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At the beginning of the COVID-19 crisis

▶ I was working under contract with the Public Health Agency of Canada on
COVID-19 importation risk assessment

▶ Produced daily report with list of countries most likely to next report cases of
COVID-19

▶ Used ensemble runs of a fitted global deterministic metapopulation model
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▶ Very very long days (18-20 hours, 7 days a week)

▶ including a lot of time waiting for the “cluster” to finish

=⇒ PHAC gave me money for a cluster (yay Threadrippers!!!)

=⇒ Also thought about whether my model was really adequate as our focus switched
from thinking about movement on a planetary scale to movement within Canadian
provinces

p. 3 – Why incorporate stochasticity?



What is wrong with deterministic models?

▶ I pointed out yesterday that SARS-CoV-2 is one single realisation of a stochastic
process

▶ Deterministic models “operate on averages” over a large (→∞) number of
realisations

▶ If we want to get a better sense of what could happen, not only on average, then we
need to see what can indeed happen
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My new focus – Introductions

▶ I started thinking in particular about introductions (or importations) of pathogens
into new populations

▶ Indeed, introductions are an obligatory step in spatial spread
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First piece of evidence

In real life, introductions of pathogens does not always follow the patter

{R0 < 1 =⇒→ DFE — R0 > 1 =⇒ epidemic or → EEP}
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Second piece of evidence

The start of an outbreak can be extremely slow, with very few cases for quite a while
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Why this is relevant

Far from the only reason, but as an example: Canada has remote/isolated communities
that are vulnerable to introductions of pathogens
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For First Nation and Métis Communities

Remote describes a geographical area where a community is located over 350 km
from the nearest service centre having year-round access by land and/or water
routes normally used in all weather conditions

Isolated means a geographical area that has scheduled flights and good telephone
service, but is without year-round access by land and/or water normally used in all
weather conditions

Remote-Isolated means a geographic area that has neither scheduled flights nor
year-round access by land and/or water routes normally that can be used in all
weather conditions, irrespective of the level of telephone and radio service available

p. 16 – Why incorporate stochasticity?



For Inuit communities

Inuit Communities to be referred to as Inuit Nunangat, not remote and isolated
communities to respect the unique language and culture of Inuit regions, as well as the
common challenges in social determinants of health, access to care, and infrastructure
found across all Inuit communities

p. 17 – Why incorporate stochasticity?



MB remote communities

Remote communities are communities in Manitoba that do not have per-
manent road access (i.e., no all-weather road), are more than a four-hour
drive from a major rural hospital (and a dialysis unit), or have rail or fly-in
access only. This includes Norway House, Lynn Lake, Leaf Rapids, Gillam,
and Cross Lake. If most communities in a health district are designated as
”remote”, the entire district is designated as ”remote”. In Manitoba, remote
districts include:

▶ Northern Health Region: NO23, NO13, NO25, NO16, NO22, NO26,
NO28, NO31, and

▶ Interlake-Eastern Health Region: IE61.

Chartier M, Dart A, Tangri N, Komenda P, Walld R, Bogdanovic B, Burchill C, Koseva I,
McGowan K, Rajotte L. Care of Manitobans Living with Chronic Kidney Disease. Winnipeg,
MB. Manitoba Centre for Health Policy, December 2015
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Travel to/from remote or isolated communities

How do you think this compares to travel in non-remote/isolated communities ?

Residence time (the lake ecology version): theoretic time an average water or
comparable molecule spends in a lake, considering inflow into and outflow from the lake

Think of residence times in these communities: what is the average time a person
spends in a remote or isolated community before leaving it?

The residence time in a location is the total number of trips inbound into and
outbound from location over a duration of time (1 month here) divided by the normal
population in the location
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The paradox of travel to/from remote/isolated communities

Travel volumes small but movement rates high

ICs are highly connected to the urban centre(s) they are subordinated to

Further reinforced in Winnipeg by urban indigenous population (102,075 or 12.45% of
metro population), meaning many family connections exist

p. 22 – Why incorporate stochasticity?
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See in particular the work of Horst Thieme

If one considers time of sojourn in compartments from a more detailed perspective, one
obtains integro-differential models

We use here continuous random variables. See chapters 12 and 13 in Thieme’s book
for arbitrary distributions

p. 23 – Stochasticity in deterministic models
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https://press.princeton.edu/books/paperback/9780691092911/mathematics-in-population-biology


Time to events

We suppose that a system can be in two states, A and B

▶ At time t = 0, the system is in state A

▶ An event happens at some time t = τ , which triggers the switch from state A to
state B

Let us call T the random variable
“time spent in state A before switching into state B”
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The states can be anything:

▶ A: working, B: broken

▶ A: infected, B: recovered

▶ A: alive, B: dead

▶ . . .

We take a collection of objects or individuals that are in state A and want some law for
the distribution of the times spent in A, i.e., a law for T

For example, we make light bulbs and would like to tell our customers that on average,
our light bulbs last 200 years...

We conduct an infinite number of experiments, and observe the time that it takes, in
every experiment, to switch from A to B
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A distribution of probability is a model

From the sequence of experiments, we deduce a model, which in this context is called
a probability distribution

We assume that T is a continuous random variable
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Probability density function

Since T is continuous, it has a continuous probability density function f

▶ f ≥ 0

▶
∫ +∞
−∞ f (s)ds = 1

▶ P(a ≤ T ≤ b) =
∫ b
a f (t)dt

t

f(
t)

a b
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Cumulative distribution function (c.d.f.)

The cumulative distribution
function is a function F (t) that
characterizes the distribution of T ,
and defined by

F (s) = P(T ≤ s) =

∫ s

−∞
f (x)dx

t
f(

t)

b
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Survival function

Another characterization of the distribution of the random variable T is through the
survival (or sojourn) function

The survival function of state A is given by

S(t) = 1− F (t) = P(T > t) (1)

This gives a description of the sojourn time of a system in a particular state (the time
spent in the state)

S is a nonincreasing function (since S = 1− F with F a c.d.f.), and S(0) = 1 (since T
is a nonnegative random variable)

p. 30 – Stochasticity in deterministic models
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The average sojourn time τ in state A is given by

τ = E (T ) =

∫ ∞

0
tf (t)dt

Since limt→∞ tS(t) = 0, it follows that

τ =

∫ ∞

0
S(t)dt

Expected future lifetime:

1

S(t0)

∫ ∞

0
t f (t + t0) dt

S(t)− S(a) = P {survive during (a, t) having survived until a}

= exp

(
−
∫ t

a
h(u)du

)
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Hazard rate

The hazard rate (or failure rate) is

h(t) = lim
∆t→0

S(t)− S(t +∆t)

∆t

= lim
∆t→0

P(T < t +∆t|T ≥ t)

∆t

=
f (t)

S(t)

It gives probability of failure between t and ∆t, given survival to t.

We have

h(t) = − d

dt
lnS(t)
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Competing risks

Suppose now that the system starts in state A at time t = 0 and that depending on
which of the two events E1 or E2 takes place first, it switches to state B1 or B2,
respectively

Consider the random variables TA, time spent in state A (or sojourn time in A), TAB1 ,
time before switch to B1 and TAB2 , time before switch to B2

If we consider state A, we cannot observe the variables TAB1 or TAB2 . What is
observable is the sojourn time in A

T ∗
A = min (TAB1 ,TAB2)

(where ∗ indicates that a quantity is observable)
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Failure rate by type of event

We have two (or more) types of events whose individual failure rates have to be
accounted for

hj(t) = lim
∆t→0

P(T < t +∆t, S = Sj |T ≥ t)

∆t

where P(T < t +∆t,S = Sj |T ≥ t) is the probability of failure due to cause Sj
(j = 1, 2 ici), i.e., S is a discrete r.v. representing the event that is taking place
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By the law of total probability, since only one of the event can take place, if there are n
risks, then

h(t) =
n∑

i=1

hj(t)

or, identically,

S(t) = exp

(
−
∫ t

0

∑
n
j=1hj(s) ds

)
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As a consequence, suppose a process is subject to two competing exponential risks
with respective distributions with parameters θ1 and θ2

Then the mean sojourn time in the initial state before being affected by one of the two
risks is

1

θ1 + θ2

p. 38 – Stochasticity in deterministic models
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The exponential distribution

The random variable T has an exponential distribution if its probability density
function takes the form

f (t) =

{
0 if t < 0,

θe−θt if t ≥ 0,
(2)

with θ > 0. Then the survival function for state A is of the form S(t) = e−θt , for
t ≥ 0, and the average sojourn time in state A is

τ =

∫ ∞

0
e−θtdt =

1

θ
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Particularities of the exponential distribution

The standard deviation of an exponential distribution is also 1/θ. When estimating θ,
it is impossible to distinguish the mean and the standard deviation

The exponential distribution is memoryless: its conditional probability obeys

P(T > s + t | T > s) = P(T > t), ∀s, t ≥ 0

The exponential and geometric distributions are the only memoryless probability
distributions

The exponential distribution has a constant hazard function h(t) ≡ θ

p. 40 – Stochasticity in deterministic models
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The Dirac delta distribution

If for some constant ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

meaning that T has a Dirac delta distribution δω(t), then the average sojourn time is

τ =

∫ ω

0
dt = ω

with standard deviation σ = 0
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The Gamma distribution

R.v. X is Gamma distributed (X ∼ Γ(k , θ)) with shape parameter k and scale
parameter θ (or rate β = 1/θ) (all positive) if its probability density function takes
the form

f (x ; k , θ) =
xk−1e−

x
θ

Γ(k)θk
(3)

where x > 0 and Γ is the Euler Gamma function, defined for all z ∈ C s.t. Re (z) > 0
by

Γ : z 7→
∫ +∞

0
tz−1 e−t dt
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Properties of the Gamma distribution

Mean kθ, variance kθ2

Survival function

S(t) = 1− 1

Γ(k)
γ
(
k ,

t

θ

)
= 1− 1

Γ(k)
γ (k , βt)

where

γ(a, x) =

∫ x

0
ta−1e−tdt

is an incomplete Gamma function

p. 44 – Stochasticity in deterministic models
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A model for a cohort with one cause of death

Consider a cohort of individuals born at the same time, e.g., the same year

▶ At time t = 0, there are initially N0 > 0 individuals

▶ All causes of death are compounded together

▶ The time until death, for a given individual, is a random variable T , with
continuous probability density distribution f (t) and survival function S(t)

N(t) the cohort population at time t ≥ 0

N(t) = N0S(t) (4)

S(t) proportion of initial population still alive at time t, so N0S(t) number in the
cohort still alive at time t

p. 46 – Stochasticity in deterministic models



Case where T is exponentially distributed

Suppose that T has an exponential distribution with mean 1/d (or parameter d),
f (t) = de−dt . Then the survival function is S(t) = e−dt , and (4) takes the form

N(t) = N0e
−dt (5)

Now note that

d

dt
N(t) = −dN0e

−dt

= −dN(t)

with N(0) = N0.

⇒ The ODE N ′ = −dN makes the assumption that the life expectancy at birth is
exponentially distributed

p. 47 – Stochasticity in deterministic models



Survival function, S(t) = P(T > t), for an exponential distribution with mean 80 years
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Case where T has a Dirac delta distribution

Suppose that T has a Dirac delta distribution at t = ω, giving the survival function

S(t) =

{
1, 0 ≤ t ≤ ω

0, t > ω

Then (4) takes the form

N(t) =

{
N0, 0 ≤ t ≤ ω

0, t > ω
(6)

All individuals survive until time ω, then they all die at time ω

Here, N ′ = 0 everywhere except at t = ω, where it is undefined
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Survival function, S(t) = P(T > t), for a Dirac distribution with mean 80 years
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Survival for the exponential distribution
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Issues with the exponential distribution

▶ Survival drops quickly

▶ Survival continues way beyond the mean

Acceptable if what matters is the average duration of sojourn in a compartment (e.g.,
long term dynamics)

More iffy if one is interested in short-term dynamics

▶ Exponential distribution with parameter θ has same mean and standard deviation
1/θ, i.e., a single parameter controls mean and dispersion about the mean

p. 52 – Stochasticity in deterministic models



Exponential distributions are “bad” but also cool

X1 and X2 2 i.i.d. (independent and identically distributed) r.v. with parametres θ1
and θ2. Then the probability density function of the r.v. Z = X1 + X2 is given by the
convolution

fZ (z) =

∫ ∞

−∞
fX1(x1)fX2(z − x1) dx1

=

∫ z

0
θ1e

−θ1x1θ2e
−θ2(z−x1) dx1

= θ1θ2e
−θ2z

∫ z

0
e(θ2−θ1)x1 dx1

=


θ1θ2

θ2 − θ1

(
e−θ1z − e−θ2z

)
if θ1 ̸= θ2

θ2ze−θz if θ1 = θ2 =: θ
(7)

p. 53 – Stochasticity in deterministic models



The tool we use

Theorem 1

Let Xi be independent exponentially distributed random variables with parameter ξ
and Y =

∑n
i=1 Xi

Then the random variable Y ⇝ E (n, ξ), an Erlang distribution with shape parameter n
and scale parameter ξ

(Erlang distribution: Gamma distribution with integer shape parameter)

p. 54 – Stochasticity in deterministic models



Consequences for compartmental models
If n compartments are traversed successively by individuals, with each compartment
having an outflow rate of 1/ξ (or a mean sojourn time of ξ), then the time of sojourn
from entry into the first compartment to exit from the last is Erlang distributed with
mean E (Y ) = nξ and variance Var(Y ) = nξ2

X

X1 X2 Xk XN−1 XN

µX

εX1 εX2
εXN−2 εXN−1 εXN

Average sojourn time N/ε

Average sojourn time 1/µ

I have a Shiny app for this :)
p. 55 – Stochasticity in deterministic models
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Example: EVD incubation periods

Consider the incubation period for Ebola Virus Disease. During the 2014 EVD crisis in
Western Africa, the WHO Ebola Response Team estimated incubation periods in a
2015 paper

Table S2 in the Supplementary Information in that paper gives the best fit for the
distribution of incubation periods for EVD as a Gamma distribution with mean 10.3
days and standard deviation 8.2, i.e., nε = 10.3 and ε

√
n = 8.2

From this, ε = 8.22/10.3 ≃ 6.53 and n = 10.32/8.22 ≃ 1.57. However, that is a
Gamma distribution

p. 56 – Stochasticity in deterministic models



Switching to a compartmental model approach

To use multiple compartments to better fit residence times, we need to find the closest
possible Erlang distribution to this Gamma distribution

=⇒ compute RSS errors between data points generated from the given Gamma
distribution and an Erlang

error_Gamma <- function(theta,shape,t,d) {
test_points <- dgamma(t, shape = shape, scale = theta)

ls_error <- sum((d-test_points)^2)

return(ls_error)

}

p. 57 – Stochasticity in deterministic models



optimize_gamma <- function(t,d) {
max_shape <- 10

error_vector <- mat.or.vec(max_shape,1)

scale_vector <- mat.or.vec(max_shape,1)

for (i in 1:max_shape) {
result_optim <- try(optim(par = 3,

fn = error_Gamma,

lower = 0,

method = "L-BFGS-B",

shape = i,

t = t,

d = d),

TRUE)

if (!inherits(result_optim,"try-error")) {
error_vector[i] <- result_optim$value

scale_vector[i] <- result_optim$par
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} else {
error_vector[i] <- NaN

scale_vector[i] <- NaN

}
}
result_optim <- data.frame(seq(1,max_shape),

scale_vector,

error_vector)

colnames(result_optim) <- c("shape","scale","error")

result_optim <- result_optim[complete.cases(result_optim),]

return(result_optim)

}

p. 59 – Stochasticity in deterministic models



time_points <- seq(0,60)

data_points <- dgamma(time_points, shape = 1.57,

scale = 6.53)

# Run the minimization

optim_fits <- optimize_gamma(time_points,data_points)

# Which is the best Erlang to fit the data

idx_best <- which.min(optim_fits$error)

p. 60 – Stochasticity in deterministic models



We find the best fit below, which is obtained using 2 compartments
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An SIS model
Hypotheses

▶ Individuals typically recover from the disease

▶ The disease does not confer immunity

▶ There is no birth or death (from the disease or natural)
⇒ Constant total population N ≡ N(t) = S(t) + I (t)

▶ Infection is of standard incidence type

p. 62 – Stochasticity in deterministic models



Recovery

▶ Traditional models suppose that recovery occurs with rate constant γ

▶ Here, of the individuals that become infective at time t0, a fraction S(t − t0)
remain infective at time t ≥ t0

▶ ⇒ For t ≥ 0, S(t) is a survival function. As such, it verifies S(0) = 1 and S is
nonnegative and nonincreasing

p. 63 – Stochasticity in deterministic models



Model for infectious individuals

Since N is constant, S(t) = N − I (t) and we need only consider the following equation
(where S is used for clarity)

I (t) = I0(t) +

∫ t

0
β
S(u)I (u)

N
S(t − u)du (8)

▶ I0(t) number of individuals who were infective at time t = 0 and still are at time t
▶ I0(t) is nonnegative, nonincreasing, and such that limt→∞ I0(t) = 0

▶ S(t − u) proportion of individuals who became infective at time u and who still
are at time t

p. 64 – Stochasticity in deterministic models



Expression under the integral

Integral equation for the number of infective individuals:

I (t) = I0(t) +

∫ t

0
β
(N − I (u))I (u)

N
S(t − u)du (8)

The term

β
(N − I (u))I (u)

N
S(t − u)

▶ β(N − I (u))I (u)/N is the rate at which new infectives are created, at time u

▶ multiplying by S(t − u) gives the proportion of those who became infectives at
time u and who still are at time t

Summing over [0, t] gives the number of infective individuals at time t

p. 65 – Stochasticity in deterministic models



Case of an exponentially distributed time to recovery

Suppose S(t) such that sojourn time in the infective state has exponential distribution
with mean 1/γ, i.e., S(t) = e−γt

Initial condition function I0(t) takes the form

I0(t) = I0(0)e
−γt

with I0(0) the number of infective individuals at time t = 0. Obtained by considering
the cohort of initially infectious individuals, giving a model such as (4)

Equation (8) becomes

I (t) = I0(0)e
−γt +

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du (9)

p. 66 – Stochasticity in deterministic models



Taking the time derivative of (9) yields

I ′(t) = −γI0(0)e−γt − γ

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du

+ β
(N − I (t))I (t)

N

= −γ
(
I0(0)e

−γt +

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du

)
+ β

(N − I (t))I (t)

N

= β
(N − I (t))I (t)

N
− γI (t)

This is the classical logistic type ordinary differential equation (ODE) for I in an SIS
model without vital dynamics (no birth or death)

p. 67 – Stochasticity in deterministic models



Case of a step function survival function

Consider case where the time spent infected has survival function

S(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

i.e., the sojourn time in the infective state is a constant ω > 0

In this case (8) becomes

I (t) = I0(t) +

∫ t

t−ω
β
(N − I (u))I (u)

N
du. (10)

Here, it is more difficult to obtain an expression for I0(t). It is however assumed that
I0(t) vanishes for t > ω

p. 68 – Stochasticity in deterministic models



When differentiated, (10) gives, for t ≥ ω,

I ′(t) = I ′0(t) + β
(N − I (t))I (t)

N
− β

(N − I (t − ω)) I (t − ω)

N
.

Since I0(t) vanishes for t > ω, this gives the delay differential equation (DDE)

I ′(t) = β
(N − I (t))I (t)

N
− β

(N − I (t − ω))I (t − ω)

N
.

p. 69 – Stochasticity in deterministic models
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Model structure

S I

V

(1− α)dN

αdN

dS dI

dV

βSI/N

γI
ϕS

S(t) σβ
VI
/N
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Assumptions on S

S(t) is a nonnegative and nonincreasing function with S(0+) = 1, and such that∫∞
0 S(u)du is positive and finite

So S(t) is a survival function
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The SIS model with vaccination

dI (t)

dt
= β(S(t) + σV (t))I (t)− (d + γ)I (t) (11a)

V (t) = V0(t) +

∫ t

0
(ϕS(u) + αd)S(t − u)e−d(t−u)e−σβ

∫ t
u I (x)dxdu (11b)

▶ αd proportion of vaccinated newborns

▶ ϕS(u) proportion of vaccinated susceptibles

▶ S(t − u) fraction of the proportion vaccinated still in the V class t − u time units
after going in

▶ e−d(t−u) fraction of the proportion vaccinated not dead due to natural causes

▶ e−σβ
∫ t
u I (x)dx fraction of the proportion vaccinated not gone to the infective class
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Reduction of the system using specific S(t) functions

▶ The distribution of waning times being exponential leads to an ODE system

▶ S(t) originating in a Dirac distribution leads to a discrete DDE model
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Be aware (beware?) of what’s under the hood

ODEs and discrete-delay DDEs are fine, but they hide some pretty strong assumptions

If you are using an ODE for an endemic model, fine: you are typically working with
t →∞ and the ODE “uses” the mean of your parameter

If, on the other hand, you are using an ODE to assess behaviour for times that are not
too different from the mean of your parameters, then beware

Discrete delays make the assumption that every single individual in your population has
the same sojourn time if whatever compartment is being applied delay to... You may
want to think about distributed delays or other mechanisms to compensate for this

You may want to use a different hammer
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From discrete to continuous time

Discrete-Time Markov Chains (DTMCs)

A system transitions between states at fixed, discrete time steps (n = 0, 1, 2, . . . )

▶ The future depends only on the present state (Markov Property)

▶ Governed by a transition probability matrix P, where Pij is the probability of
moving from state i to j in one step

Continuous-Time Markov Chains (CTMCs)

A system can transition between states at any point in time

▶ Time spent in a state is a continuous random variable

▶ The “holding time” in any state i follows an exponential distribution
parameterised by an exit rate qi

▶ This is a direct consequence of the Markov Property being applied to continuous
time (exponential is only continuous distribution that is “memoryless”)
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Transition rates

Dynamics of a CTMC defined by transition rates, not probabilities

Definition 2 (Transition Rates)

For two states i ̸= j , the rate qij ≥ 0 is the instantaneous rate of transition from state
i to state j

▶ For a small time interval ∆t, the probability of transitioning from i to j is
approximately qij∆t

▶ Total exit rate from state i is qi =
∑

j ̸=i qij
▶ Time spent in state i is an exponential random variable Ti ∼ E(qi )
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The generator matrix

Generator matrix (Q-Matrix)

Collect all transition rates into a single matrix Q

▶ Off-diagonal: Qij = qij for i ̸= j (The rate of going from i to j)

▶ Diagonal: Qii = −qi = −
∑

j ̸=i qij . (The negative of the total exit rate from i)

A key property is that all rows of Q sum to zero:
∑

j Qij = 0.
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Kolmogorov equations

Let P(t) be the matrix where Pij(t) = P(X (t) = j |X (0) = i). How does P(t) evolve
over time?

Kolmogorov forward equations

Describes rate of change of probability of ending up in a target state j

d

dt
P(t) = P(t)Q

In element form:
P ′
ij(t) =

∑
k

Pik(t)Qkj
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Solution to the KFE

The solution is the matrix exponential

P(t) = etQ =
∞∑
k=0

(tQ)k

k!

The generator matrix Q “generates” the process’s evolution

p. 80 – Continuous time Markov chains
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Converting your compartmental ODE model to CTMC

Easy as π :)

▶ Compartmental ODE model focuses on flows into and out of compartments

▶ ODE model has as many equations as there are compartments

▶ Compartmental CTMC model focuses on transitions

▶ CTMC model has as many transitions as there are arrows between (or into or out
of) compartments
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ODE to CTMC : focus on different components

S I S I

−βSI

+γI

+βSI

−γI

βSI

γI

ODE CTMC

focus focus
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SIS without demography

Transition Effect Weight Probability

S → S − 1, I → I + 1 new infection βSI
βSI

βSI + γI

S → S + 1, I → I − 1 recovery of an in-
fectious

γI
γI

βSI + γI

States are S , I
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SIS with demography

Transition Effect Weight Probability

S → S + 1 birth of a suscepti-
ble

b b
b+d(S+I )+βSI+γI

S → S − 1 death of a suscep-
tible

dS dS
b+d(S+I )+βSI+γI

S → S − 1, I →
I + 1

new infection βSI βSI
b+d(S+I )+βSI+γI

I → I − 1 death of an infec-
tious

dI dI
b+d(S+I )+βSI+γI

S → S + 1, I →
I − 1

recovery of an in-
fectious

γI γI
b+d(S+I )+βSI+γI

States are S , I
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Kermack & McKendrick model

Transition Effect Weight Probability

S → S − 1, I → I + 1 new infection βSI
βSI

βSI + γI

I → I − 1, R → R + 1 recovery of an in-
fectious

γI
γI

βSI + γI

States are S , I ,R
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Gillespie’s algorithm

▶ A.k.a. the stochastic simulation algorithm (SSA)

▶ Derived in 1976 by Daniel Gillespie

▶ Generates possible solutions for CTMC

▶ Extremely simple, so worth learning how to implement; there are however
packages that you can use (see later)
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Gillespie’s algorithm

Suppose system has state x(t) with initial condition x(t0) = x0 and propensity
functions ai of elementary reactions

set t ← t0 and x(t)← x0
while t ≤ tf
- ξt ←

∑
j aj(x(t))

- Draw τt from T ∼ E(ξt)
- Draw ζt from U([0, 1])
- Find r , smallest integer s.t.

∑j
k=1 ak(x(t)) > ζt

∑
j aj(x(t)) = ζtξt

- Effect the next reaction (the one indexed r)
- t ← t + τt
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Drawing at random from an exponential distribution
If you do not have an exponential distribution random number generator.. We want τt
from T ∼ E(ξt), i.e., T has probability density function

f (x , ξt) = ξte
−ξtx1x≥0

Use cumulative distribution function F (x , ξt) =
∫ x
−∞ f (s, ξt) ds

F (x , ξt) = (1− e−ξtx)1x≥0

which has values in [0, 1]. So draw ζ from U([0, 1]) and solve F (x , ξt) = ζ for x

F (x , ξt) = ζ ⇔ 1− e−ξtx = ζ

⇔ e−ξtx = 1− ζ

⇔ ξtx = − ln(1− ζ)

⇔ x =
− ln(1− ζ)

ξt
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Gillespie’s algorithm (SIS model with only I eq.)

set t ← t0 and I (t)← I (t0)
while t ≤ tf
- ξt ← β(P⋆ − i)i + γi
- Draw τt from T ∼ E(ξt)
- v ← [β(P⋆ − i)i , ξt ] /ξt
- Draw ζt from U([0, 1])
- Find pos such that vpos−1 ≤ ζt ≤ vpos
- switch pos

- 1: New infection, I (t + τt) = I (t) + 1
- 2: End of infectious period, I (t + τt) = I (t)− 1

- t ← t + τt
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Sometimes Gillespie goes bad

▶ Recall that the inter-event time is exponentially distributed
▶ Critical step of the Gillespie algorithm:

▶ ξt ← weight of all possible events (propensity)
▶ Draw τt from T ∼ E(ξt)

▶ So the inter-event time τt → 0 if ξt becomes very large for some t

▶ This can cause the simulation to grind to a halt
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Example: a birth and death process

▶ Individuals born at per capita rate b

▶ Individuals die at per capita rate d

▶ Let’s implement this using classic Gillespie

(See simulate birth death CTMC.R on course GitHub repo)
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Gillespie’s algorithm (birth-death model)

set t ← t0 and N(t)← N(t0)
while t ≤ tf
- ξt ← (b + d)N(t)
- Draw τt from T ∼ E(ξt)
- v ← [bN(t), ξt ] /ξt
- Draw ζt from U([0, 1])
- Find pos such that vpos−1 ≤ ζt ≤ vpos
- switch pos

- 1: Birth, N(t + τt) = N(t) + 1
- 2: Death, N(t + τt) = N(t)− 1

- t ← t + τt
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birth_death_CTMC = function(b = 0.01, d = 0.01) {
t_0 = 0 # Initial time

N_0 = 100 # Initial population

# Vectors to store time and state. Initialise with initial condition.

t = t_0

N = N_0

t_f = 1000 # Final time

# Track the current time and state (could just check last entry in t

# and N, but will take more operations)

t_curr = t_0

N_curr = N_0

while (t_curr<=t_f) {
xi_t = (b+d)*N_curr
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if (N_curr == 0) {
break # Avoid error with rexp when xi_t = 0

}
tau_t = rexp(1, rate = xi_t)

t_curr = t_curr+tau_t

v = c(b*N_curr, xi_t)/xi_t

zeta_t = runif(n = 1)

pos = findInterval(zeta_t, v)+1

switch(pos,

{ N_curr = N_curr+1}, # Birth

{ N_curr = N_curr-1}) # Death

N = c(N, N_curr)

t = c(t, t_curr)

}
plot(t, N, type = "l",

xlab = "Time", ylab = "Population size",

main = paste("Birth-death CTMC with b =", b, "and d =", d))
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}

p. 95 – Continuous time Markov chains
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b = 0.03 & d = 0.01...

We want to run the function with these parameter values but I know in advance this
will not work well, so let’s tweak the function a bit. We add a test:

if (t[length(t)]-t[(length(t)-1)] < 1e-8) {

# If the time step is too small, stop the simulation

message("Stopping␣simulation␣because␣time␣step␣is␣too␣small")

break

}
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Last one did not go well

▶ Wanted 1000 time units (days?)

▶ Interrupted at 346.4988707 because of the test
(Slide with b < d : sim stopped because the population went extinct, I did not
stop it!)

▶ At stop time
▶ N = 8.8804× 104

▶ |N| = 177611 (and |t| as well, of course!)
▶ time was moving slowly

tail(diff(results$t))

## [1] 3.017042e-04 1.410290e-04 4.581595e-04 5.890492e-04 1.910247e-04

## [6] 3.834600e-09
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Tau-leaping (and packages) to the rescue!

▶ Approximation method (compared to classic Gillespie, which is exact)

▶ Roughly: consider ”groups” of events instead of individual events

▶ Good news: GillespieSSA2 and adaptivetau, two standard packages for SSA
in R, implement tau leaping
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library(GillespieSSA2)

Pop <- 1000

I_0 <- 2

IC <- c(S = (Pop-I_0), I = I_0)

gamma = 1/3

# R0=beta/gamma*S0, so beta=R0*gamma/S0

beta = as.numeric(1.5*gamma/IC["S"])

params <- c(gamma = gamma, beta = beta)

t_f = 100

reactions <- list(

reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),

reaction("gamma*I", c(S=+1,I=-1), "recovery")

)

set.seed(NULL)
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sol <- ssa(

initial_state = IC,

reactions = reactions,

params = params,

method = ssa_exact(),

final_time = t_f,

)

plot(sol$time, sol$state[,"I"], type = "l",

xlab = "Time (days)", ylab = "Number infectious")
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Parallelisation

To see multiple realisations: good idea to parallelise, then interpolate results. Write a
function, e.g., run one sim that .. runs one simulation

On the GitHub repo for the course, see

▶ SIS-CTMC-parallel.R

▶ SIS-CTMC-parallel-multiple-R0.R
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library(parallel)

run_one_sim = function(params) {
IC <- c(S = (params$Pop-params$I_0), I = params$I_0)

params_local <- c(gamma = params$gamma, beta = params$beta)

reactions <- list(

# propensity function effects name for reaction

reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),

reaction("gamma*I", c(S=+1,I=-1), "recovery")

)

set.seed(NULL)

sol <- ssa(

initial_state = IC,

reactions = reactions,

params = params_local,

method = ssa_exact(),

final_time = params$t_f,
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log_firings = TRUE # This way we keep track of events

)

# Interpolate result (just I will do)

wanted_t = seq(from = 0, to = params$t_f, by = 0.01)

sol$interp_I = approx(x = sol$time, y = sol$state[,"I"], xout = wanted_t)

names(sol$interp_I) = c("time", "I")

# Return result

return(sol)

}
nb_cores <- detectCores()

if (nb_cores > 124) {
nb_cores = 124

}
cl <- makeCluster(nb_cores)

clusterEvalQ(cl,{
library(GillespieSSA2)

})
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gamma = 1/3

R0 = 1.5

# R0=beta/gamma*S0, so beta=R0*gamma/S0

beta = as.numeric(R0*gamma/IC["S"])

t_f = 100

params <- list(gamma = gamma, beta = beta,

Pop = 1000, I_0 = 2, R0 = R0,

t_f = 100, nb_sims = 50)

clusterExport(cl,

c("params",

"run_one_sim"),

envir = .GlobalEnv)

SIMS = parLapply(cl = cl,

X = 1:params$nb_sims,

fun = function(x) run_one_sim(params))

stopCluster(cl)

p. 109 – Continuous time Markov chains



0 20 40 60 80 100

0
10

0
20

0
30

0
40

0

CTMC with R0 = 1.5

Time (days)

N
um

be
r 

in
fe

ct
io

us



Benefit of parallelisation

Run the parallel code for 100 sims between ‘tictoc::tic()‘ and ‘tictoc::toc()‘, giving
‘66.958 sec elapsed‘, then the sequential version

tictoc::tic()

SIMS = lapply(X = 1:params$number_sims,
FUN = function(x) run_one_sim(params))

tictoc::toc()

which gives ‘318.141 sec elapsed‘ on a 6C/12T Intel(R) Core(TM) i9-8950HK CPU @
2.90GHz (4.75× faster) or ‘12.067 sec elapsed‘ versus ‘258.985 sec elapsed‘ on a
32C/64T AMD Ryzen Threadripper 3970X 32-Core Processor (21.46× faster !)
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Investigating outbreak types using a simple CTMC SIS

X(t) =
(
SA(t), IA(t)

)

CTMC X(t) characterized by transitions

Description Transition Rate

Infection
(
SA, IA

)
→

(
SA − 1, IA + 1

)
βASAIA

Recovery
(
SA, IA

)
→

(
SA + 1, IA − 1

)
γAIA

p. 114 – Continuous time Markov chains



Investigating outbreak types using a simple CTMC SIS with a twist

Regular chain of this type has I = 0 as sole absorbing state

We add another absorbing state: if I = Î , then the chain has left the stochastic phase
and is in a quasi-deterministic phase with exponential growth

Doing this, time to absorption measures become usable additionally to first passage
time ones

And the question becomes: how long does the chain “linger on” (“stutter”) before it is
absorbed? We define the inter-absorption trajectory as the stochastic phase
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Problem of the value of the upper bound Î

▶ Choose Î too small and the stochastic phase will not last long

▶ Choose Î too large and absorption will only be at the DFE

▶ So, how does one choose Î ?
▶ A formula of Whittle (1955)
▶ Multitype branching process (MTBP)
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One last thought for the road

V. Chetail. Crisis without borders: What does international law say about border
closure in the context of Covid-19? Frontiers in Political Science, 2 (12) (2020)

[..] a powerful expression of state’s sovereignty, immigration control provides a
typical avenue for governments to reassure their citizens and bolster a national
sense of belonging, while providing an ideal scapegoat for their own failure or
negligence.
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Why incorporate stochasticity?

Stochasticity in deterministic models

Continuous time Markov chains

Branching process approximations of CTMC



What is a Branching Process?

The Core Idea

A branching process is a mathematical model for a population where individuals
produce a random number of offspring and then die.

▶ Think of bacteria splitting, a virus spreading, or even the survival of family
surnames.

▶ We start with an initial population, Z0.

▶ Each individual in generation n produces a number of offspring for generation
n + 1.

▶ This ”number of offspring” is a random variable. All individuals produce offspring
according to the same probability distribution, independently of each other.
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The Galton-Watson Process
Let Zn be the size of the population in generation n. We typically start with Z0 = 1.
The population evolves according to the rule:

Zn+1 =
Zn∑
i=1

Xn,i

▶ The term Xn,i represents the number of offspring produced by the i-th individual
in generation n.

▶ The variables {Xn,i} are assumed to be independent and identically distributed
(i.i.d.) integer-valued random variables.

▶ We call their common distribution {pk}∞k=0 the offspring distribution, where
pk = P(X = k).

The Fundamental Questions

1. What is the long-term expected size of the population?

2. What is the probability that the population eventually dies out?
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Mean Offspring
The fate of the population hinges on a single parameter: the mean of the offspring
distribution

µ = E [X ] =
∞∑
k=0

k · pk

Expected Population Size

Using the law of total expectation, we find the expected size of the next generation:

E [Zn+1|Zn] = E

[
Zn∑
i=1

Xn,i

∣∣∣∣Zn

]
= ZnE [X ] = Znµ

Taking the expectation again, we get a simple recurrence:

E [Zn+1] = µE [Zn]

This implies:
E [Zn] = Z0µ

n
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The Three Regimes of Population Growth

The behavior of E [Zn] = Z0µ
n suggests three distinct cases:

Subcritical (µ < 1)

E [Zn]→ 0. The population
is expected to shrink. It
goes extinct with probability
1.

Critical (µ = 1)

E [Zn] = Z0. The population
is expected to remain stable.
Surprisingly, it still goes
extinct with probability 1.

Supercritical (µ > 1)

E [Zn]→∞. The
population is expected to
grow exponentially. It has a
non-zero probability of
surviving forever.
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Tool: The Probability Generating Function

To find the extinction probability, we need a powerful tool: the probability generating
function (PGF) of the offspring distribution X .

G (s) = E [sX ] =
∞∑
k=0

pks
k for |s| ≤ 1

Key Properties

▶ G (1) =
∑

pk = 1

▶ The mean can be found from the derivative: G ′(1) =
∑

kpk = µ.

▶ The PGF of Zn is the n-th iterate of G (s) with itself. If Gn(s) is the PGF of Zn,
then Gn+1(s) = G (Gn(s)).
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The Extinction Probability Equation
Let π0 be the probability of eventual extinction, starting with Z0 = 1.

π0 = P(population dies out) = lim
n→∞

P(Zn = 0)

Since P(Zn = 0) = Gn(0), and Gn+1(0) = G (Gn(0)), in the limit the extinction
probability π0 must satisfy the equation:

π0 = G (π0)
Theorem 3

The extinction probability π0 is the smallest non-negative solution to the equation
s = G (s).

▶ If µ ≤ 1, the only solution in [0, 1] is s = 1. So π0 = 1.
▶ If µ > 1, there is a unique solution in [0, 1), which is the extinction probability

π0 < 1.
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From Discrete to Continuous Time

Limitation of Galton-Watson

Generations don’t happen in synchronized steps in the real world. Individuals give birth
and die at random times.

This leads us to Continuous-Time Markov Chains (CTMCs).

▶ The state of the system is the population size, k ∈ {0, 1, 2, . . . }.
▶ Instead of generations, we have transition rates:

▶ λk : rate of birth when population is size k (moves to k + 1).
▶ δk : rate of death when population is size k (moves to k − 1).

▶ Often, we assume these rates are linear: λk = kλ and δk = kδ. This means
individuals act independently.
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Branching Process Approximation of a CTMC

The Key Insight

At the beginning of an outbreak (or for a very large population), the dynamics caused
by a single individual are largely independent of others.

This allows us to approximate the start of a CTMC population process with a
branching process.
Example: A Simple Epidemic (SIR Model)

▶ S : Susceptible, I : Infected, R: Recovered.

▶ An infected person meets others at a certain rate. If they meet a susceptible, a
new infection may occur (an ”offspring”).

▶ The infected person recovers (or dies) at another rate, ending their infectious
period.

▶ Question: How many new infections does a single infected person cause on
average?
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Case Study: The Basic Reproduction Number R0

Consider a single infected individual in a large population of susceptibles.

▶ Let β be the infection rate (rate of producing ”offspring”).

▶ Let γ be the recovery rate (rate of ”dying”).

The individual’s infectious lifetime is an exponential random variable with mean 1/γ.
The average number of secondary infections they cause is:

R0 = (rate of infection)× (average infectious period) = β × 1

γ
=

β

γ

The Connection

R0 is precisely the mean offspring number µ for the embedded branching process
that approximates the start of the epidemic.
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Applying Branching Theory to Epidemics

The fate of the epidemic’s initial phase is determined by R0:

▶ If R0 ≤ 1 (µ ≤ 1): The number of infected individuals is a subcritical or critical
process. The epidemic will die out with probability 1.

▶ If R0 > 1 (µ > 1): The process is supercritical. There is a positive probability
that the epidemic takes off and causes a major outbreak.

We can even calculate the probability of a major outbreak! It is 1− π0, where π0 is the
extinction probability.
For this simple birth-death infection process, the PGF is G (s) = γ

β+γ + β
β+γ s. Solving

s = G (s) gives the extinction probability:

π0 =
γ

β
=

1

R0

The probability of a major outbreak is 1− 1/R0.
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Summary

▶ Branching Processes model populations with i.i.d. offspring generation.

▶ The fate of the population is determined by the mean offspring number µ.
Extinction is certain if µ ≤ 1.

▶ The extinction probability π0 can be calculated as the smallest non-negative
fixed point of the probability generating function G (s).

▶ The initial stages of many large-scale Continuous-Time Markov Chains can be
approximated by a branching process.

▶ This allows us to apply the theory to real-world problems, like calculating an
epidemic’s basic reproduction number R0 and its probability of causing a major
outbreak.
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# From https://stackoverflow.com/questions/36868287/purl-within-knit-duplicate-label-error

rmd_chunks_to_r_temp <- function(file){
callr::r(function(file, temp){
out_file = sprintf("../CODE/%s", gsub(".Rnw", ".R", file))

knitr::purl(file, output = out_file, documentation = 1)

}, args = list(file))

}
rmd_chunks_to_r_temp("course-03-stochastic=aspects.Rnw")

## Error: ! in callr subprocess.

## Caused by error in ‘file(con, "r")‘:

## ! cannot open the connection
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