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At the beginning of the COVID-19 crisis

» | was working under contract with the Public Health Agency of Canada on
COVID-19 importation risk assessment

» Produced daily report with list of countries most likely to next report cases of
COVID-19

» Used ensemble runs of a fitted global deterministic metapopulation model

p. 1 — Why incorporate stochasticity?






» Very very long days (18-20 hours, 7 days a week)

» including a lot of time waiting for the “cluster” to finish

= PHAC gave me money for a cluster (yay Threadrippers!!!)

—> Also thought about whether my model was really adequate as our focus switched
from thinking about movement on a planetary scale to movement within Canadian
provinces

p. 3 — Why incorporate stochasticity?



What is wrong with deterministic models?

» | pointed out yesterday that SARS-CoV-2 is one single realisation of a stochastic
process

» Deterministic models “operate on averages” over a large (— o0) number of
realisations

» If we want to get a better sense of what could happen, not only on average, then we
need to see what can indeed happen

p. 4 — Why incorporate stochasticity?



My new focus — Introductions

» | started thinking in particular about (or importations) of pathogens
into new populations

» Indeed, introductions are an obligatory step in spatial spread

p. 5 — Why incorporate stochasticity?



First piece of evidence

In real life, introductions of pathogens does not always follow the patter

{Ro <1 = — DFE — Ry > 1 = epidemic or — EEP}

p. 6 — Why incorporate stochasticity?



Agi ng d nd isea se Early access date: October 28, 2022

www.aginganddisease.org http://dx.doi.org/10.14336/AD.2022.0820

Short Communication

SARS-CoV-2 in Nursing Homes: Analysis of Routine
Surveillance Data in Four European Countries

Tristan Delory"*", Julien Arino?, Paul-Emile Hay*, Vincent Klotz*, Pierre-Yves Boélle!

! Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique, IPLESP, F-75012,
Paris, France. *Centre Hospitalier Annecy Genevois, France. *Department of Mathematics, University of
Manitoba, Winnipeg, Manitoba, Canada. *Groupe Colisee.



Table 1. Effect of vaccination scaling-up on the probability of successful viral introduction.

Before vaccination 94 (69.1%) 311 (85.0%) Ref

January 15 to January 31 12 (8.8%) 37 (10.1%) 0.89 042 -1.92 0.770
February 01 to February 15 17 (12.5%) 14 (3.8%) 0.23 0.10-0.52 <0.001
February 16 to February 28 13 (9.6%) 4(1.1%) 0.08 0.02-0.29 <0.001

* Adjusted on study period, country, staffing ratio, cumulative attack rate at onset of introduction, and number of PCR per
1000-residents or 1000-staff members, at onset of introduction, and nursing home maximal capacity.



Second piece of evidence

The start of an outbreak can be extremely slow, with very few cases for quite a while

p. 9 — Why incorporate stochasticity?
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Why this is relevant

Far from the only reason, but as an example: Canada has remote/isolated communities
that are vulnerable to introductions of pathogens

p. 11 — Why incorporate stochasticity?
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Northern Manitoba chiefs call for immediate
federal action on health-care crisis

Recent deaths linked to inadequate medical care include mother of 5 from Manto Sipi
Cree Nation, chief says

CBC News - Posted: Apr 03, 2023 3:20 PM CDT | Last Updated: April 3, 2023




'A lengthy process to get help here'

Wasagamack is one of four First Nations communities that make up Island Lake, an
area in northeastern Manitoba dotted with hundreds of small islands.

Island Lake has a population of at least 15,000, according to Scott Harper, the grand
chief of Anisininew Okimawin, which represents the four communities.

Despite having a population roughly the size of Thompson, and having diabetes and
hospitalization rates well above provincial averages, |Island Lake has no hospital of its
own. The region is accessible only by air, boat and an unreliable winter road.

The nursing station in Wasagamack First Nation, which has about 2,300 people,
according to federal government data, typically operates short-staffed, with only two
or three of five registered nurses working on any given rotation and a fly-in doctor

who comes weekly.



For First Nation and Métis Communities

describes a geographical area where a community is located over 350 km
from the nearest service centre having year-round access by land and/or water
routes normally used in all weather conditions

means a geographical area that has scheduled flights and good telephone
service, but is without year-round access by land and/or water normally used in all
weather conditions

means a geographic area that has neither scheduled flights nor
year-round access by land and/or water routes normally that can be used in all
weather conditions, irrespective of the level of telephone and radio service available

p. 16 — Why incorporate stochasticity?



For Inuit communities

Inuit Communities to be referred to as , not remote and isolated
communities to respect the unique language and culture of Inuit regions, as well as the
common challenges in social determinants of health, access to care, and infrastructure

found across all Inuit communities

p. 17— Why incorporate stochasticity?



MB remote communities

are communities in Manitoba that do not have per-
manent road access (i.e., no all-weather road), are more than a four-hour
drive from a major rural hospital (and a dialysis unit), or have rail or fly-in
access only. This includes Norway House, Lynn Lake, Leaf Rapids, Gillam,
and Cross Lake. If most communities in a health district are designated as
"remote”, the entire district is designated as "remote”. In Manitoba, remote
districts include:

» Northern Health Region: NO23, NO13, NO25, NO16, NO22, NO26,
NO28, NO31, and
» Interlake-Eastern Health Region: IE61.

Chartier M, Dart A, Tangri N, Komenda P, Walld R, Bogdanovic B, Burchill C, Koseva I,
McGowan K, Rajotte L. Care of Manitobans Living with Chronic Kidney Disease. Winnipeg,
MB. Manitoba Centre for Health Policy, December 2015

p. 18 — Why incorporate stochasticity?






Travel to/from remote or isolated communities
How do you think this compares to travel in non-remote/isolated communities ?

Residence time (the lake ecology version): theoretic time an average water or
comparable molecule spends in a lake, considering inflow into and outflow from the lake

Think of residence times in these communities: what is the average time a person
spends in a remote or isolated community before leaving it?

The is the total number of trips inbound into and
outbound from location over a duration of time (1 month here) divided by the normal
population in the location

p. 20 — Why incorporate stochasticity?



Residence time (months)

2 3 4 5 6

1

Residence times in months

YYZ
YWG
YXY
YRS
XTL



The paradox of travel to/from remote/isolated communities

Travel volumes small but movement rates high

ICs are highly connected to the urban centre(s) they are subordinated to

Further reinforced in Winnipeg by urban indigenous population (102,075 or 12.45% of
metro population), meaning many family connections exist

p. 22 — Why incorporate stochasticity?
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Stochasticity in deterministic models
Distributions of times to events
Two “extreme’, distributions and a nicer one
A simple cohort model with death
A possible fix to the exponential distribution-issae
Sojourn times in an SIS disease transmission-model
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See in particular the work of Horst Thieme

If one considers time of sojourn in compartments from a more detailed perspective, one
obtains integro-differential models

We use here continuous random variables. See chapters 12 and 13 in Thieme's book
for arbitrary distributions

p. 23 — Stochasticity in deterministic models


https://scholar.google.ca/citations?user=o7R6ZHMAAAAJ
https://press.princeton.edu/books/paperback/9780691092911/mathematics-in-population-biology

Time to events

We suppose that a system can be in two states, A and B
> At time t = 0, the system is in state A

» An event happens at some time t = 7, which triggers the switch from state A to
state B

Let us call T the random variable
“time spent in state A before switching into state B”

p. 24 — Stochasticity in deterministic models



The states can be anything:
> A: working, B: broken
> A: infected, B: recovered
> A: alive, B: dead
> ...

We take a collection of objects or individuals that are in state A and want some law for
the of the times spent in A, i.e., a law for T

For example, we make light bulbs and would like to tell our customers that on average,
our light bulbs last 200 years...

We conduct an number of experiments, and observe the time that it takes, in
every experiment, to switch from A to B

p. 25 — Stochasticity in deterministic models



time

p. 26 — Stochasticity in deterministic models



A distribution of probability is a model

From the sequence of experiments, we deduce a model, which in this context is called
a probability distribution

We assume that T is a continuous random variable

p. 27 — Stochasticity in deterministic models



Probability density function

Since T is continuous, it has a continuous probability density function f

> £>0
> [T f(s)ds =1
> Pa< T <b)=[PF(t)dt

f(t)

p. 28 — Stochasticity in deterministic models



Cumulative distribution function (c.d.f.)

The

is a function F(t) that
characterizes the distribution of T,
and defined by

()

S

F(s)=P(T <s) = / f(x)dx

—00

p. 29 — Stochasticity in deterministic models



Survival function

Another characterization of the distribution of the random variable T is through the
(or ) function

The survival function of state A is given by
S(t)=1—-F(t)=P(T > t) (1)

This gives a description of the of a system in a particular state (the time
spent in the state)

S is a nonincreasing function (since S =1 — F with F a c.d.f.), and S(0) =1 (since T
is a nonnegative random variable)

p. 30 — Stochasticity in deterministic models
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The T in state A is given by

= E(T) = /OOO () dt

Since lim;_,o tS(t) = 0, it follows that
T = / S(t)dt
0

1 o0
S(to)/o tf(t+ to)dt

S(t) —S(a) = P{survive during (a, t) having survived until a}

A t o

p. 32 — Stochasticity in deterministic models



Hazard rate

The (or ) is
. S(t) - S(t+ At
o) = fim, =
o BT <t+DHT > 1)
At—0 At
_ ()
- S()

It gives probability of failure between t and At, given survival to t.
We have

h(t) = —% InS(t)

p. 33 — Stochasticity in deterministic models
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Competing risks

Suppose now that the system starts in state A at time t = 0 and that depending on
which of the two events &; or &, takes place first, it switches to state B; or By,
respectively

Consider the random variables T4, time spent in state A (or sojourn time in A), Tag,,
time before switch to By and Tag,, time before switch to B,

If we consider state A, we cannot observe the variables Typ, or Tap,. What is
observable is the sojourn time in A

T/Zk\ = min (TABp TABQ)

(where * indicates that a quantity is observable)

p. 35 — Stochasticity in deterministic models



Failure rate by type of event

We have two (or more) types of events whose individual failure rates have to be
accounted for

. P(T<t+At,S=S5|T >t)
P = dimg A

where P(T <t + At,S = §;|T > t) is the probability of failure due to cause S;
(j=1,2ici), i.e., S is a discrete r.v. representing the event that is taking place

p. 36 — Stochasticity in deterministic models



By the law of total probability, since only one of the event can take place, if there are n
risks, then

h(t) = hi(t)
i=1

or, identically,

S(t) =exp | — tz;zlhj(s) ds
- )

p. 37 — Stochasticity in deterministic models



As a consequence, suppose a process is subject to two competing exponential risks
with respective distributions with parameters #; and 6,

Then the mean sojourn time in the initial state before being affected by one of the two

risks is
1

01+ 02

p. 38 — Stochasticity in deterministic models
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The exponential distribution

The random variable T has an distribution if its probability density

function takes the form
0 ift<0
f(t) = ’
(t) {ee“ if t >0,

with # > 0. Then the survival function for state A is of the form S(t) = e~%, for
t > 0, and the average sojourn time in state A is

e 1
T= / e ftdt = =
0 o

p. 39 — Stochasticity in deterministic models



Particularities of the exponential distribution

The standard deviation of an exponential distribution is also 1/6. When estimating 6,
it is impossible to distinguish the mean and the standard deviation

The exponential distribution is . its conditional probability obeys
P(T>s+t|T>s)=P(T>t), Vs, t>0

The exponential and geometric distributions are the only memoryless probability
distributions

The exponential distribution has a constant hazard function h(t) = 6

p. 40 — Stochasticity in deterministic models
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The Dirac delta distribution

If for some constant w > 0,

1, 0<t<w
S(t):{O w<t

meaning that T has a Dirac delta distribution J,,(t), then the average sojourn time is

7':/ dt = w
0

with standard deviation 0 =0

p. 42 — Stochasticity in deterministic models



The Gamma distribution

Rv. X is distributed (X ~ T'(k, 6)) with k and
0 (or B =1/60) (all positive) if its probability density function takes
the form g
x""re e
f(x; k,0) = ———1

where x > 0 and I is the Euler Gamma function, defined for all z € C s.t. Re (z) >0

by
“+oo
r:zr—>/ 7 letdt
0

p. 43 — Stochasticity in deterministic models



Properties of the Gamma distribution

Mean k@, variance k62

Survival function

where

is an incomplete Gamma function

p. 44 — Stochasticity in deterministic models
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A model for a cohort with one cause of death
Consider a of individuals born at the same time, e.g., the same year

> At time t = 0, there are initially Ny > 0 individuals
» All causes of death are compounded together

» The time until death, for a given individual, is a random variable T, with
continuous probability density distribution f(t) and survival function S(t)

N(t) the cohort population at time t > 0

N(t) = NoS(t)

S(t) proportion of initial population still alive at time t, so NpS(t) number in the
cohort still alive at time t

p. 46 — Stochasticity in deterministic models



Case where T is exponentially distributed

Suppose that T has an exponential distribution with mean 1/d (or parameter d),
f(t) = de~. Then the survival function is S(t) = e~ 9, and (4) takes the form

N(t) = Noe™ (5)

Now note that

with N(0) = Np.

= The ODE N’ = —dN makes the assumption that the life expectancy at birth is
exponentially distributed

p. 47 — Stochasticity in deterministic models



Survival function, S(t) = P(T > t), for an exponential distribution with mean 80 years
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Case where T has a Dirac delta distribution

Suppose that T has a Dirac delta distribution at t = w, giving the survival function

1, 0<t<
S(t):{’ -
0, t>w

Then (4) takes the form

No, 0<t<w
N(t) = 6
(0 {O’ =t ©

All individuals survive until time w, then they all die at time w

Here, N/ = 0 everywhere except at t = w, where it is undefined

p. 49 — Stochasticity in deterministic models



Survival function, S(t) = P(T > t), for a Dirac distribution with mean 80 years
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Survival for the exponential distribution
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Issues with the exponential distribution

» Survival drops quickly
» Survival continues way beyond the mean

Acceptable if what matters is the average duration of sojourn in a compartment (e.g.,
long term dynamics)

More iffy if one is interested in short-term dynamics

» Exponential distribution with parameter 6 has same mean and standard deviation
1/, i.e., a single parameter controls mean and dispersion about the mean

p. 52 — Stochasticity in deterministic models



Exponential distributions are “bad” but also cool

Xi and X3 2 i.i.d. (independent and identically distributed) r.v. with parametres 6;
and 6. Then the probability density function of the r.v. Z = X1 + X5 is given by the
convolution

fz(z) = /OO fxl(Xl)fXQ(Z — Xl) Xm

—00

—/ 916—91x192e—92(z—x1)dxl
0

= 019267922 /Z 6(02701))(1 dxy
0

0102 —61 —02 i
2 e ®?) ifh #6
_ 92 — 01 (e e ) | 1 75 2

9226792 if 01 =0, =:0

p. 53 — Stochasticity in deterministic models



The tool we use

Theorem 1

Let X; be independent exponentially distributed random variables with parameter &
and Y =311 X;

Then the random variable Y ~ E(n, &), an Erlang distribution with shape parameter n
and scale parameter £

(Erlang distribution: Gamma distribution with integer shape parameter)

p. 54 — Stochasticity in deterministic models



Consequences for compartmental models
If n compartments are traversed successively by individuals, with each compartment
having an outflow rate of 1/£ (or a mean sojourn time of &), then the time of sojourn

from entry into the first compartment to exit from the last is Erlang distributed with
mean E(Y) = n¢ and variance Var(Y) = ng?

©

L T J

Average sojourn time 1/p

eX1 eXo eXn—2 eXn-1 eXn
° G T g

I |
I 1
Average sojourn time N /=

| have a Shiny app for this :)

p. 55 — Stochasticity in deterministic models


https://daytah-or-dahtah.ovh:3838/Erlang_shiny/

Example: EVD incubation periods

Consider the incubation period for Ebola Virus Disease. During the 2014 EVD crisis in
Western Africa, the WHO Ebola Response Team estimated incubation periods in a
2015 paper

Table S2 in the Supplementary Information in that paper gives the best fit for the
distribution of incubation periods for EVD as a Gamma distribution with mean 10.3
days and standard deviation 8.2, i.e., ne = 10.3 and ¢y/n = 8.2

From this, ¢ = 8.22/10.3 ~ 6.53 and n = 10.3%/8.22 ~ 1.57. However, that is a
Gamma distribution

p. 56 — Stochasticity in deterministic models



Switching to a compartmental model approach

To use multiple compartments to better fit residence times, we need to find the closest
possible Erlang distribution to this Gamma distribution

= compute RSS errors between data points generated from the given Gamma
distribution and an Erlang

error_Gamma <- function(theta,shape,t,d) {
test_points <- dgamma(t, shape = shape, scale = theta)
ls_error <- sum((d-test_points)~2)
return(ls_error)

}

p. 57 — Stochasticity in deterministic models



optimize_gamma <- function(t,d) {
max_shape <- 10
error_vector <- mat.or.vec(max_shape,1)
scale_vector <- mat.or.vec(max_shape,1)
for (i in 1:max_shape) {
result_optim <- try(optim(par = 3,
fn = error_Gamma,
lower = 0,
method = "L-BFGS-B",
shape = 1,
t =t,
d =4,
TRUE)
if (!inherits(result_optim,"try-error")) {
error_vector[i] <- result_optim$value
scale_vector[i] <- result_optim$par

p. 58 — Stochasticity in deterministic models



} else {
error_vector[i] <- NaN
scale_vector[i] <- NaN

}
}

result_optim <- data.frame(seq(l,max_shape),

scale_vector,

error_vector)
colnames(result_optim) <- c("shape","scale","error")
result_optim <- result_optim[complete.cases(result_optim),]
return(result_optim)

p. 59 — Stochasticity in deterministic models



time_points <- seq(0,60)

data_points <- dgamma(time_points, shape = 1.57,
scale = 6.53)

# Run the minimization

optim_fits <- optimize_gamma(time_points,data_points)

# Which is the best Erlang to fit the data

idx_best <- which.min(optim_fits$error)
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We find the best fit below, which is obtained using 2 compartments

e Data
—— Best Erlang fit
©O
O_ —
o
Iy
5 2
=1 o
o
2
w
N
Q —]
o
o
o
<}
T T T T T T T
0 10 20 30 40 50 60
Days
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An SIS model

Hypotheses

» Individuals typically recover from the disease

» The disease does not confer immunity

» There is no birth or death (from the disease or natural)
= Constant total population N = N(t) = S(t) + /(t)

» Infection is of type
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Recovery

» Traditional models suppose that recovery occurs with rate constant ~

» Here, of the individuals that become infective at time ty, a fraction S(t — to)
remain infective at time t > ty

» = For t >0, S(t) is a survival function. As such, it verifies S(0) =1 and S is
nonnegative and nonincreasing
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Model for infectious individuals

Since N is constant, S(t) = N — I(t) and we need only consider the following equation
(where S is used for clarity)

I(t) = /o(t)+/0tﬁs(”l)v’(”)5(t— u)du (8)

» Ip(t) number of individuals who were infective at time t = 0 and still are at time t
» Iy(t) is nonnegative, nonincreasing, and such that lim,_, lo(t) =0

» S(t — u) proportion of individuals who became infective at time u and who still
are at time t
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Expression under the integral

Integral equation for the number of infective individuals:

t)—i—/ g\ = Hu))itu) ’(” MW g — wydu (8)
The term N |
SN g,

» B(N — I(u))I(u)/N is the rate at which new infectives are created, at time u

» multiplying by S(t — u) gives the proportion of those who became infectives at
time u and who still are at time t

Summing over [0, t] gives the number of infective individuals at time ¢
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Case of an exponentially distributed time to recovery

Suppose S(t) such that sojourn time in the infective state has exponential distribution
with mean 1/, i.e., S(t) = et

Initial condition function Ip(t) takes the form
/0(1.') = /0(0)67’}4

with Ip(0) the number of infective individuals at time t = 0. Obtained by considering
the cohort of initially infectious individuals, giving a model such as (4)

Equation (8) becomes

() = lp(0)e " + / 8 N = 1)) s (e-u) (9)
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Taking the time derivative of (9) yields

Il(t) = _/YIO(O)ei’yt B fy/ot BUV_I(/\;J))I(U)Q'Y(tu)dU
=100

= — </0 e 7t / B ))I(u )e 'Y(t”)du>

+5(N - /,E,t))

SPUEICITC I

This is the classical logistic type ordinary differential equation (ODE) for / in an SIS
model without vital dynamics (no birth or death)
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Case of a step function survival function

Consider case where the time spent infected has survival function

1, 0<t<uw,
S(t):{’ -
0, t>w.

i.e., the sojourn time in the infective state is a constant w > 0

In this case (8) becomes
I(t) = Ib(t) + /ti B(N_I(l\;l))l(u)du. (10)

Here, it is more difficult to obtain an expression for Ip(t). It is however assumed that
Io(t) vanishes for t > w
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When differentiated, (10) gives, for t > w,

(V= 1(t))/(t) _ﬁ(N— I(t —w))I(t —w)

(1) = Iy(e) + -

Since Ip(t) vanishes for t > w, this gives the delay differential equation (DDE)

(N —1I(t —w))I(t —w)‘

_/8 N
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Model structure
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Assumptions on S

S(t) is a nonnegative and nonincreasing function with S(0) = 1, and such that
Jo~ S(u)du is positive and finite

So S(t) is a survival function
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The SIS model with vaccination

PO _ 3(s(e) + oV(E)I(2)  (d+ )10 (112)
V(t) = Vo(t) + / t(ng(u) + ad)S(t — u)e~d(t=we=oB [ 1) g, (11b)
0

» «ad proportion of vaccinated newborns

» $S(u) proportion of vaccinated susceptibles

» S(t — u) fraction of the proportion vaccinated still in the V class t — u time units
after going in

» e~ 9(t=1) fraction of the proportion vaccinated not dead due to natural causes

t
> e 98J, 104 fraction of the proportion vaccinated not gone to the infective class
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Reduction of the system using specific S(t) functions

» The distribution of waning times being exponential leads to an ODE system

» S(t) originating in a Dirac distribution leads to a discrete DDE model
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Be aware (beware?) of what's under the hood

ODEs and discrete-delay DDEs are fine, but they hide some pretty strong assumptions

If you are using an ODE for an endemic model, fine: you are typically working with
t — oo and the ODE "uses” the mean of your parameter

If, on the other hand, you are using an ODE to assess behaviour for times that are not
too different from the mean of your parameters, then beware

Discrete delays make the assumption that every single individual in your population has
the same sojourn time if whatever compartment is being applied delay to... You may

want to think about distributed delays or other mechanisms to compensate for this

You may want to use a different hammer
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From discrete to continuous time
Discrete-Time Markov Chains (DTMCs)

A system transitions between states at fixed, discrete time steps (n =0,1,2,...)
» The future depends only on the present state (Markov Property)

» Governed by a transition probability matrix P, where P;; is the probability of
moving from state / to j in one step

Continuous-Time Markov Chains (CTMCs)

A system can transition between states at any point in time
> Time spent in a state is a continuous random variable

» The “holding time” in any state /i follows an exponential distribution
parameterised by an exit rate g;

» This is a direct consequence of the Markov Property being applied to continuous
time (exponential is only continuous distribution that is “memoryless”)
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Transition rates

Dynamics of a CTMC defined by transition rates, not probabilities

Definition 2 (Transition Rates)

For two states i # j, the rate gj; > 0 is the instantaneous rate of transition from state
i to state j

» For a small time interval At, the probability of transitioning from / to j is
approximately g;jAt

> Total from state i is g; = Zﬁéi qij

» Time spent in state / is an exponential random variable T; ~ E(q;)
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The generator matrix

Collect all transition rates into a single matrix @

> Off-diagonal: Q; = gjj for i # j (The rate of going from i to j)

> Diagonal: Q;j = —q; = —>_;; gj- (The negative of the total exit rate from /)
A key property is that all rows of Q sum to zero: Zj Qi =0.
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Kolmogorov equations

Let P(t) be the matrix where Pj(t) = P(X(t) = j|X(0) = i). How does P(t) evolve
over time?

Kolmogorov forward equations

Describes rate of change of probability of ending up in a target state j

d
2P(t) = P(1)Q

In element form:

Pi(t) = Pul(t)Qy
k
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Solution to the KFE

The solution is the matrix exponential

P(t) =

k=0

The generator matrix @ “generates” the process'’s evolution

p. 80 — Continuous time Markov chains
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Converting your compartmental ODE model to CTMC
Easy as 7 :)
» Compartmental ODE model focuses on flows into and out of compartments
» ODE model has as many equations as there are compartments
» Compartmental CTMC model focuses on transitions

» CTMC model has as many transitions as there are arrows between (or into or out
of ) compartments
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ODE to CTMC : focus on different components

ODE :
_BSI +3SI
,,,,, ““ -
AT - \_/‘
+1 —l P
focué focvvus

p. 82 — Continuous time Markov chains



SIS without demography

Transition Effect Weight Probability
/
S—5—-1,1—= 141 new infection BSI 55??/")’/
5

S—5+1,1—=1-1

recovery of an in- 1 -
fectious B3I+l

States are S,/
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SIS with demography

Transition Effect Weight Probability

S§—>5+1 birth of a suscepti- b b+d(5+,/)°+/35,+7,
ble

§—55-1 death of a suscep- dsS b+d(5+7)5+ﬁ5,+w
tible

S - S—1,1 — newinfection 58Sl b+d(5ﬁ)sjrﬁ51+wl

I+1

| —1-1 death of an infec- di b+d(5+,‘;l+65,+7/
tious

S —S+1, 1 — recovery of an in- ~I b+d(5+7)l+651+fyl

-1 fectious

States are S,/
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Kermack & McKendrick model

Transition Effect Weight Probability
/
S—+S—1,1—14+1 new infection BSI ﬁSigflwl
~

|—-1-1, R—R+1

recovery of an in- 1 -
fectious B3I+l

States are S, /I, R
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Gillespie's algorithm

» A.k.a. the stochastic simulation algorithm (SSA)

» Derived in 1976 by Daniel Gillespie

» Generates possible solutions for CTMC

P> Extremely simple, so worth learning how to implement; there are however
packages that you can use (see later)
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Gillespie's algorithm

Suppose system has state x(t) with initial condition x(t9) = xo and propensity
functions a; of elementary reactions

set t < to and x(t) < xo

while t < tf

- & 2ai(x(1)

- Draw 7¢ from T ~ £(&;)

- Draw (; from U([0, 1]) .

- Find r, smallest integer s.t. > _; ak(x(t)) > (¢ 3; aj(x(t)) = Ceée
- Effect the next reaction (the one indexed r)

- t<—t+T1:
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Drawing at random from an exponential distribution

If you do not have an exponential distribution random number generator.. We want 7;
from T ~ £(&;), i.e., T has probability density function

f(x,&) = &ee " Lo

Use cumulative distribution function F(x, &) = [~ f(s, &) ds

F(x, &) = (1 — e ) Lo
which has values in [0,1]. So draw ¢ from 4([0, 1]) and solve F(x,&:) = ¢ for x
Flag) =Cel-e ™ =¢
Set =1-(
e &x=—In(1-)

(-9
&t

=X
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Gillespie's algorithm (SIS model with only | eq.)

set t < tg and I(t) < I(tp)

while t < tf

L e BPF— )ity

- Draw 7 from T ~ E£(&:)

- v [P =)0 & &

- Draw (; from U([0, 1])

- Find pos such that vpos—1 < (¢ < Vpos

- switch pos
- 1: New infection, I(t + 7¢) = I(t) + 1
- 2: End of infectious period, I(t 4+ 7¢) = I(t) — 1

-t t4 7

. 89 - Continuous time Markov chains



Sometimes Gillespie goes bad

» Recall that the inter-event time is exponentially distributed
> Critical step of the Gillespie algorithm:

> ¢ + weight of all possible events (propensity)
» Draw 7 from T ~ E(&;)

» So the inter-event time 7; — 0 if & becomes very large for some t

» This can cause the simulation to grind to a halt
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Example: a birth and death process

» Individuals born at per capita rate b
» Individuals die at per capita rate d

P> Let's implement this using classic Gillespie

(See simulate_birth death CTMC.R on course GitHub repo)
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https://raw.githubusercontent.com/julien-arino/3MC-course-epidemiological-modelling/main/CODE/simulate_birth_death_CTMC.R

Gillespie's algorithm (birth-death model)

.92

set t < tg and N(t) < N(tp)
while t < tf
- & (b+d)N(1)
- Draw 7 from T ~ E£(&:)
- v [BN(), €] /&4
- Draw (; from U([0, 1])
- Find pos such that vpos—1 < (¢ < Vpos
- switch pos
- 1. Birth, N(t 4+ 7¢) = N(t) + 1
- 2: Death, N(t+ 1) = N(t) —1
-t t4 7
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birth_death_CTMC = function(b = 0.01, d = 0.01) {
t_.0 =0 # Inttial time
N_O = 100 # Initial population

# Vectors to store time and state. Initialise with initial condition.
t =1t_0
N = N_O

t_f = 1000 # Fanal time

# Track the current time and state (could just check last entry in t
# and N, but will take more operations)
t_curr = t_0
N_curr = N_O
while (t_curr<=t_f) {
xi_t = (b+d)*N_curr

p. 93 — Continuous time Markov chains



if (N_curr == 0) {
break # Avoid error with rexp when zi_t = 0
}
tau_t = rexp(l, rate = xi_t)
t_curr = t_curr+tau_t
v = c(b*N_curr, xi_t)/xi_t
zeta_t = runif(n = 1)
pos = findInterval(zeta_t, v)+1
switch(pos,

{ N_curr = N_curr+l}, # Birth
{ N_curr = N_curr-1}) # Death
N = c(N, N_curr)
t = c(t, t_curr)

¥
plot(t, N, type = "1",
xlab = "Time", ylab = "Population size",
main = paste("Birth-death CTMC with b =", b, "and d =", d))
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b=0.03& d=0.01...

We want to run the function with these parameter values but | know in advance this
will not work well, so let’s tweak the function a bit. We add a test:

if (t[length(t)]1-t[(length(t)-1)]1 < 1e-8) {
# If the time step is too small, stop the simulation
message ( )
break
X
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60000
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Last one did not go well

» Wanted 1000 time units (days?)

» Interrupted at 346.4988707 because of the test
(Slide with b < d: sim stopped because the population went extinct, | did not
stop it!)

> At stop time

> N = 8.8804 x 10*
» |N| = 177611 (and |t| as well, of course!)
> time was moving slowly

tail(diff (results$t))

## [1] 3.017042e-04 1.410290e-04 4.581595e-04 5.890492e-04 1.910247e-04
## [6] 3.834600e-09
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Inter—event time

Inter—event time for birth—death CTMC with b=0.03 and d=0.01
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Tau-leaping (and packages) to the rescue!

» Approximation method (compared to classic Gillespie, which is exact)
» Roughly: consider " groups” of events instead of individual events

» Good news: GillespieSSA2 and adaptivetau, two standard packages for SSA
in R, implement tau leaping
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library(GillespieSSA2)

Pop <- 1000

I 0<=-2

IC <= c(S = (Pop-I_0), I = I_0)
gamma = 1/3

# RO=beta/gamma*S0, so beta=RO*gamma/SO

beta = as.numeric(1l.5*gamma/IC["S"])

params <- c(gamma = gamma, beta = beta)

t_f = 100

reactions <- list(
reaction("beta*xS*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)

set.seed (NULL)
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sol <- ssa(
initial_state = IC,
reactions = reactions,
params = params,
method = ssa_exact(),
final_time = t_f,
)
plot(sol$time, sol$state[,"I"], type = "1",
xlab = "Time (days)", ylab = "Number infectious")

p. 104 — Continuous time Markov chains
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Parallelisation

To see multiple realisations: good idea to parallelise, then interpolate results. Write a
function, e.g., run_one_sim that .. runs one simulation

On the GitHub repo for the course, see
> SIS-CTMC-parallel.R
> SIS-CTMC-parallel-multiple-RO.R

p. 106 — Continuous time Markov chains


https://raw.githubusercontent.com/julien-arino/3MC-2024-02-Potch/main/julien/CODE/SIS-CTMC-parallel.R
https://raw.githubusercontent.com/julien-arino/3MC-2024-02-Potch/main/julien/CODE/SIS-CTMC-parallel-multiple-R0.R

library(parallel)
run_one_sim = function(params) {
IC <- c(S = (params$Pop-params$I_0), I = params$I_O0)
params_local <- c(gamma = params$gamma, beta = params$beta)
reactions <- list(
# propensity function effects mame for reaction
reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")
)
set.seed(NULL)
sol <- ssa(
initial_state = IC,
reactions = reactions,
params = params_local,
method = ssa_exact(),
final_time = params$t_f,

p. 107 - Continuous time Markov chains



log_firings = TRUE # This way we keep track of events
)
# Interpolate result (just I will do)
wanted_t = seq(from = 0, to = params$t_£f, by = 0.01)
sol$interp_I = approx(x = sol$time, y = sol$state[,"I"], xout = wanted
names (sol$interp_I) = c("time", "I")
# Return result
return(sol)
}
nb_cores <- detectCores()
if (nb_cores > 124) {
nb_cores = 124
}
cl <- makeCluster(nb_cores)
clusterEvalQ(cl,{
library(GillespieSSA2)

1)

p. 108 — Continuous time Markov chains



gamma = 1/3
RO = 1.5
# RO=beta/gamma*S0, so beta=R0*gamma/SO
beta = as.numeric(RO*gamma/IC["S"])
t_f = 100
params <- list(gamma = gamma, beta = beta,
Pop = 1000, I_0 = 2, RO = RO,
t_f = 100, nb_sims = 50)
clusterExport(cl,
c("params",
"run_one_sim"),
envir = .GlobalEnv)
SIMS = parLapply(cl = cl,
X = 1:params$nb_sims,
fun = function(x) run_one_sim(params))
stopCluster (cl)
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Benefit of parallelisation

Run the parallel code for 100 sims between ‘tictoc::tic()" and ‘tictoc::toc()’, giving
'66.958 sec elapsed’, then the sequential version
tictoc::tic()
SIMS = lapply(X = 1:params$number_sims,
FUN = function(x) run_one_sim(params))
tictoc::toc()

which gives '318.141 sec elapsed’ on a 6C/12T Intel(R) Core(TM) i9-8950HK CPU @
2.90GHz (4.75x faster) or '12.067 sec elapsed’ versus ‘258.985 sec elapsed’ on a
32C/64T AMD Ryzen Threadripper 3970X 32-Core Processor (21.46x faster !)

p. 111 — Continuous time Markov chains



Continuous time Markov chains
Continuous time Markov chains
ODE and-CTMC
Simulating CTMC (in theory)
Simulating CTMC (in practice)
Parallelising your code in‘R
Example — Stochastic phase of an epidemic
Value of travel control measures



Society for

Bulletin of Mathematical Biology (2022) 84:128 Mathematical

https://doi.org/10.1007/511538-022-01077-5 Biology

ORIGINAL ARTICLE ")
Check for
updates

Effect of Movement on the Early Phase of an Epidemic

Julien Arino’ - Evan Milliken?

Received: 6 July 2021 / Accepted: 29 August 2022 / Published online: 23 September 2022
© The Author(s), under exclusive licence to Society for Mathematical Biology 2022



20k

S0-0}

82-60

12-60

¥1-60

L0-60

1€-80

¥2-80

£1-80

01-80

€080

12-L0

02-20

€1-20

90-20

62-90

2290

S1-90

. 80790

22

20

18

203UapIoU|

© < o =) © © < o~ o

10-90

§2-G0

81-G0

L1-G0

¥0-S0

120

02-¥0

€10

90-¥0

0€-€0

£€2-€0

Date



Investigating outbreak types using a simple CTMC SIS

X(t) = (SA(t), /A(t)>

CTMC X(t) characterized by transitions

Description Transition Rate

Infection  (S%,14) — (SA—1,14+1) pASAA
Recovery (SA, IA) — (SA +1,14 - 1) FAIA

p. 114 — Continuous time Markov chains



Investigating outbreak types using a simple CTMC SIS with a twist
Regular chain of this type has / = 0 as sole absorbing state

We add another absorbing state: if | = I, then the chain has left the stochastic phase
and is in a quasi-deterministic phase with exponential growth

Doing this, time to absorption measures become usable additionally to first passage
time ones

And the question becomes: how long does the chain “linger on” (“stutter”) before it is
absorbed? We define the inter-absorption trajectory as the stochastic phase
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Problem of the value of the upper bound I

> Choose I too small and the stochastic phase will not last long
> Choose | too large and absorption will only be at the DFE

» So, how does one choose I?

> A formula of Whittle (1955)
» Multitype branching process (MTBP)

p. 118 — Continuous time Markov chains
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One last thought for the road

V. Chetail. Crisis without borders: What does international law say about border
closure in the context of Covid-197 Frontiers in Political Science, 2 (12) (2020)

[..] a powerful expression of state’s sovereignty, immigration control provides a
typical avenue for governments to reassure their citizens and bolster a national

sense of belonging, while providing an ideal scapegoat for their own failure or
negligence.
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Why incorporate stochasticity?
Stochasticity in deterministic models
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What is a Branching Process?

The Core Idea

A branching process is a mathematical model for a population where individuals
produce a random number of offspring and then die.

» Think of bacteria splitting, a virus spreading, or even the survival of family
surnames.

> We start with an initial population, Zp.

» Each individual in generation n produces a number of offspring for generation
n+ 1.

» This "number of offspring” is a random variable. All individuals produce offspring
according to the same probability distribution, independently of each other.
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The Galton-Watson Process

Let Z, be the size of the population in generation n. We typically start with Zp = 1.
The population evolves according to the rule:

Zp
Zn—i—l — E Xn,i
i=1

» The term X, ; represents the number of offspring produced by the i-th individual
in generation n.

» The variables { X, ;} are assumed to be independent and identically distributed
(i.i.d.) integer-valued random variables.

» We call their common distribution {p,}?2, the offspring distribution, where
px = P(X = k).

The Fundamental Questions

1. What is the long-term expected size of the population?
2. What is the probability that the population eventually dies out?
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Mean Offspring

The fate of the population hinges on a single parameter: the mean of the offspring
distribution

p=EX]=> k-p
k=0

Expected Population Size

Using the law of total expectation, we find the expected size of the next generation:

Zn
E Xn,i
i=1

Taking the expectation again, we get a simple recurrence:

E[Zp1|Z)]) = E Z,

= Z,E[X] = Zop

E[Zni1] = nE[Z0]
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The Three Regimes of Population Growth

The behavior of E[Z,] = Zyu" suggests three distinct cases:

Subcritical (1 < 1)

E[Z,] — 0. The population
is expected to shrink. It

goes extinct with probability
1.

p. 129 — Branching process approximations of CTMC

Critical (x = 1)
E[Z,] = Zy. The population

is expected to remain stable.

Surprisingly, it still goes
extinct with probability 1.

Supercritical (p > 1)

E[Z,] = oo. The
population is expected to
grow exponentially. It has a
non-zero probability of
surviving forever.



Tool: The Probability Generating Function

To find the extinction probability, we need a powerful tool: the probability generating
function (PGF) of the offspring distribution X.

G(s) = E[s"] = Zpksk for |s| <1
k=0

Key Properties

> G(1) =2 p=1
» The mean can be found from the derivative: G'(1) = >_ kpx = p.

» The PGF of Z, is the n-th iterate of G(s) with itself. If G,(s) is the PGF of Z,,
then Gpi1(s) = G(Gn(s)).
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The Extinction Probability Equation
Let o be the probability of eventual extinction, starting with Zp = 1.

7o = P(population dies out) = nIL>n;o P(Z,=0)

Since P(Z, = 0) = G,(0), and Gp+1(0) = G(G,(0)), in the limit the extinction
probability mp must satisfy the equation:

mo = G(m)

Theorem 3

The extinction probability g is the smallest non-negative solution to the equation
s = G(s).

» If 4 <1, the only solution in [0,1] is s = 1. So my = 1.
» If > 1, there is a unique solution in [0, 1), which is the extinction probability
m < 1.
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From Discrete to Continuous Time

Limitation of Galton-Watson

Generations don't happen in synchronized steps in the real world. Individuals give birth
and die at random times.

This leads us to Continuous-Time Markov Chains (CTMCs).

» The state of the system is the population size, k € {0,1,2,...}.
> Instead of generations, we have transition rates:

> \j: rate of birth when population is size k (moves to k + 1).
> §j: rate of death when population is size k (moves to k — 1).

» Often, we assume these rates are linear: A\, = kA and &, = kd. This means
individuals act independently.
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Branching Process Approximation of a CTMC
The Key Insight

At the beginning of an outbreak (or for a very large population), the dynamics caused
by a single individual are largely independent of others.

This allows us to approximate the start of a CTMC population process with a
branching process.
Example: A Simple Epidemic (SIR Model)

» S: Susceptible, I: Infected, R: Recovered.

P> An infected person meets others at a certain rate. If they meet a susceptible, a
new infection may occur (an "offspring™).

» The infected person recovers (or dies) at another rate, ending their infectious
period.

» Question: How many new infections does a single infected person cause on
average?
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Case Study: The Basic Reproduction Number Rq

Consider a single infected individual in a large population of susceptibles.
» Let 3 be the infection rate (rate of producing " offspring”).
» Let 7 be the recovery rate (rate of "dying”).

The individual's infectious lifetime is an exponential random variable with mean 1/~.
The average number of secondary infections they cause is:

= |

1
Ro = (rate of infection) x (average infectious period) = 3 x — =
v

The Connection

Ro is precisely the mean offspring number p for the embedded branching process
that approximates the start of the epidemic.
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Applying Branching Theory to Epidemics

The fate of the epidemic'’s initial phase is determined by Ro:
» If Rop <1 (u <1): The number of infected individuals is a subcritical or critical
process. The epidemic will die out with probability 1.
» If Rop > 1 (u>1): The process is supercritical. There is a positive probability
that the epidemic takes off and causes a major outbreak.

We can even calculate the probability of a major outbreak! It is 1 — mg, where g is the
extinction probability.

For this simple birth-death infection process, the PGF is G(s) = %ﬂ + /3’%75. Solving
s = G(s) gives the extinction probability:

_a_ 1
B Ro
The probability of a major outbreak is 1 — 1/Ry.

o

p. 135 — Branching process approximations of CTMC



Summary

» Branching Processes model populations with i.i.d. offspring generation.

» The fate of the population is determined by the mean offspring number L.
Extinction is certain if p < 1.

> The extinction probability mg can be calculated as the smallest non-negative
fixed point of the probability generating function G(s).

» The initial stages of many large-scale Continuous-Time Markov Chains can be
approximated by a branching process.

» This allows us to apply the theory to real-world problems, like calculating an
epidemic’s basic reproduction number Rg and its probability of causing a major
outbreak.
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# From https://stackoverflow.com/questions/36868287/purl-within-knit-dupls
rmd_chunks_to_r_temp <- function(file){
callr::r(function(file, temp){
out_file = sprintf("../CODE/%s", gsub(".Rnw", ".R", file))
knitr::purl(file, output = out_file, documentation = 1)
}, args = list(file))

}

rmd_chunks_to_r_temp("course-03-stochastic=aspects.Rnw")

## Error: ! 1in callr subprocess.
## Caused by error in ‘file(con, "r")°‘:

## ! cannot open the connection
p. 137 - Branching process approximations of CTMC
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