$P)
p$gamma = rep((1/5), p$P)
p$nu = rep((1/365.25), p$P)
p$b = birth_rates

p$d = death_rates

# The desired values for R_0
R_0 = rep(1.5, p$P)
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Write down indices of the different state variable types

Save index of state variable types in state variables vector (we have to use a vector and
thus, for instance, the name “S” needs to be defined)

p$idx_S = 1:p$P

p$idx_L = (p$P+1): (2%p$P)
p$idx_I = (2%p$P+1): (3*p$P)
p$idx_R = (3*p$P+1) : (4*p$P)
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Set up IC and time

# Set initial conditions. For example, we start with 2
# anfectious individuals in Canada.

LO = mat.or.vec(p$P, 1)
I0 = mat.or.vec(p$P, 1)
RO = mat.or.vec(p$P, 1)

I0[1] =2

S0 = pop - (LO + IO + RO)

# Vector of inittal conditions to be passed to UDE solver.
IC = c¢(S =850, L =L0, I =1I0, R=RO)

# Time span of the simulation (5 years here)

tspan = seq(from = 0, to = 100, by = 0.1)
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Computing R in patches in isolation to set up

Useful to know Rqp, basic reproduction numnber for patch p € P disconnected from
the network

In the absence of movement, system in p € P is
Sp=bp = BpSplp — dpSp + VpRp (17a)
L;: = BpSplp — (ep + dp) Lp (17b)
lp=¢plp = (vp + dp)lp (17¢)
R;,: =Yplp — (Vp + dp) Rp (17d)
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DFE is clearly (Sp, Lp, Ip, Rp) = (bp/dp,0,0,0)
Infected variables are Z = {L, I}

F = (BpSplps O)T and V = ((ep + dp)Lp, —€pLp + (7p + dp)p)

b
F— (0 Peg andV:<€p+dp 0 >
0 O —€p Wt dp
Thus

~ 0 B, 1 <7 +d 0 >
Ra, = FV 1y _ Pd P P
o0 = )=¢ ((0 0 p> (ep + dp)(Vp + dp) €p ept+dp

and it follows that

SO

Bp ep  bp
Rop = — 18
L+ dy eyt dy dp (18)
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Set up S to avoid blow up

Let us take Rgp = 1.5 for patches in isolation. Solve (18) for fp:

_ Rop(Vp + dp)(ep + dp)dp
epbp

Bp

for (i in 1:p$P) {
p$betalil] =
R_O[i] *(p$gammal[i]l+p$d[i]) * (p$epsilon[il+p$d[il) * p$d[i] /
(p$epsilon[il*p$d[il)
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Define the vector field

SLIRS_metapop_rhs <- function(t, x, p) {
with(as.list(p), {

dR

x [idx_S]
x[idx_L]
x[idx_I]
x[idx_R]

i = betaxS*I

b - d*S - Phi + M)*%S

Phi - (epsilon+d)*L + M)*}L
epsilon*L - (gamma+d)*I + My*JI
gamma*I + - (nu+d)*R + M/4*YR

return(list(c(dsS, dL, dI, dR)))

D)
}
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And now call the solver

# Call the ODE solwer

# sol <- ode(y = IC,

# times = tspan,

# func = SLIRS_metapop_rhs,
# parms = p,

# method = "ode45")
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One little trick (case with demography)

Suppose demographic EP is N* = (d — M)~ b
Want to maintain N(t) = N* for all t to ignore convergence to demographic EP.
Think in terms of b:

N=0<=>b-—dN+MN=0 < b=(d— M)N

So take b = (d — M)N*
Then
N = (d — M)N* —dN + MN

and thus if N(0) = N*, then N’(0) = 0 and thus N' =0 for all t > 0, i.e.,, N(t) = N*
forall t >0
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Word of warning about that trick, though..

b= (d — M)N*

d — M has nonnegative (typically positive) diagonal entries and nonpositive
off-diagonal entries

Easy to think of situations where the diagonal will be dominated by the off-diagonal,
so b could have negative entries

= use this for numerics, not for the mathematical analysis
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Other spatial models
Spatial propagation on a “road”
A diffusion spatial spread model
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Spatial spread of an epidemic on a “road”

» SIS and SIR models
» Consider a road of length L

» S(x,t), I(x,t) and (when relevant) R(x, t) are the densities of individuals in the
different compartments at location x € [0, L] at time t

» For simplicity, denote
0

aX(x, t) = Xe(x, t)
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The SIR model on the road

Si(x, t) = —B(x, t)S(x,t) — dS(x, t) + dN(x) + A1/(x, t)
le(x, t) = A(x, t)S(x, t) — dl(x, t) — (71 +72)/(x, t)
R:(x,t) = v2l(x, t) — dR(x, t)

where the force of infection is

A(x, t) = IiI/OL B(x, X' ) (x, x")dx

and the total population along the road is

L
N:/ N(x")dx’
0
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Take the SIS model as an example (72 = 0,71 = ). Solve (19b) in terms of A:

I(x, t) = exp ( /Ot A(x,s) — (d + ’y)tdS)

X /t A(x, t’)N(x)efotl A(x,)+(d+)t'ds gp!
0

+ 1(x,0) exp < /Ot A(x,s) — (d + 7)tds>
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Substitute (20) into (19d)
L t c )
A(X, t) _ / IB(X, X/)n(X/)/ )\(X/, tl)e— S AX',8)=(d+~)(t—t )dsdt/dxl
0 0
L
+/ ﬁ(x,xl)i(xl,O)e_fot’\(xl’s)_(d”)tdsdx’
0
where n(x) = N(x)/N and i(x, t) = I(x,t)/N. Without demography (d = 0):
L t C )
A(x, t) = / B(x,x")n(x) / A, t)e Ju A )= (E=t)ds gyt g/
0 0

L . /
+ / 5(X,X/)I'(X/, 0)e™ Jo Mx'ss)—~tds 4,/
0
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Thus the problem is in the form

B\(x,t) = A(x, t)

In both cases, B is a Hammerstein-type operator in x

» SIR case: B is a nonlinear Volterra operator in t =existence and uniqueness of
solutions

» SIS case: B is not a nonlinear Volterra operator in t. However, it resembles one
and the authors establish existence and uniqueness of solutions
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In both cases, there is a travelling wave front then convergence to a steady state

In the SIS case

A o0)
350+

t—o0

A(x) = lim BA(x,t) = / B(x,x")

which does not depend on t

They then discuss conditions s.t. this limit # 0, by looking for values of z s.t.
B A(x) = zA(x) has a positive solution

Show there exists a threshold Zreshold = Ro s-t. A(x) =0 if Ro < 1 and a positive
solution if Rg > 1
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Spatial spread of rabies with immunity

> —(a-b) <1—z) S+a"R—BSI (21a)
gi:,BSI—o—L—<b+(a—b)z>L (21b)
gi:gL—a/—'yl—<b+(a—b)z>/+D/gié (21c)
({;T:WJr(a—a*)RJr(bJr(a—b)g)R (21d)

where N=S+ L+ 14+ R
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A model with vaccine efficacy and waning

» Exponential distribution of recovery times (rate )

» Susceptible individuals are vaccinated (number of vaccinated at time t is denoted

V(1)

» Vaccination wanes, a fraction P(t) of the vaccinated at time t = 0 remain
protected by the vaccine

» Vaccination is imperfect, 0 <1 — ¢ < 1 is the vaccine efficacy
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Model structure

adN

p. 113 — A model with arbitrary sojourn time



Parametres
> d > 0: mortality rate
> ~ > 0: recovery rate
» 3 > 0: infectiousness of the disease
> ¢ > 0: vaccination rate of susceptible individuals
» o € [0,1): fraction of newborns vaccinates

» 0 <1—o0 <1: efficacy of the vaccine. From now on, assume 0 < o < 1
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» Disease transmission: standard incidence

» Vaccination of newborns

» Birth and death rate equal (=-constant total population)

Assumptions on P: P(t) is a nonnegative and nonincreasing function with
P(0%) =1, and such that [;° P(u)du is positive and finite

Constant total population = S(t) = N — I(t) — V/(t); further, we switch to
proportions: S, | and V represent the proportions in the population, and N =1 (S
used in equations for conciseness)
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The SIS model with vaccination

PO 3(s(e) + oV(E)I(2)  (d+ )10 (222)
V(t) = Vo(t) + / t(ng(u) + ad)P(t — u)e~ (=B [, (dx gy, (22b)
0

» «ad proportion of vaccinated newborns,
» ¢S(u) proportion of vaccinated susceptibles,

» P(t — u) fraction of the proportion vaccinated still in the V class t — u time units
after going in,

» e~ 9(t=1) fraction of the proportion vaccinated not dead due to natural causes,

t
> e 98J, 104 fraction of the proportion vaccinated not gone to the infective class.
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Obtaining the initial condition

Let v(t,7) be the (density) proportion of individuals in vaccination class-age 7 still
vaccinated at time t, then

0 0
<8t + 67) v(t,7) = —(apI(t) + d+n(r))v(t,T) (23)
where V/(t fo v(t,7)d7. n(7) is the vaccine waning rate coefficient with
proportion still in the vaccination class-age 7 being P(7) = exp( fo ) It is

assumed that P is a survival function

Inflow in class-age zero is
v(t,0) = ¢S(t) + ad

and v(0,7) > 0 is assumed
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Integrating (23) along characteristics, dividing the integral for V/(t) at t, substituting
in the solutions, and changing integration variables, we get

t o0 P
Vo(t) = e JioBita+ayax /0 (0, u)(;(t)u)du (24)

The ratio P(t + u)/P(u) = exp (f”” n(q)dq) is well defined for t + v > u > 0 and

u

bounded above by 1.

Since V/(0) is finite, the integral in V,(t) converges, and thus Vj(t) is nonnegative,
nonincreasing and lim;_,o Vo(t) =0
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Let
D={(,1,V);5>0,1>0,V>0,S+/+V=1}

The set D is positively invariant under the flow of (22) with 1(0) > 0,5(0) >0
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With the assumed initial conditions in D, it can be shown that the system defined by
(22a) and (22b) is equivalent to the system defined by (22a) and

—V(t) = VO(t) +¢5(t) + ad — (d + oBI(1))(V(t) — Vo(t)) + Q(r)  (25)

where to simplify notation, we denote

Q(t) = /Ot(¢5(u)+ad)dt(P(t_ u))e” d(t—u) g=0B [} 1(x)dx 4,

The system defined by (22a) and (25) is of standard form, therefore results of Hale
[Hale and Verduyn-Lunel, 2013] ensure the local existence, uniqueness and
continuation of solutions of model (22)
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Define Ry with vaccination as

Ry =TRo

14 ¢P (20)

1+o0¢P —(1— cr)ozdl-:’]

where Rg = dfy is the reproduction number in the absence of vaccination and

t—00

t
P = lim / P(v)e=%dv
0
in such a way that P < 1/d

» R, <R and, in absence of vaccination, R, = Ry
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Theorem 16

System (22) with an arbitrary loss of vaccination function P(t) always admits the
disease-free equilibrium
» If Rg < 1, then the DFE is the only equilibrium of the system and the disease
goes extinct

» /fR, <1, the DFE is LAS; if R, > 1, the DFE is unstable

R <1 R >1 R >1
0 0 0
R <1 R <1 R >1
vac vac vac
DFE g.as. DFE l.as. DFE unstable
0 1 R
vac
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Reduction of the system using specific P(t) functions

As before, two examples

» The distribution of waning times is exponential, which leads to an ODE system.
Treated briefly here, just so as to emphasize the presence of a so-called backward
bifurcation, a rather uncommon phenomenon in epidemiological models

» The waning time is a constant, which leads to a DDE model. We show that the
backward bifurcation is also present
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Case reducing to an ODE system

Assume P(v) = e %, 6 > 0. Vo(t) = Vo(0)e (d+0)te Jo 7BI6)dx fFrom (24). Then
(22a) and (25) give the ODE system

%:ﬂﬂ—l—ﬂ—@Vﬂ—M+7ﬂ (272)
I =61~ 1~ V)~ opIV — (d+ )V +ad (27b)

which with no newborn vaccination (a = 0) is the model studied in Kribs-Zaletta &
Velasco-Hernandez, 2000 (extended to SIR with vaccination: Arino, McCluskey and
van den Driessche).

From Theorem 16 the DFE always exists, with

0+ d(1—q) ¢+ ad

/ = = ="
pre = 0, Spre di0+0  PET gia4 s
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Backward bifurcation

Assume that Rg > 1, then endemic equilibria (positive / equilibria, denoted by /*) can
be obtained analytically from the quadratic equation

P()=AI?P+Bl+C=0

where
A = —of
B = o(f—(d+7)—(d+0+0¢)
C = (d+7)(d+0+¢)(R,—-1)/8
with d+0+0p—a(l—o)d
ocp—oa(l —o
Rv=TRao d+60+¢
from (26).
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Backward bifurcation leading to two endemic equilibria occurs for o > 0 if
P'(0) = B> 0, P(0) = C <0 and B? > 4AC (we always have P(1) < 0)

» On an (R, ) bifurcation diagram, this occurs for R, < R, < 1, where R is the
value of R, at the saddle node bifurcation point where the two values of | coincide,
e, =Il.=B/(—2A)

» For R, < R, there is no endemic equilibrium (EEP). For R, > 1, the constant
term C > 0, and there is a unique EEP

P In the case of forward bifurcation, R, = 1; this is the case in particular if the
vaccine is totally effective (o = 0)
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By standard planar ODE arguments the following can be shown

Theorem 17
For the ODE system (27) with V(0) >0, /(0) > 0, and Ro > 1

(i) if R, < Re, then the disease dies out,

(ii) if Re < Ry < 1, then the EEP with larger | is l.a.s., and the EEP with smaller | is
unstable

(i) if R, > 1, then the unique EEP is globally asymptotically stable in D — {I = 0}
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Pertussis:
» 3 week average disease duration (y = 0.04762)
» Average lifetime 75 years (d = 3.6530E — 05)
» Average number of adequate contacts per infective per day is estimated at 0.4
(8=0.4)
» Most newborns are vaccinated in the first few months of life (o« = 0.9)
» Vaccine is effective, 0 = 0.1 (90% effective vaccine).

P Pertussis vaccine begins to wane after about 3 years and the average waning time
of the vaccine 1/6 is assumed to be 5 years, giving 6 = 5.4794E — 04

With these parameter values, there is backward bifurcation for a range of ¢ values
given by 0.0254 < ¢ < 0.1506
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0.9
0.8

0.7
With the above parame-
ter values, Rg = 8.3936
and R,(¢) = 0.8807 for
¢ = 0.1, which is in"
the range of backward bi- ©°¢
furcation since the critical
value Rc(¢) = 0.8669 <

'RV(QZ)) <1 02f | 1
\
\
\
0.1}f \ i
0 L \\\ e L
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Step function case: a delay integral model

Suppose that
Lif v e [0,w]
0 otherwise

P(v) = {

Since Vp(t) =0 for t > w, with S =1 — | — V the integral equation (22b) becomes,
for t > w

V(t) = /t i (6(1 — I(u) — V(1)) + ad)e (=) =B [ 1(x)dx g, (28)

p. 130 — A model with arbitrary sojourn time



Differentiating (28) (see equation (25)) gives the model as the two dimensional
system, for t > w

1) = 501 1)~ (1~ )V(OI(E) ~ (d +)1(2) (292)
SV(t) = 61— (1) - V(1) (29)

B It~ w) — V(b - w))e e K 100
—ofIlV —dV +ad (1 e dwe B, ’(X)dx>

Hereafter, shift time by w so that these equations hold for t > 0
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The well posedness of the problem follows from Theorem 15 and from the fact that
solutions of (22) exist and are unique. For a constant waning period, the basic
reproduction number from (26) is

d+(cp—a(l —o)d)(1—e )

R, =R 30
0 d+ ¢(1— e—dw) (30)
With Ipg = 0, from Theorem 16
(¢ + ad)(1 — e~9) d — ad(l — e™9)
Vor = = 1
PP a4 (1 —edw) Sor d+ ¢(1 — e—dv) (31)
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Finding the EEP’s

From nullclines, there exists one (or more) endemic equilbria (EEP) iff there exists
0 < I* <1 such that

Vi £(7) = g(1") (32)
where
() = =3 &
for o < 1, and j s
1-1/ ad)(l — e~ 9w—opw
g(l) = ((Z)(;E(l - Z:’w—ff)ﬁ(w) Tdtopl ! (34)
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Visualising and locating the bifurcation

From the nullcline equations, an EEP exists iff there exists an /* € (0, 1] such that
equations (32)-(34) hold. So we study the zeros of

_ 1-1/Ro—1 B (p(1 — 1) + ad)(1 — e~dw—obwl)

H(I) 1—-o ¢(1_e—dwfo'/6’wl)_|_d+gﬁ/

To state the problem in a formal way, let A = {«,3,7,w, ®,0} be the set of
parameters of interest, and denote

H(I, A) = (1) — g(]) (35)

to show the dependence on these parameters.
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We proceed as follows.
1. Choose a parameter a; € A.
2. Fix all other a;'s (j # i).
3. Choose aj min, ai,max and Aa; for a;.
4. For all aj x = aj min + kAaj (k such that a; x < aj max), compute /* such that
H(I*,aj«) = 0.
Step 4 is carried out using the MATLAB fzero function.
Further precision can be gained by showing that

R,—1
H0) = ———
(0) (1-0)Ro
and that, foro < 1
1 d(1 — —dw—ofw
H(1) = — ___adll-e ) o

(1-0)Ro ¢(1— e 9dw—9bw)+d+op
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Define R as previously. For Ry > 1 and R, < 1, there are several possibilities.

> If R, < R, then there is no EEP. H(0) and H(1) are strictly negative, and
numerical simulations seem to indicate that H has no roots in (0, 1] (i.e., that
H < 0 on this interval).

» If Rc <R, < 1, then there are endemic equilibria. Here, since H(0) and H(1) are
strictly negative, the only possibility is thus to have an even number of zeros of H.

Numerical simulations appear to indicate that the number of endemic equilibria is
2.

In between these two situations R, = R, and there is one endemic equilibrium /*.
Using the same procedure as for the visualisation of the bifurcation, it is possible to
compute R by finding the value /* such that H(/*,.A) = 0 and H'(I*, A) =0, for a
given parameter a; € A.

If R, > 1 then H(0) > 0 and so there is an odd number of endemic equilibria.
Numerical simulations indicate that there is a unique EEP.
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Numerical bifurcation analysis

Same parameter values as in ODE case, except that the constant waning time (the
delay) w has to be substituted for 6. We take w = 1825, i.e., corresponding to a 5
years waning time

These parameters give Ro = 8.3936 and R,(¢) = 0.8819, which is in the range of the
backward bifurcation since (using the above method) R.(¢) = 0.8675

The bifurcation diagram is very like that depicted in earlier for the ODE. Numerical
simulations of the DDE model (using dde23) indicate that there are no additional
bifurcations; solutions either go to the DFE or to the (larger) EEP
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(a) Values of I* as a function of w by solving H(/, A) = 0 with a; = w. (b) Value of
I(t) versus time, obtained by numerical integration of system (29) with initial data
I(t) =c, for t € [-w,0], w = 1825, ¢ varying from 0 to 1 by steps of 0.02
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Age of infection

We have seen that infinite dimensionality could result from a detailed description (or
an unspecified one) of the sojourn time in compartments

Originally, age of infection was introduced to account for differences in infectivity
depending on the time since an individual became infected

For instance, it is known that infectiousness of HIV positive patients vary as a function
of time since infection
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Age of vaccination

We used age of vaccination to find the initial condition of (22)

Here we take a closer look at this type of model
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How to model time between vaccine doses

S’ = —f5 - Vi(t,0) (36a)
A/ = <(]. - p)S + (1 - p1)51 \71 + (]. - p2)52 V2> f— /LAA (36b)
= (pS + p161 Vi + p2oa Vo) f — ul (36¢)
Vgl = Vl(t, a*) — (52f\/2(t) (36d)
2+2 Vi(t,a) = —01fVi(t,a), 0<a<a* (36e)
ot 9a) A\ba)=—oaflt a), <as
and boundary condition
’ySo< (- ) if T<t<Teand S>0
Vi(t,0) = S(8)+A(t) - (36f)
0 otherwise

where f = B(0aA + 1) and Vi(t) = [ Vi(t,a)da

p. 142 — Age of infection



Simplifying a bit

Integrate (36e) using characteristics along lines a=s and t = T + s, with s as a new
variable

Vilt.2) = a(e - 2.0)exp | -t ) (37)

Define ¢
— | sf(6)d
(1) /0 VF(€)de

and substitute into (37), giving
Vi(t, a) = Va(t — a,0) exp ((t — a)¢(1))

So the distributed delay is now discrete
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Simplifying a bit more
Let

t
u(t):/ Vi(s,0)es)ds
0

Then the total number of individuals having been vaccinated with a single dose is

Va(t) = e O (u(t) — v(t — a*))

S’/ = —fS— Vy(t,0) (38a)
A = (A= p)S+ (1= p)orih+ (1= p)BVs) f — paA (38b)
I" = (pS + p161 Vi + padaVo)f — pul (38¢)
Vo! = Vi(t — a*,0)es(t73") — 5, AV,(t) (38d)
¢ =6if (38e)
v’ = Vi(t,0)e®) (38f)
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Age structure

Taking into account age can be important in some cases

» Demographic characteristics vary with age

» Interactions are in general more frequent between people of a similar age. They
are also more frequent in younger individuals

» Some diseases attack preferentially younger individuals

» The immunity of individuals changes with age, so for instance, older people may
be more susceptible to some diseases than younger people

This is based on courses given by Jia Li during a Banff summer school in 2004
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Note on age

, as a structuring variable, is “easier” than other structuring
variables

Indeed, if a is (chronological) age, then
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Formulation of an SIR model

Let a be the age. Assume that natural death and recovery occur at the rates u and 7,
respectively, both dependent on a

When an individual is sick, they are subject to disease-induced death at the rate §(a)

Governing equations are

(O + 92)S(t,a) = A(a) — (u(a) + A(t,a))S(t, a) (39a)
(0r + 02)I(t,a) = —(u(a) +v(a) + d(a))/(t, a) + A(t,a)S(t, a) (39b)
(0 + 92)R(t,a) = y(a)l(t, a) (39¢)
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Boundary conditions are

S(t,a0) =B (39d)
I(t,a0) =0 (39e)
R(t,a0) =0 (39f)
while initial conditions take the form
5(0,a) = 9(a) (39g)
1(0,a) = V(a) (39h)
R(0,a) = (39i)
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Force of infection

Transmission A(t, a) of the disease takes the form

At 2) = r(a) / " B2, 5)p(a, ) I(I((tt:,ss)) ds

where
» r(a) is the number of contacts by individuals of age a per unit time

» [(a,s) is the probability of disease transmission to a susceptible of age a by an
infectious of age s

> p(a,s) is the meeting rate between people of age a and people of age s
> N(t,a) = S(t,a)+ I(t,a) + R(t,a) is the distribution of total population
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To simplify, assume that (3(a, s) is separable

Bla,s) = f(a)g(s)

where f(a) is the susceptibility of individuals aged a and g(s) is the force of infection
of individuals aged s

Then
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Analysis of the SIR model

We seek the DFE by setting I =0

We find (S, 1, R) = (5°(a),0,0) with
$%a) = Be M3 4 e_M(a)/ eMCIN(x)dx
ao

where
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Consider the perturbed solution u(t,a) = S(t,a) — S°(a). Assume that the meeting
rate p is also separable,

p(a,s) = p1(a)pa(s)
Then

A(t, 2) = r(a)f(a)p1(a) /:O g(;%’z)(s)/(t,s)ds ~ A(t,2)

and we obtain the linearisation

a)u — \(t,a)5%(a)

(a) +v(a) + 6(a)) + A(t, 2)S%(a)
/

(0 + 0a)u = —pu(
(Or + 02)1 = —(p
(0t +02)R = ~(a)
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Let )
u(t,a) = i(a)et=2)  (t,a) = I(a)e(t=2)

and denote

b(a) = S%(a)r(a)f(a)pu(a) W = / - g(;?)(Pzgs)e_cs T()de
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Then

di,f,a) = —p(a)ii(a) — b(a)e®W
di,(f) = —(u(a) +~(2))(a) + b(a)e® W

I(a) = WeM@)-T(2) /OO eM)HT(S) p(s)e ds
where I'(a) = f
Therefore

W= W/ e~ ME)=TEe) /S eM(VHr(V)b(v)e*C(s—v)dvds
a0
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Let then

H(c) := / g(;gf(’igs) e—M(s)—r(s)/ el\/l(v)+r(v)b(v)e—c(s—v)dvds
ao a

0

We seek roots of the characteristic equation H(c) =1

We have

dH(c) _ /OO g(5)p2(s) —ms)—r(s) /s M(v)+T(v) —e(s—v)
de . 59(s) € , (s—v)e b(v)e dvds < 0

0

implying that H(c) is a decreasing function
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» Let c* be a real solution to H(c) = 1. If H(0) > 1, then ¢ > 0, whereas if
H(0) <1, ¢<0

» Suppose that ¢* = a+ if is a complex root of H(c) = 1. Then

Re H(c) = / %I(Jz)(s)e—M(s)—r(s)/ MM p(v)e™ 7Y cos B(s — v)dvds
EN) ao

As a consequence, H(0) <1 = a <0

So H(0) =1 is a threshold and we take Ro = H(0)
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Analysis using semigroups: SIA model

To illustrate the use of the semigroup method in this context, we consider an SIA
model describing the evolution of HIV/AIDS

The model is almost equivalent to (39), with a few differences
The | compartment contains inviduals bearing HIV, but not yet in the AIDS stage
The rate y(a) represents the progression towards the AIDS stage

The AIDS stage is represented by compartment A, where individuals are subject to a
specific mortality rate
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(0r + 02)5(t, a) = N(a) — (d(a) + A(t, a))S(¢t, a)
(0 + 02)I(t,a) = —(d(a) +v(a))!(t,a) + A(t,a)S(t, a)
(0 + 02)A(t, a) = v(a)A(t, a) — (d(a) + 6(a))A(t, a)

Assume
I(t,a')

A(t,a) = h(a) /OO p(a,a) T(t.) da
where T(t,a') = S(t,ad') + I(t,d)
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An individual in AIDS stage no longer has contacts. Therefore the dynamics of S and /

do not depend on the dynamics of A, and we consider the system consisting of the first
two variables

Let w be the maximum age. The system in proportions takes the form

As we are only considering S and /, we have x + y = 1 and the system reads
(0 + 0a)y(t,a) = (1 — y)(—(a)y + A(t, ) (42a)

A(t,a) = h(a) /Ow p(a,a)y(t,a)da (42b)
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Let X = {f € L1(0,w)}. Define

(Af)(a) := _diaf(a)’ f e D(A)

with D(a) = {f € X, f is absolutely continuous, f(0) = 0}, and

F(F)(a) = (1 - F(2)) (—v(a)f(a) +(a) [ pta a’)f(a’)da’)

an operator from X — X
Let Q={f € X, 0<f <1a.e.}. Then (42) takes the form

dy
L Ay + F
— y + F(y)

y(0) =y €Q
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Let

B@) =~ @)@ (P = k@) [ e
We have
v ’ N g dy
(01 + 0a)y = ~2(a)y + h(a) [ plad)y(a)dd = 5 = (B+ Py
0

B + P generates a Cp-semigroup T(t), t > 0, which is eventually uniformly continuous
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The resolvant of B+ P is
RN B+ P)=(S\— /)*1G

with
? ef)\(afa) r(a)
(&= [ o

—A(a—0o) a) o o
(5370 = [ [ e L2 o dof(e)a

[(a) = exp (- /0 a»y(a’)da'>

f(o)do

where we denoted
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Ry is the spectral radius of the operator

o= [ [ fieeto.dar(ede
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Pair formation

p(t,a, a’) proportion of partners of an individual aged a who are aged &
r(t,a) mean number of partners of an individual aged a
T(t, a) total number of individuals aged a
The following conditions must hold
> 0<p<l1

> [ p(t,a,d)da =1

> p(t,a,d)r(t,a)T(t,a) = p(t,a',a)r(t, ) T(t,d)
> r(t,a)T(t,a)r(t,a)T(t,a)=0= p(t,a,da)=0
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# From https://stackoverflow.com/questions/36868287/purl-within-knit-duplt
rmd_chunks_to_r_temp <- function(file){
callr::r(function(file, temp){
out_file = sprintf("../CODE/%s", gsub(".Rnw", ".R", file))
knitr::purl(file, output = out_file, documentation = 1)
}, args = list(file))

}

rmd_chunks_to_r_temp("course-02-metapopulations-and-advanced-models.Rnw")

## [1] "../CODE/course-02-metapopulations-and-advanced-models.R"
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