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La mobilité des maladies est connue depuis longtemps
La peste d’Athènes de 430 avant J.-C.

On dit qu’elle a d’abord commencé dans les parties de
l’Éthiopie au-dessus de l’Égypte, et de là est descendue
en Égypte et en Libye et dans la plupart du pays du
roi [perse]. S’abattant soudainement sur Athènes, elle a
d’abord attaqué la population du Pirée [..] et est ensuite
apparue dans la ville haute, lorsque les décès sont deve-
nus beaucoup plus fréquents.

Thucydide ( 460 AÈC - 395 AÈC)
Histoire de la guerre du Péloponnèse

p. 1 – Propagation spatio-temporelle des pathogènes infectieux



Comment les pathogènes infectieux deviennent mobiles

▶ J’avais l’habitude de montrer l’ensemble de figures suivant pour illustrer la
spatialisation de la propagation

▶ J’ai essayé de demander à Gemini de faire la même chose, mais la partie
“retour à la maison” ne fonctionnait pas du tout

▶ Alors profitez plutôt de mes compétences fantastiques

p. 2 – Propagation spatio-temporelle des pathogènes infectieux
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Un peu plus joli

Voir ce “film”

p. 12 – Propagation spatio-temporelle des pathogènes infectieux
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Alors...

▶ Propagation de pathogènes induite par la boulangerie

▶ Plaisanterie mise à part, considérons deux exemples

p. 13 – Propagation spatio-temporelle des pathogènes infectieux







Propagation spatiale du pH1N1 en 2009
En mars et avril 2008 (utilisés comme substitut pour les données de 2009),
▶ 2,35 millions de passagers ont volé du Mexique vers 1018 villes dans 164

pays
▶ 80,7% ont volé vers les États-Unis et le Canada, 8,8% vers l’Amérique du

Sud et Centrale, 8,7% vers l’Europe
▶ parmi les 20 pays avec les volumes les plus élevés de passagers arrivant du

Mexique, 16 avaient des importations confirmées du Mexique le 5/25
▶ Courbe ROC de la relation entre les flux de trafic aérien international et

l’importation de H1N1 : les pays recevant plus de 1400 passagers du Mexique
présentent un risque significativement élevé d’importation

▶ Utilisation de ce seuil de passagers : le volume de trafic aérien international
est sensible à > 92% et spécifique à > 92% pour prédire l’importation (aire
sous la courbe ROC 0,97)

Khan, JA, Hu et al, New England Journal of Medicine, 2009
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Dans un monde globalisé

▶ Les décisions de politique de santé publique sont prises au niveau juridictionnel,
typiquement national (ISO 3166-1) ou au premier niveau sous-national (ISO
3166-2) – très rarement au niveau supranational

(Le Règlement sanitaire international (RSI) définit des processus concernant la
déclaration des épidémies, fait des recommandations sur la gestion des
voyageurs, etc. Voir la COVID-19 : même celles des règles qui étaient quelque
peu prescriptives n’ont pas été suivies)

▶ Les individus sont mobiles et donc les pathogènes qu’ils hébergent le sont aussi

▶ Les décisions politiques ont des conséquences en dehors des juridictions où
elles sont prises !

▶ La COVID-19 était une seule épidémie, pas une épidémie par pays affecté

p. 22 – Propagation spatio-temporelle des pathogènes infectieux
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Pourquoi utiliser des métapopulations pour les modèles de
maladies?

▶ Approprié pour la description de la propagation spatiale de certaines maladies

▶ Facilité de simulation

▶ L’agrégation des données par les gouvernements se fait le plus souvent au
niveau juridictionnel, très facile à réconcilier avec les lieux dans les
métapopulations

p. 23 – Métapopulations



Quelques références

▶ JA & PvdD. Disease spread in metapopulations. Fields Institute
Communications 48 :1-13 (2006)

▶ JA. Diseases in metapopulations. In Modeling and Dynamics of Infectious
Diseases, World Scientific (2009)

▶ JA. Spatio-temporal spread of infectious pathogens of humans. Infectious
Disease Modelling 2(2) :218-228 (2017)

▶ JA, Bajeux & Kirkland. Number of source patches required for population
persistence in a source-sink metapopulation. Bulletin of Mathematical Biology
81 : 19161942 (2019)
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Métapopulations avec mouvement explicite

Division de l’espace continu en N lieux géographiques discrètes (patches)

Chaque lieu contient des compartiments (groupes homogènes d’individus). Par
exemple, proies, prédateurs, etc.

Ici, nous considérons un seul compartiment, l’espèce d’intérêt, sans
compartimentalisation supplémentaire

Les individus peuvent se déplacer entre les lieux ; mqp ≥ 0 taux de mouvement
des individus de la lieu p = 1, . . . ,N vers la lieu q = 1, . . . ,N

p. 25 – Métapopulations



Mouvement explicite (focus sur P1)

P1

P2

P3

P4P5
P6

Pk

m21

m31

m51
m61

mk1 m12

m14

m16

m1k

P ′
1 =

N∑
j=1
j ̸=1

m1jPj−P1

N∑
j=1
j ̸=1

mj1
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P ′
1 =

N∑
j=1

m1jPj assuming m11 = −
N∑

j=1
j ̸=1

mj1
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Cadre en théorie des graphes

▶ |P| lieux, sommets dans un graphe orienté G
▶ Chaque lieu contient un certain nombre de compartiments appartenant à un

ensemble commun C de compartiments
▶ Les arcs de G représentent la possibilité pour un compartiment donné de se

déplacer entre deux lieux ; deux lieux quelconques sont connectées par un
maximum de |C| arêtes

Le graphe est un graphe orienté : le mouvement n’est pas toujours symétrique

p. 27 – Métapopulations



G = (P,A) est un multi-graphe orienté, où
▶ P est l’ensemble des sommets (lieux)
▶ A est l’ensemble des arcs, c’est-à-dire un multi-ensemble ordonné de paires

d’éléments de P

Deux sommets quelconques X ,Y ∈ P sont connectés par au plus |C| arcs de X
vers Y et au plus |C| arcs de Y vers X

Parce qu’il y a |C| compartiments et que les mouvements sont spécifiques aux
compartiments, nous définissons également, pour tout c ∈ C, Pc et Ac ainsi que
les graphes orientés spécifiques aux compartiments Gc = (Pc ,Ac)

p. 28 – Métapopulations



Matrice de connexion

Pour un compartiment donné c ∈ C, une matrice d’adjacence est associée au
graphe orienté Gc

Nous utilisons aussi le nom matrice de connexion

En choisissant un ordre des éléments de P, l’entrée (i , j) de la matrice |P| × |P|
Nc = Nc(Gc) vaut un si Rc(Pi ,Pj) et zéro sinon, c’est-à-dire si Pi n’a pas d’accès
direct à Pj

Pour simplifier, l’ordre des lieux est généralement supposé le même pour tous les
compartiments

p. 29 – Métapopulations



Connectivité forte et irréductibilité

Definition 1 (Matrice réductible/irréductible)

Une matrice A est réductible s’il existe une matrice de permutation P telle que
PT AP est triangulaire supérieure par blocs. Une matrice qui n’est pas réductible
est irréductible

La matrice A ∈ Fn×n est irréductible si pour tout i , j = 1, . . . , n, il existe k tel que
ak

ij > 0, où ak
ij est l’entrée (i , j) dans Ak

Theorem 2
Connectivité forte ⇔ irréductibilité de la matrice de connexion Cc

p. 30 – Métapopulations



Métapopulations
Pourquoi utiliser des modèles de métapopulation?
Métapopulations avec mouvement explicite
Le cadre en théorie des graphes
Les modèles considérés
Passage à la forme vectorielle
La matrice de mouvement
Comportement de la composante de mobilité
Existence d’un ÉSM
Calcul d’un nombre de reproduction
Stabilité globale de l”ÉSM lorsque R0 < 1
Problèmes spécifiques aux métapopulations
Aspects computationnels des modèles de métapopulation



Le SLIRS utilisé dans les patches

S L I R
b Φ εL γI

νR

dS dL dI dR

S′ = b + νR − Φ− dS (1a)
L′ = Φ− (ε+ d)L (1b)
I′ = εL − (γ + d)I (1c)

R′ = γI − (ν + d)R (1d)

Φ force d’infection. Dépend de S, I, potentiellement de N. En général

Φ = β(N)ϕ(S, I)

Action de masse, Φ = βSI, incidence proportionnelle, Φ = βSI/N
p. 31 – Métapopulations



Modèle |P|-SLIRS

S′
p = bp + νpRp − Φp − dpSp+

∑
q∈PmSpqSq (2a)

L′
p = Φp − (εp + dp) Lp+

∑
q∈PmLpqLq (2b)

I′p = εpLp − (γp + dp)Ip+
∑

q∈PmIpqIq (2c)

R′
p = γpIp − (νp + dp)Rp+

∑
q∈PmRpqRq (2d)

avec incidence
Φp = βp

SpIp
Nqp

p
, qp ∈ {0, 1} (2e)

p. 32 – Métapopulations



|S| |P|-SLIRS (espèces multiples)
p ∈ P et s ∈ S (un ensemble d’espèces)

S′
sp = bp + νspRsp − Φsp − dspSsp+

∑
q∈PmSspqSsq (3a)

L′
sp = Φsp − (εsp + dsp)Lsp+

∑
q∈PmLspqLsq (3b)

I′sp = εspLsp − (γsp + dsp)Isp+
∑

q∈PmIspqIsq (3c)

Rsp = γspIsp − (νsp + dsp)Rsp+
∑

q∈PmRspqRsq (3d)

avec incidence

Φsp =
∑
k∈S

βskp
SspIkp

Nqp
p

, qp ∈ {0, 1} (3e)

▶ JA, Davis, Hartley, Jordan, Miller & PvdD. A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology
22(2) :129-142 (2005)

▶ JA, Jordan & PvdD. Quarantine in a multi-species epidemic model with spatial dynamics. Mathematical Biosciences 206(1) :46-60 (2007)
[Arino et al., 2007]
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|P|2-SLIRS (résidents-voyageurs)

S′
pq =bp + νpqRpq − Φpq − dpqSpq+

∑
k∈PmSpqkSpk (4a)

L′
pq =Φpq − (εpq + dpq)Lpq+

∑
k∈PmLpqkLpk (4b)

I′pq =εpqLpq − (γpq + dpq)Ipq+
∑

k∈PmIpqk Ipk (4c)

R′
pq =γpqIpq − (νpq + dpq)Rpq+

∑
k∈PmRpqkRpk (4d)

avec incidence

Φpq =
∑
k∈P

βpqk
SpqIkq

Nqq
p

, qq = {0, 1} (4e)

▶ Sattenspiel & Dietz. A structured epidemic model incorporating geographic mobility among regions (1995)
▶ JA & PvdD. A multi-city epidemic model. Mathematical Population Studies 10(3) :175-193 (2003)
▶ JA & PvdD. The basic reproduction number in a multi-city compartmental epidemic model. In Positive Systems (2003)
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Étapes pour une analyse

Étapes de base
1. Bonne position du système
2. Existence d’équilibres sans maladie (ÉSM)
3. Calcul d’un nombre de reproduction R0, étude de la stabilité asymptotique

locale de l”ÉSM
4. Si l’ÉSM est unique, prouver la stabilité asymptotique globale quand R0 < 1

Étapes supplémentaires
5. Existence d’équilibres mixtes, avec certaines lieux au ÉSM et d’autres avec la

maladie
6. Calcul de certaines bornes sur R0

7. EEP et ses propriétés LAS & GAS
. . .

p. 35 – Métapopulations



Analyse – Notre joujou

Pour simplifier, considérons le |P|-SLIRS avec Bp(Np) = bp

S′
p = bp − Φp − dpSp + νpRp +

∑
q∈PmSpqSq (5a)

L′
p = Φp − (εp + dp) Lp +

∑
q∈PmLpqLq (5b)

I′p = εpLp − (γp + dp)Ip +
∑

q∈PmIpqIq (5c)

R′
p = γpIp − (νp + dp)Rp +

∑
q∈PmRpqRq (5d)

avec incidence
Φp = βpSpIp (5e)

Système de 4|P| équations
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Pas de panique : la taille n’est pas si terrible..

Système de 4|P| équations !!!

Cependant, beaucoup de structure :
▶ |P| copies d’unités individuelles, chacune comprenant 4 équations
▶ La dynamique des unités individuelles est bien comprise
▶ Le couplage est linéaire

=⇒ Bon cas de système à grande échelle

(l’analyse matricielle est votre amie)

p. 37 – Métapopulations
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Notation

▶ Xcp(t) nombre d’individus du compartiment c dans la lieu p au temps t

(Ici et ailleurs : omission de la dépendance en t sauf si cela crée de la
confusion)

▶ Xc =
(
Xc1, . . . ,Xc|P|

)T distribution des individus du compartiment c ∈ C parmi
les différentes lieux
[Par exemple, pour (5), XS = (S1, . . . ,S|P|)

T ]

▶ X p =
(

X p
1 , . . . ,X

p
|P|

)T
composition de la population dans la lieu p ∈ P

[Par exemple, pour (5), X p = (Sp, Lp, Ip,Rp)
T ]
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Modèles de métapopulation avec mouvement linéaire

Utilisation d’un opérateur de mouvement linéaire autonome

Alors, pour un compartiment donné c ∈ C et dans un lieu donné p ∈ P

X ′
cp = fcp(X p) +

∑
q∈P
q ̸=p

mcpqXcq −

∑
q∈P
q ̸=p

mcqp

Xcp

mcpq taux de mouvement des individus dans le compartiment c ∈ C du lieu q ∈ P
au lieu p ∈ P

p. 39 – Métapopulations



Une notation plus compacte

Pour rendre

X ′
cp = fcp(X p) +

∑
q∈P
q ̸=p

mcpqXcq −

∑
q∈P
q ̸=p

mcqp

Xcp

plus compact, notons le taux auquel les individus quittent le lieu p sous la forme

mcpp = −
∑
q∈P
q ̸=p

mcqp (6)

Alors
X ′

cp = fcp(X p) +
∑
q∈P

mcpqXcq (7)
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Forme vectorielle du système

Pour le compartiment c ∈ C,

X ′
c = f (X ) +McXc (8)

avec

Mc =


−
∑

k∈P
mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑

k∈P
mck |P|

 (9)

p. 41 – Métapopulations
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Définitions et notation pour les matrices

▶ M ∈ Rn×n une matrice carrée avec des entrées notées mij

▶ M ≥ 0 si mij ≥ 0 pour tout i , j (peut être la matrice nulle) ; M > 0 si M ≥ 0 et
∃i , j avec mij > 0 ; M ≫ 0 si mij > 0 ∀i , j = 1, . . . , n. Même notation pour les
vecteurs

▶ σ(M) = {λ ∈ C;Mλ = λv, v ̸= 0} spectre de M

▶ ρ(M) = maxλ∈σ(M){|λ|} rayon spectral

▶ s(M) = maxλ∈σ(M){Re (λ)} abscisse spectrale (ou module de stabilité)

▶ M est une M-matrice si c’est une Z-matrice (mij ≤ 0 pour i ̸= j) et
M = sI− A, avec A ≥ 0 et s ≥ ρ(A)

p. 42 – Métapopulations



La matrice de mouvement

La matrice

Mc =


−
∑

k∈P
mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑

k∈P
mck |P|

 (9)

est la matrice de mouvement

Elle joue un rôle extrêmement important dans l’analyse des systèmes de
métapopulation, nous allons donc passer du temps à discuter ses propriétés

Mc décrit
▶ l’existence de connexions
▶ lorsqu’elles existent, leur “intensité”
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Propriétés de la matrice de mouvement M

Tout d’abord, remarquons que −Mc est une matrice laplacienne pondérée
(utilisant les degrés sortants)

Lemma 3

1. 0 ∈ σ(M) correspondant au v.p. gauche 1T

2. −M est une M-matrice singulière
3. 0 = s(M) ∈ σ(M)

4. Si M irréductible, alors s(M) a une multiplicité de 1

Pour une preuve complète du Lemme 3 et de la Proposition 4 (page suivante), voir
Arino, Bajeux & Kirkland, BMB 2019

p. 44 – Métapopulations
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Proposition 4 (D une matrice diagonale)

1. s(M+ dI) = d, ∀d ∈ R
2. s(M+ D) ∈ σ(M+ D) est associé à v > 0. Si M est irréductible, s(M+ D)

a multiplicité 1 et est associé à v ≫ 0
3. Si diag(D) ≫ 0, alors D −M est une M-matrice inversible et (D −M)−1 > 0
4. M irréductible et diag(D) > 0 =⇒ D −M M-matrice non-singulière

irréductible et (D −M)−1 ≫ 0

p. 45 – Métapopulations
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Comportement de la composante de mobilité – Sans démographie

Supposons qu’il n’y ait pas de dynamique intra-lieu, juste du mouvement. Alors (8)
prend la forme

X ′
c = McXc (10)

Theorem 5
Pour un compartiment donné c ∈ C, supposons que la matrice de mouvement Mc
soit irréductible. Alors pour tout Xc(0) > 0, (10) satisfait

lim
t→∞

Xc(t) = X ⋆
c ≫ 0

Notons que X ⋆
c dépend de ⟨1l,Xc(0)⟩
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Réduction à la population totale par lieu – Démographie

Soit
Tp =

∑
c∈C

Xcp

soit la population totale dans la lieu p

Il est souvent possible d’obtenir, dans chaque lieu p ∈ P , une équation pour
l’évolution de la population totale qui prend la forme

T ′
p = Dp(Tp) +

∑
c∈C

∑
q∈P

mcpqXcq (11)

où Dp(Tp) décrit la démographie dans la lieu p

p. 47 – Métapopulations



Nature de la démographie

Types les plus courants de fonctions démographiques
▶ Dp(Tp) = bp − dpTp (population asymptotiquement constante)
▶ Dp(Tp) = bpTp − dpTp

▶ Dp(Tp) = dpTp − dpTp = 0 (population constante)
▶ Dp(Tp) = rpTp(1 − Tp/Kp) (démographie logistique)

Nous avons supposé (puisque le terme de naissance est bp)

Dp(Tp) = bp − dpTp (12)
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Forme vectorielle / matricielle de l’équation

En supposant que la démographie soit de la forme (12), écrivons (11) sous forme
vectorielle

T′ = b − dT +
∑
c∈C

McXc (13)

où
▶ b = (b1, . . . , b|P|)

T ∈ R|P|

▶ T = (T1, . . . ,T|P|)
T ∈ R|P|

▶ X = (Xc1, . . . ,Xc|P|)
T ∈ R|P|

▶ d = diag
(
d1, . . . , d|P|

)
∈ R|P|×|P|

▶ Mc ∈ R|P|×|P|
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Le cas sympa

Supposons que les taux de mouvement soient égaux pour tous les
compartiments, c’est-à-dire,

Mc ≡ M

(plus fort que la propriété de mouvement similaire pour tous les compartiments,
qui ne nécessite que les motifs zéro/non-zéro dans tous les Mc , c ∈ C, soient les
mêmes)

Alors

T ′ = b − dT +M
∑
c∈C

Nc

= b − dT +MT (14)
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Équilibres

T ′ = 0 ⇔ b − dT +MT = 0
⇔ (d −M)T = b

⇔ T⋆ = (d −M)−1b

étant donné, bien sûr, que d −M (ou, de manière équivalente, M− d) soit
inversible..

L’est-elle?
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Non-singularité de M− d

En utilisant le décalage spectral du Théorème 4(1)

s
(
M−min

p∈P
dp

)
= −min

p∈P
dp

Cela donne une contrainte : pour que la population totale se comporte bien (en
général, nous voulons cela), nous devons supposer que tous les taux de mortalité
sont positifs

Supposons qu’ils le soient (en d’autres termes, supposons d non singulier). Alors
M− d est non singulier et T ⋆ = (d −M)−1b unique
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Comportement de la population totale
Cas de mouvement égal irréductible

T⋆ = (d −M)−1b attire les solutions de

T′ = b − dT +MT =: f (T)

En effet, nous avons
Df = M− d

Puisque nous supposons maintenant que d soit non singulier, nous avons par le
Théorème 4(1) que s(M−minp∈P dp) = −minp∈P dp < 0

M irréductible → T⋆ ≫ 0 (pourvu que b > 0, bien sûr)
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Comportement de la population totale (mouvement réductible égal)

Theorem 6
Supposons que M soit réductible. Soit a le nombre d’ensembles absorbants
minimaux dans le graphe de connexion correspondant G(M). Alors

1. L’abscisse spectrale s(M) = 0 a une multiplicité a
2. Associé à s(M) se trouve un vecteur propre non négatif v tel que

▶ vi > 0 si i est un sommet dans un ensemble absorbant minimal
▶ vi = 0 si i est un sommet transitoire

De Foster et Jacquez, Multiple zeros for eigenvalues and the multiplicity of traps of
a linear compartmental system, Mathematical Biosciences (1975)
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Le cas pas si sympa

Rappelons que
T ′ = b − dT +

∑
c∈C

McXc

Supposons que les taux de mouvement soient similaires pour tous les
compartiments, c’est-à-dire que les motifs zéro/non-zéro dans toutes les
matrices soient les mêmes mais pas les entrées
Soit

M =

[
min
c∈C

mcpq

]
pq,p ̸=q

M =

[
max
c∈C

mcpq

]
pq,p=q

et

M =

[
max
c∈C

mcpq

]
pq,p ̸=q

M =

[
min
c∈C

mcpq

]
pq,p=q
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Cool, non? Non !

Alors nous avons
b − dT +MT ≤ T′ ≤ b − dT +MT

Moi, environ tous les 6 mois : Oooh, génial, une inclusion différentielle linéaire !

Moi, environ 10 minutes après avoir fait cette déclaration précédente : Quel con !

En effet M et M ne sont pas des matrices de mouvement (en particulier, leurs
sommes de colonnes ne sont pas toutes nulles)

Donc pas de chance là..

Nous pouvons encore faire des choses, cependant plus au cas par cas
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Équilibre sans maladie

Le modèle est à l’équilibre si les dérivées temporelles sont nulles

Definition 7 (ÉSM de métapopulation)

Dans le cas du système (5), la lieu p ∈ P est à un équilibre sans maladie (ÉSM) si
Lp = Ip = 0, et le modèle |P|-lieu est à un ÉSM de métapopulation si Lp = Ip = 0
pour tout p ∈ P

Ici, nous voulons trouver l’ÉSM pour le modèle |P|-lieu. Plus tard, l’existence
d’équilibres mixtes, avec certaines lieux au ÉSM et d’autres à un équilibre
endémique, est considérée

(Pour (3), remplacer Lp par Lsp et Ip par Isp, pour (4), remplacer Lp par Lpp et Ip par
Ipp. Pour simplifier la notation, nous pourrions écrire L• et I•)
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Supposons que (5) soit au ÉSM de métapopulation. Alors Φp = 0 et

0 = bp − dpSp + νpRp +
∑

q∈PmSpqSq

0 = − (νp + dp)Rp +
∑

q∈PmRpqRq

Nous voulons résoudre pour Sp,Rp. Ici, il est préférable (crucial en fait) de se
rappeler un peu d’algèbre linéaire. Écrire le système sous forme vectorielle :

0 = b − dS + νR +MSS

0 = − (ν + d)R +MRR

où S,R,b ∈ R|P|, d , ν,MS,MR matrices |P| × |P| (d , ν diagonales)
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R au ÉSM

Rappelons la deuxième équation :

0 = − (ν + d)R +MRR ⇔ (MR − ν − d)R = 0

Donc solution unique R = 0 si MR − ν − d inversible L’est-elle?

Nous avons déjà été ici !

Par décalage spectral, s(MR − ν − d) = −minp∈P(νp + dp) < 0

Donc, étant donné L = I = 0, R = 0 est l’équilibre unique et

lim
t→∞

R(t) = 0

=⇒ L’ÉSM a L = I = R = 0
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S au ÉSM
L’ÉSM a L = I = R = 0 et b − dS +MSS = 0, c’est-à-dire,

S = (d −MS)−1b

Rappel : −MS M-matrice singulière. D’après le raisonnement précédent, d −MS

a le module d’instabilité décalé vers la droite de minp∈P dp. Donc :
▶ d −MS inversible
▶ d −MS M-matrice non singulière

Le deuxième point =⇒ (d −MS)−1 > 0 =⇒ (d −MS)−1b > 0 (aurait ≫ 0 si
MS irréductible)

Donc l’ÉSM a du sens avec

(S,L, I,R) =
(
(d −MS)−1b, 0, 0, 0

)
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▶ La stabilité linéaire de l’équilibre sans maladie peut être investiguée en
utilisant la méthode de la matrice de nouvelle génération de
[van den Driessche and Watmough, 2002]

▶ En général, R0 dépend des paramètres démographiques, de la maladie et de
mobilité
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Calcul du nombre de reproduction de base R0

Utiliser la méthode de nouvelle génération avec Ξ = {L1, . . . , L|P|, I1, . . . , I|P|},
Ξ′ = F − V

F =
(
Φ1, . . . ,Φ|P|, 0, . . . , 0

)T

V =



(ε1 + d1) L1 −
∑

q∈P
mL1qLq

...(
ε|P| + d|P|

)
L|P| −

∑
q∈P

mL|P|qLq

−ε1L1 + (γ1 + d1)I1 −
∑

q∈P
mI1qIq

...
−ε|P|L|P| + (γ|P| + d|P|)I|P| −

∑
q∈P

mI|P|qIq



p. 62 – Métapopulations



Dériver par rapport à Ξ :

DF =



∂Φ1

∂L1
· · · ∂Φ1

∂L|P|

∂Φ1

∂I1
· · · ∂Φ1

∂I|P|
...

...
...

...
∂Φ|P|

∂L1
· · ·

∂Φ|P|

∂L|P|

∂Φ|P|

∂I1
· · ·

∂Φ|P|

∂I|P|
0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0


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Noter que
∂Φp

∂Lk
=

∂Φp

∂Ik
= 0

chaque fois que k ̸= p, donc

DF =

(
diag

(
∂Φ1
∂L1

, . . . ,
∂Φ|P|
∂L|P|

)
diag

(
∂Φ1
∂I1

, . . . ,
∂Φ|P|
∂I|P|

)
0 0

)
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Évaluer DF au ÉSM

Si Φp = βpSpIp, alors

▶ ∂Φp

∂Lp
= 0

▶ ∂Φp

∂Ip
= βpSp

Si Φp = βp
SpIp
Np

, alors

▶ ∂Φp

∂Lp
= βp

SpIp
N2

p
= 0 au ÉSM

▶ ∂Φp

∂Ip
= βp

Sp

Np
au ÉSM

Dans les deux cas, le bloc ∂/∂L est nul donc

F = DF(SM) =

(
0 diag

(
∂Φ1
∂I1

, . . . ,
∂Φ|P|
∂I|P|

)
0 0

)
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Calculer DV et évaluer au ÉSM

V =

(
diagp(εp + dp)−ML 0

−diagp(εp) diagp(γp + dp)−MI

)
où diagp(zp) := diag(z1, . . . , z|P|)

Inverse de V facile (triangulaire inférieure par blocs 2 × 2) :

V−1 =


(

diagp(εp + dp)−ML
)−1

0

Ṽ−1
21

(
diagp(γp + dp)−MI

)−1


where

Ṽ−1
21 =

(
diagp(γp + dp)−MI

)−1
diagp(εp)

(
diagp(εp + dp)−ML

)−1
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R0 comme ρ(FV−1)
Matrice de nouvelle génération

FV−1 =

(
0 F12
0 0

)(
Ṽ−1

11 0
Ṽ−1

21 Ṽ−1
22

)
=

(
F12Ṽ−1

21 F12Ṽ−1
22

0 0

)
où Ṽ−1

ij est le bloc ij dans V−1. Donc

R0 = ρ
(

F12Ṽ−1
21

)
i.e.,

R0 = ρ

(
diag

(
∂Φ1

∂I1
, . . . ,

∂Φ|P|

∂I|P|

)(
diagp(γp + dp)−MI

)−1

diagp(εp)
(

diagp(εp + dp)−ML
)−1

)
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Stabilité asymptotique locale de l”ÉSM
Theorem 8
Définir R0 pour le |P|-SLIRS comme

R0 = ρ

(
diag

(
∂Φ1

∂I1
, . . . ,

∂Φ|P|

∂I|P|

)(
diagp(γp + dp)−MI

)−1

diagp(εp)
(

diagp(εp + dp)−ML
)−1

)

Alors l’ÉSM
(S,L, I,R) =

(
(d −MS)−1b, 0, 0, 0

)
est localement asymptotiquement stable si R0 < 1 et instable si R0 > 1

De PvdD & Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Bulletin of

Mathematical Biology 180(1-2) : 29-48 (2002)

p. 68 – Métapopulations

https://doi.org/10.1016/S0025-5564(02)00108-6


Quelques remarques sur R0

L’expression de R0 dans le Théorème 8 est exacte

Cependant, à moins de considérer un très petit ensemble de lieux, vous
n’obtiendrez pas d’expression en forme fermée

En effet, par le Théorème 4(3) et plus important encore (souvent M est
irréductible), le Théorème 4(4), les deux inverses dans R0 sont probablement
encombrées (≫ 0 dans le cas irréductible)

Cependant, numériquement, cela fonctionne facilement à moins que le
conditionnement soit mauvais
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Ne pas mettre tout dans R0.. interprétation?
Un centre urbain et des villes satellites

Winnipeg comme centre urbain et 3 petites villes satellites : Portage la Prairie,
Selkirk et Steinbach
▶ densité de population faible à très faible en dehors de Winnipeg
▶ réseau routier du MB bien étudié par la Direction de l’ingénierie du trafic de

l’infrastructure du MB

JA & S Portet. Epidemiological implications of mobility between a large urban
centre and smaller satellite cities. Journal of Mathematical Biology
71(5) :1243-1265 (2015)
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Quantités connues et estimées

Ville Pop. (2014) Pop. (maintenant) Dist. Trajets moy./jour
Winnipeg (W) 663,617 749,607 - -

Portage la Prairie (1) 12,996 13,270 88 4,115
Selkirk (2) 9,834 10,504 34 7,983

Steinbach (3) 13,524 17,806 66 7,505
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Estimation des taux de mouvement

Supposons que myx soit le taux de mouvement de la ville x vers la ville y . Ceteris
paribus, N ′

x = −myxNx , donc Nx(t) = Nx(0)e−myx t . Par conséquent, après un jour,
Nx(1) = Nx(0)e−myx , c’est-à-dire,

myx = − ln

(
Nx(1)
Nx(0)

)
Maintenant, Nx(1) = Nx(0)− Tyx , où Tyx est le nombre d’individus allant de x vers
y / jour. Donc

myx = − ln

(
1 −

Tyx

Nx(0)

)
Calculé pour toutes les paires (W , i) et (i ,W ) de villes
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Sensibilité de R0 aux variations de Rx
0 ∈ [0.5, 3]

avec maladie : Rx
0 = 1.5 ; sans maladie : Rx

0 = 0.5. Chaque boîte et moustaches
correspondantes représentent 10 000 simulations
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Une connectivité plus faible peut conduire R0

PLP et Steinbach ont des populations comparables, mais avec les paramètres
utilisés, seul PLP peut faire en sorte que le R0 général prenne des valeurs
supérieures à 1 lorsque RW

0 < 1

Cela est dû au taux de mouvement : si M = 0, alors

R0 = max{RW
0 ,R1

0,R2
0,R3

0},

puisque FV−1 est alors diagonale par blocs

Les taux de mouvement vers et depuis PLP sont plus faibles → situation plus
proche du cas découplé et R1

0 a plus d’impact sur le R0 général
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R0 ne raconte pas toute l’histoire !

Graphiques en fonction de R1
0 à PLP et de la réduction du mouvement entre

Winnipeg et PLP. Gauche : R0 général. Droite : Taux d’attaque à Winnipeg
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Le |P|-SLIRS jouet

Les résultats de SAL pour R0 < 1 peuvent parfois être renforcés en SAG. Une
classe de modèles où cela fonctionne souvent est lorsque la population est soit
constante soit asymptotiquement constante et l’incidence est standard

Theorem 9
Soit R0 défini comme dans le Théorème 8 ; utilisons une incidence proportionnelle
Φp = βpSpIp/Np. Si R0 < 1, alors l’ÉSM de (5) est GAS
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|S| |P|-SLIRS avec espèces multiples

Dans le cas où le mouvement est égal pour tous les compartiments et qu’il n’y a
pas de mortalité due à la maladie, un théorème de comparaison peut être utilisé
comme dans le Théorème 9 pour montrer que si R0 < 1, alors le ÉSM du
|S| |P|-SLIRS (3) est GAS

Theorem 10
Pour le système (3) avec |S| espèces et |P| lieux, avec mouvement égal pour tous
les compartiments, définissons R0 de manière appropriée et utilisons une
incidence proportionnelle. Si R0 < 1, alors l’ÉSM est GAS
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Problèmes spécifiques aux métapopulations – Deux types principaux

▶ Problèmes d’héritage – Quelles propriétés des unités constituantes sont
héritées par la métapopulation ?

▶ Comportements spécifiques aux métapopulations – Y a-t-il des
comportements dynamiques observés dans une métapopulation qui ne sont
pas observés dans les unités constituantes?
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Propriétés dynamiques héritées (alias je suis paresseux)
Étant donné

s′
kp = fkp(Sp, Ip) (15a)

i ′ℓp = gℓp(Sp, Ip) (15b)

avec des propriétés connues, que sait-on de

s′
kp = fkp(Sp, Ip) +

∑
q∈Pmkpqskq (16a)

i ′ℓp = gℓp(Sp, Ip) +
∑

q∈Pmℓpq iℓq (16b)

▶ Existence et unicité ✓
▶ Invariance de R•

+ sous le flot ✓
▶ Bornétude ✓
▶ lieu des R0i individuels et R0 général ?
▶ GAS?

-
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Un problème d’héritage – Bifurcations arrière

▶ Supposons un modèle qui, isolé dans un patch unique, subit des bifurcations
dites arrière

▶ Cela signifie que le modèle admet des équilibres endémiques sous-seuil
▶ Que se passe-t-il lorsqu’on couple plusieurs de ces unités constituantes?

OUI, le couplage d’unités présentant des bifurcations arrière peut conduire à une
bifurcation arrière au niveau du système

JA, Ducrot & Zongo. A metapopulation model for malaria with
transmission-blocking partial immunity in hosts. Journal of Mathematical Biology
64(3) :423-448 (2012)
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Comportements induits par la métapopulation?

Problème ń inverse ż au problème d’héritage. Étant donné

s′
kp = fkp(Sp, Ip) (9a)

i ′ℓp = gℓp(Sp, Ip) (9b)

avec des propriétés connues, est-ce que

s′
kp = fkp(Sp, Ip) +

∑
q∈Pmkpqskq (10a)

i ′ℓp = gℓp(Sp, Ip) +
∑

q∈Pmℓpq iℓq (10b)

présente certains comportements non observés dans le système découplé?
Ex. : les unités ont un comportement {R0 < 1 =⇒ ÉSM GAS, R0 > 1 =⇒ 1
EEP GAS}, la métapopulation a des solutions périodiques
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Équilibres mixtes

Peut-il y avoir des situations où certaines lieux sont au ÉSM et d’autres à un EEP?

C’est le problème des équilibres mixtes

C’est un problème spécifique aux métapopulations, pas un problème d’héritage de
propriétés dynamiques !
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Types d’équilibres

Definition 11 (EP au niveau de la lieu)

La lieu p ∈ P à l’équilibre est vide si X ⋆
p = 0, à l’équilibre sans maladie si

X ⋆
p = (s⋆

k1p, . . . , s
⋆
kup, 0, . . . , 0), où k1, . . . , ku sont des indices avec 1 ≤ u ≤ |U| et

s⋆
k1p, . . . , s

⋆
kup sont positifs, et à un équilibre endémique si Xp ≫ 0

Definition 12 (EP au niveau de la métapopulation)

Un équilibre sans population a toutes les lieux vides. Un équilibre
métapopulation sans maladie a toutes les lieux à l’équilibre sans maladie pour
les mêmes compartiments. Un équilibre métapopulation endémique a toutes
les lieux à un équilibre endémique
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Équilibres mixtes

Definition 13
Un équilibre mixte est un équilibre tel que
▶ toutes les lieux sont à un équilibre sans maladie mais le système n’est pas à

un équilibre métapopulation sans maladie
▶ ou, il y a au moins deux lieux qui ont différents types d’équilibre au niveau de

la lieu (vide, sans maladie ou endémique)

Ex.,
((S1, I1,R1), (S2, I2,R2)) = ((+, 0, 0), (+,+,+))

est mixte et de même

((S1, I1,R1), (S2, I2,R2)) = ((+, 0, 0), (+, 0,+))
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La notation est spécifique ici : p ∈ P , A(p) et D(p) sont l’ascendance et les
descendants de p dans le digraphe de mouvement

Theorem 14
Supposons que le mouvement soit similaire pour tous les compartiments (MSAC)
et que le système soit à l’équilibre
▶ Si le patch p ∈ P est vide, alors tous les patches dans A(p) sont vides
▶ Si le patch p ∈ P est à un équilibre sans maladie, alors le sous-système

constitué de tous les patches dans {p,A(p)} est à un équilibre
métapopulation sans maladie

▶ Si le patch p ∈ P est à un équilibre endémique, alors tous les patches dans
D(p) sont également à un équilibre endémique

▶ Si Gc est fortement connexe pour un compartiment c ∈ C, alors il n’existe pas
d’équilibres mixtes

Noter que MSAC =⇒ Ac = A et Dc = D pour tout c ∈ C
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Métapopulations
Pourquoi utiliser des modèles de métapopulation?
Métapopulations avec mouvement explicite
Le cadre en théorie des graphes
Les modèles considérés
Passage à la forme vectorielle
La matrice de mouvement
Comportement de la composante de mobilité
Existence d’un ÉSM
Calcul d’un nombre de reproduction
Stabilité globale de l”ÉSM lorsque R0 < 1
Problèmes spécifiques aux métapopulations
Aspects computationnels des modèles de métapopulation



▶ JA. Spatio-temporal spread of infectious pathogens of humans. Infectious
Disease Modelling 2(2) :218-228 (2017)

▶ JA. Mathematical epidemiology in a data-rich world. Infectious Disease
Modelling 5 :161-188 (2020)

▶ github repo modelling-with-data
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Not very difficult

As for the mathematical analysis : if you do things carefully and think about things
a bit, numerics are not hard. Well : not harder than numerics in low-D

Exploit vector structure
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Set up parameters

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1e+06
countries = c("Canada", "China", "India", "Pakistan", "Philippines")
T = matrix(data = c(0, 1268, 900, 489, 200,

1274, 0, 678, 859, 150,
985, 703, 0, 148, 58,
515, 893, 144, 0, 9,
209, 174, 90, 2, 0),

nrow = 5, ncol = 5, byrow = TRUE)
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Computing birth and death rates

Average life expectancy at birth (years) : 81.30, 78.59, 67.74, 66.43, 72.19

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1e+06
countries = c("Canada", "China", "India", "Pakistan", "Philippines")
death_rates = 1/(365.25*c(81.30, 78.59, 67.74, 66.43, 72.19))
birth_rates = pop*death_rates
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Work out movement matrix

Use the approximation explained in Arino & Portet (JMB 2015)

p = list()
p$M = mat.or.vec(nr = dim(T)[1], nc = dim(T)[2])
for (from in 1:5) {

for (to in 1:5) {
p$M[to, from] = -log(1 - T[from, to]/pop[from])

}
p$M[from, from] = 0

}
p$M = p$M - diag(colSums(p$M))

For simplicity, let’s assume all movement rates are equal
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p$P = dim(p$M)[1]
p$epsilon = rep((1/1.5), p$P)
p$gamma = rep((1/5), p$P)
p$nu = rep((1/365.25), p$P)
p$b = birth_rates
p$d = death_rates
# The desired values for R_0
R_0 = rep(1.5, p$P)
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Write down indices of the different state variable types

Save index of state variable types in state variables vector (we have to use a
vector and thus, for instance, the name “S” needs to be defined)

p$idx_S = 1:p$P
p$idx_L = (p$P+1):(2*p$P)
p$idx_I = (2*p$P+1):(3*p$P)
p$idx_R = (3*p$P+1):(4*p$P)
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Set up IC and time

# Set initial conditions. For example, we start with 2
# infectious individuals in Canada.
L0 = mat.or.vec(p$P, 1)
I0 = mat.or.vec(p$P, 1)
R0 = mat.or.vec(p$P, 1)
I0[1] = 2
S0 = pop - (L0 + I0 + R0)
# Vector of initial conditions to be passed to ODE solver.
IC = c(S = S0, L = L0, I = I0, R = R0)
# Time span of the simulation (5 years here)
tspan = seq(from = 0, to = 100, by = 0.1)
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Computing R0 in patches in isolation to set up β

Useful to know R0p, basic reproduction numnber for patch p ∈ P disconnected
from the network

In the absence of movement, system in p ∈ P is

S′
p = bp − βpSpIp − dpSp + νpRp (17a)

L′
p = βpSpIp − (εp + dp) Lp (17b)

I′p = εpLp − (γp + dp)Ip (17c)

R′
p = γpIp − (νp + dp)Rp (17d)
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ÉSM is clearly (Sp, Lp, Ip,Rp) = (bp/dp, 0, 0, 0)

Infected variables are I = {L, I}

F = (βpSpIp, 0)T and V = ((εp + dp)Lp,−εpLp + (γp + dp)Ip)

so

F =

(
0 βp

bp
dp

0 0

)
and V =

(
εp + dp 0
−εp γp + dp

)
Thus

R0p = ρ(FV−1) = ρ

((
0 βp

bp
dp

0 0

)
1

(εp + dp)(γp + dp)

(
γp + dp 0

εp εp + dp

))

and it follows that
R0p =

βp

γp + dp

εp

εp + dp

bp

dp
(18)
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Set up β to avoid blow up

Let us take R0p = 1.5 for patches in isolation. Solve (18) for βp :

βp =
R0p(γp + dp)(εp + dp)dp

εpbp

for (i in 1:p$P) {
p$beta[i] =

R_0[i] *(p$gamma[i]+p$d[i]) * (p$epsilon[i]+p$d[i]) * p$d[i] /
(p$epsilon[i]*p$d[i])

}
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Define the vector field

SLIRS_metapop_rhs <- function(t, x, p) {
with(as.list(p), {

S = x[idx_S]
L = x[idx_L]
I = x[idx_I]
R = x[idx_R]
Phi = beta*S*I
dS = b - d*S - Phi + M%*%S
dL = Phi - (epsilon+d)*L + M%*%L
dI = epsilon*L - (gamma+d)*I + M%*%I
dR = gamma*I + - (nu+d)*R + M%*%R
return(list(c(dS, dL, dI, dR)))

})
}
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Et maintenant appeler le solveur

# Call the ODE solver
# sol <- ode(y = IC,
# ^^I^^I^^Itimes = tspan,
# ^^I^^I^^Ifunc = SLIRS_metapop_rhs,
# ^^I^^I^^Iparms = p,
# ^^I^^I^^Imethod = "ode45")
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Une petite astuce (cas avec démographie)

Supposons que l’équilibre démographique soit N⋆ = (d −M)−1b
On veut maintenir N(t) = N⋆ pour tout t afin d’ignorer la convergence vers
l’équilibre démographique. Penser en termes de b :

N′ = 0 ⇐⇒ b − dN +MN = 0 ⇐⇒ b = (d −M)N

Donc prendre b = (d −M)N⋆

Alors
N′ = (d −M)N⋆ − dN +MN

et donc si N(0) = N⋆, alors N′(0) = 0 et donc N′ = 0 pour tout t ≥ 0, c’est-à-dire
N(t) = N⋆ pour tout t ≥ 0
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Attention à cette astuce, cependant..

b = (d −M)N⋆

d −M a des entrées diagonales non négatives (typiquement positives) et des
entrées hors-diagonale non positives

Facile d’imaginer des situations où la diagonale sera dominée par la
hors-diagonale, donc b pourrait avoir des entrées négatives

=⇒ utiliser ceci pour les numériques, pas pour l’analyse mathématique
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Propagation spatio-temporelle des pathogènes infectieux

Métapopulations

Autres modèles spatiaux

Un modèle avec temps de séjour arbitraire

Âge de l’infection

Structuration en âge



Autres modèles spatiaux
Propagation spatiale sur une ń route ż
Un modèle de propagation spatiale par diffusion





Propagation spatiale d’une épidémie sur une ń route ż

▶ Modèles SIS et SIR

▶ Considérer une route de longueur L

▶ S(x , t), I(x , t) et (lorsque pertinent) R(x , t) sont les densités d’individus dans
les différents compartiments à la lieu x ∈ [0, L] au temps t

▶ Pour simplifier, noter
∂

∂t
X (x , t) = Xt(x , t)
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Le modèle SIR sur la route

St(x , t) = −β(x , t)S(x , t)− dS(x , t) + dN(x) + λ1I(x , t) (19a)
It(x , t) = λ(x , t)S(x , t)− dI(x , t)− (γ1 + γ2)I(x , t) (19b)

Rt(x , t) = γ2I(x , t)− dR(x , t) (19c)

où la force d’infection est

λ(x , t) =
1
N

∫ L

0
β(x , x ′)I(x , x ′)dx ′ (19d)

et la population totale le long de la route est

N =

∫ L

0
N(x ′)dx ′ (19e)
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Take the SIS model as an example (γ2 = 0, γ1 = γ). Solve (19b) in terms of λ :

I(x , t) = exp

(
−
∫ t

0
λ(x , s)− (d + γ)tds

)
×
∫ t

0
λ(x , t ′)N(x)e

∫ t′
0 λ(x ,s)+(d+γ)t ′dsdt ′

+ I(x , 0) exp
(
−
∫ t

0
λ(x , s)− (d + γ)tds

) (20)
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Substitute (20) into (19d)

λ(x , t) =
∫ L

0
β(x , x ′)n(x ′)

∫ t

0
λ(x ′, t ′)e−

∫ t
t′ λ(x

′,s)−(d+γ)(t−t ′)dsdt ′dx ′

+

∫ L

0
β(x , x ′)i(x ′, 0)e−

∫ t
0 λ(x ′,s)−(d+γ)tdsdx ′

where n(x) = N(x)/N and i(x , t) = I(x , t)/N. Without demography (d = 0) :

λ(x , t) =
∫ L

0
β(x , x ′)n(x ′)

∫ t

0
λ(x ′, t ′)e−

∫ t
t′ λ(x

′,s)−γ(t−t ′)dsdt ′dx ′

+

∫ L

0
β(x , x ′)i(x ′, 0)e−

∫ t
0 λ(x ′,s)−γtdsdx ′
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Thus the problem is in the form

Bλ(x , t) = λ(x , t)

In both cases, B is a Hammerstein-type operator in x

▶ SIR case : B is a nonlinear Volterra operator in t ⇒existence and uniqueness
of solutions

▶ SIS case : B is not a nonlinear Volterra operator in t . However, it resembles
one and the authors establish existence and uniqueness of solutions
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In both cases, there is a travelling wave front then convergence to a steady state

In the SIS case

λ(x) = lim
t→∞

Bλ(x , t) = B∞λ(x) =
∫ L

0
β(x , x ′)n(x ′)

λ(x ′,∞)

λ(x ′,∞) + γ

which does not depend on t

They then discuss conditions s.t. this limit ̸= 0, by looking for values of z s.t.
B∞λ(x) = zλ(x) has a positive solution

Show there exists a threshold zthreshold = R0 s.t. λ(x) ≡ 0 if R0 < 1 and a positive
solution if R0 > 1
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Autres modèles spatiaux
Propagation spatiale sur une ń route ż
Un modèle de propagation spatiale par diffusion





Spatial spread of rabies with immunity

∂S
∂t

= (a − b)
(

1 − N
K

)
S + a⋆R − βSI (21a)

∂L
∂t

= βSI − σL −
(

b + (a − b)
N
K

)
L (21b)

∂I
∂t

= σL − αI − γI −
(

b + (a − b)
N
K

)
I + DI

∂2I
∂x2 (21c)

∂R
∂t

= γI + (a − a⋆)R +

(
b + (a − b)

N
K

)
R (21d)

where N = S + L + I + R
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Un modèle avec temps de séjour arbitraire
Le modèle général
Cas se réduisant à une ÉDO
Cas se réduisant à une ÉDR





Un modèle avec efficacité et déclin du vaccin

▶ Distribution exponentielle des temps de guérison (taux γ)

▶ Les individus susceptibles sont vaccinés (le nombre de vaccinés au temps t
est noté V (t))

▶ La vaccination décline, une fraction P(t) des vaccinés au temps t = 0 restent
protégés par le vaccin

▶ La vaccination est imparfaite, 0 ≤ 1 − σ ≤ 1 est l’efficacité du vaccin
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Structure du modèle

S I

V

(1 − α)dN

αdN

dS dI

dV

βSI/N

γI
ϕS

P
(t) σβ

VI/N
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Paramètres

▶ d > 0 : taux de mortalité

▶ γ ≥ 0 : taux de guérison

▶ β > 0 : infectiosité de la maladie

▶ ϕ ≥ 0 : taux de vaccination des individus susceptibles

▶ α ∈ [0, 1) : fraction de nouveau-nés vaccinés

▶ 0 ≤ 1 − σ ≤ 1 : efficacité du vaccin. Désormais, supposer 0 ≤ σ < 1
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▶ Disease transmission : standard incidence

▶ Vaccination of newborns

▶ Birth and death rate equal (⇒constant total population)
Assumptions on P : P(t) is a nonnegative and nonincreasing function with
P(0+) = 1, and such that

∫∞
0 P(u)du is positive and finite

Constant total population ⇒ S(t) = N − I(t)− V (t) ; further, we switch to
proportions : S, I and V represent the proportions in the population, and N = 1
(S used in equations for conciseness)
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Le modèle SIS avec vaccination

dI(t)
dt

= β(S(t) + σV (t))I(t)− (d + γ)I(t) (22a)

V (t) = V0(t) +
∫ t

0
(ϕS(u) + αd)P(t − u)e−d(t−u)e−σβ

∫ t
u I(x)dxdu (22b)

▶ αd proportion de nouveau-nés vaccinés,
▶ ϕS(u) proportion de susceptibles vaccinés,
▶ P(t − u) fraction de la proportion vaccinée encore dans la classe V t − u

unités de temps après y être entrée,
▶ e−d(t−u) fraction de la proportion vaccinée non décédée de causes naturelles,

▶ e−σβ
∫ t

u I(x)dx fraction de la proportion vaccinée non passée dans la classe
infectieuse.
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Obtention de la condition initiale

Soit v(t , τ) la proportion (densité) d’individus dans la classe d’âge de vaccination
τ encore vaccinés au temps t , alors(

∂

∂t
+

∂

∂τ

)
v(t , τ) = −(σβI(t) + d + η(τ))v(t , τ) (23)

où V (t) =
∫∞

0 v(t , τ)dτ . η(τ) est le coefficient de taux de déclin du vaccin, avec la
proportion encore dans la classe d’âge de vaccination τ étant
P(τ) = exp

(
−
∫ τ

0 η(q)dq
)
. On suppose que P est une fonction de survie

L’entrée dans la classe d’âge zéro est

v(t , 0) = ϕS(t) + αd

et on suppose v(0, τ) ≥ 0
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Integrating (23) along characteristics, dividing the integral for V (t) at t , substituting
in the solutions, and changing integration variables, we get

V0(t) = e−
∫ t

0 (σβI(x)+d)dx
∫ ∞

0
v(0, u)

P(t + u)
P(u)

du (24)

The ratio P(t + u)/P(u) = exp
(∫ t+u

u η(q)dq
)

is well defined for t + u ≥ u ≥ 0 and
bounded above by 1.

Since V (0) is finite, the integral in V0(t) converges, and thus V0(t) is nonnegative,
nonincreasing and limt→∞ V0(t) = 0
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Let
D = {(S, I,V );S ≥ 0, I ≥ 0,V ≥ 0,S + I + V = 1}

Theorem 15
The set D is positively invariant under the flow of (22) with I(0) > 0,S(0) > 0
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With the assumed initial conditions in D, it can be shown that the system defined
by (22a) and (22b) is equivalent to the system defined by (22a) and

d
dt

V (t) =
d
dt

V0(t) + ϕS(t) + αd − (d + σβI(t))(V (t)− V0(t)) + Q(t) (25)

where to simplify notation, we denote

Q(t) =
∫ t

0
(ϕS(u) + αd)dt(P(t − u))e−d(t−u)e−σβ

∫ t
u I(x)dxdu

The system defined by (22a) and (25) is of standard form, therefore results of Hale
[Hale and Verduyn-Lunel, 2013] ensure the local existence, uniqueness and
continuation of solutions of model (22)
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R0

Define R0 with vaccination as

Rv = R0

[
1 + σϕP̃ − (1 − σ)αdP̃

1 + ϕP̃

]
(26)

where R0 = β
d+γ is the reproduction number in the absence of vaccination and

P̃ = lim
t→∞

∫ t

0
P(v)e−dv dv

in such a way that P̃ < 1/d

▶ Rv ≤ R0 and, in absence of vaccination, Rv = R0
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Theorem 16
System (22) with an arbitrary loss of vaccination function P(t) always admits the
disease-free equilibrium
▶ If R0 < 1, then the ÉSM is the only equilibrium of the system and the disease

goes extinct
▶ If Rv < 1, the ÉSM is LAS ; if Rv > 1, the ÉSM is unstable

vac

R
vac

R
vac

R
vac

R

R

0

>1

R
0

>1 >1

0 1

DFE l.a.s.DFE g.a.s. DFE unstable

<1<1

<1
0

R

p. 123 – Un modèle avec temps de séjour arbitraire



Un modèle avec temps de séjour arbitraire
Le modèle général
Cas se réduisant à une ÉDO
Cas se réduisant à une ÉDR



Réduction du système en utilisant des fonctions P(t) spécifiques

Comme précédemment, deux exemples

▶ La distribution des temps de déclin est exponentielle, ce qui conduit à un
système d’ÉDO. Traité brièvement ici, juste pour souligner la présence d’une
bifurcation arrière, un phénomène plutôt rare dans les modèles
épidémiologiques

▶ Le temps de déclin est une constante, ce qui conduit à un modèle à ÉDR.
Nous montrons que la bifurcation arrière est également présente
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Cas se réduisant à un système d’ÉDO
Supposer P(v) = e−θv , θ > 0. V0(t) = V0(0)e−(d+θ)te−

∫ t
0 σβI(x)dx de (24). Alors

(22a) et (25) donnent le système d’ÉDO

dI
dt

= β(1 − I − (1 − σ)V )I − (d + γ)I (27a)

dV
dt

= ϕ(1 − I − V )− σβIV − (d + θ)V + αd (27b)

qui sans vaccination des nouveau-nés (α = 0) est le modèle étudié dans
Kribs-Zaletta & Velasco-Hernandez, 2000 (étendu au SIR avec vaccination : Arino,
McCluskey and van den Driessche).

Du Théorème 16 l’ÉSM existe toujours, avec

ISM = 0,SSM =
θ + d(1 − α)

d + θ + ϕ
,VSM =

ϕ+ αd
d + θ + ϕ
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Bifurcation arrière

Supposer que R0 > 1, alors les équilibres endémiques (équilibres I positifs, notés
par I⋆) peuvent être obtenus analytiquement à partir de l’équation quadratique

P(I) = AI2 + BI + C = 0

où

A = −σβ

B = σ(β − (d + γ))− (d + θ + σϕ)

C = (d + γ)(d + θ + ϕ)(Rv − 1)/β

avec
Rv = R0

d + θ + σϕ− α(1 − σ)d
d + θ + ϕ

de (26).
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Backward bifurcation leading to two endemic equilibria occurs for σ > 0 if
P ′(0) = B > 0, P(0) = C < 0 and B2 > 4AC (we always have P(1) < 0)

▶ On an (Rv , I) bifurcation diagram, this occurs for Rc < Rv < 1, where Rc is the
value of Rv at the saddle node bifurcation point where the two values of I coincide,
i.e., I = Ic = B/(−2A)

▶ For Rv < Rc , there is no endemic equilibrium (EEP). For Rv > 1, the constant
term C > 0, and there is a unique EEP

▶ In the case of forward bifurcation, Rc = 1 ; this is the case in particular if the
vaccine is totally effective (σ = 0)
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By standard planar ODE arguments the following can be shown

Theorem 17
For the ODE system (27) with V (0) ≥ 0, I(0) > 0, and R0 > 1

(i) if Rv < Rc , then the disease dies out,

(ii) if Rc < Rv < 1, then the EEP with larger I is l.a.s., and the EEP with smaller I
is unstable

(iii) if Rv > 1, then the unique EEP is globally asymptotically stable in D − {I = 0}
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Pertussis :
▶ 3 week average disease duration (γ = 0.04762)
▶ Average lifetime 75 years (d = 3.6530E − 05)
▶ Average number of adequate contacts per infective per day is estimated at 0.4

(β = 0.4)
▶ Most newborns are vaccinated in the first few months of life (α = 0.9)
▶ Vaccine is effective, σ = 0.1 (90% effective vaccine).
▶ Pertussis vaccine begins to wane after about 3 years and the average waning

time of the vaccine 1/θ is assumed to be 5 years, giving θ = 5.4794E − 04

With these parameter values, there is backward bifurcation for a range of ϕ values
given by 0.0254 ≤ ϕ ≤ 0.1506
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With the above parame-
ter values, R0 = 8.3936
and Rv (ϕ) = 0.8807 for
ϕ = 0.1, which is in the
range of backward bifur-
cation since the critical
value Rc(ϕ) = 0.8669 <
Rv (ϕ) < 1
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Un modèle avec temps de séjour arbitraire
Le modèle général
Cas se réduisant à une ÉDO
Cas se réduisant à une ÉDR



Cas fonction échelon : un modèle intégral à retard

Supposer que

P(v) =
{

1 si v ∈ [0, ω]
0 sinon

Puisque V0(t) = 0 pour t > ω, avec S = 1 − I − V l’équation intégrale (22b)
devient, pour t > ω

V (t) =
∫ t

t−ω
(ϕ(1 − I(u)− V (u)) + αd)e−d(t−u)e−σβ

∫ t
u I(x)dxdu (28)
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Differentiating (28) (see equation (25)) gives the model as the two dimensional
system, for t > ω

d
dt

I(t) = β(1 − I(t)− (1 − σ)V (t))I(t)− (d + γ)I(t) (29a)

d
dt

V (t) = ϕ(1 − I(t)− V (t)) (29b)

− ϕ(1 − I(t − ω)− V (t − ω))e−dωe−σβ
∫ t

t−ω I(x)dx

− σβIV − dV + αd
(

1 − e−dωe−σβ
∫ t

t−ω I(x)dx
)

Hereafter, shift time by ω so that these equations hold for t > 0
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The well posedness of the problem follows from Theorem 15 and from the fact that
solutions of (22) exist and are unique. For a constant waning period, the basic
reproduction number from (26) is

Rv = R0
d + (σϕ− α(1 − σ)d)(1 − e−dω)

d + ϕ(1 − e−dω)
(30)

With IDF = 0, from Theorem 16

VDF =
(ϕ+ αd)(1 − e−dω)

d + ϕ(1 − e−dω)
, SDF =

d − αd(1 − e−dω)

d + ϕ(1 − e−dω)
(31)
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Trouver les EEP

À partir des isoclines, il existe un (ou plusieurs) équilibre(s) endémique(s) (EEP)
ssi il existe 0 < I⋆ ≤ 1 tel que

V ⋆ = f (I⋆) = g(I⋆) (32)

où
f (I) =

1 − 1/R0 − I
1 − σ

(33)

pour σ < 1, et

g(I) =
(ϕ(1 − I) + αd)(1 − e−dω−σβωI)

ϕ(1 − e−dω−σβωI) + d + σβI
(34)
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Visualiser et localiser la bifurcation

À partir des équations d’isoclines, un EEP existe ssi il existe un I⋆ ∈ (0, 1] tel que
les équations (32)-(34) sont satisfaites. Donc on étudie les zéros de

H(I) =
1 − 1/R0 − I

1 − σ
− (ϕ(1 − I) + αd)(1 − e−dω−σβωI)

ϕ(1 − e−dω−σβωI) + d + σβI

Pour formuler le problème de manière formelle, soit A = {α, β, γ, ω, ϕ, σ}
l’ensemble de paramètres d’intérêt, et notons

H(I,A) = f (I)− g(I) (35)

pour montrer la dépendance à ces paramètres.

p. 135 – Un modèle avec temps de séjour arbitraire



We proceed as follows.
1. Choose a parameter ai ∈ A.
2. Fix all other aj ’s (j ̸= i).
3. Choose ai,min, ai,max and ∆ai for ai .
4. For all ai,k = ai,min + k∆ai (k such that ai,k ≤ ai,max ), compute I⋆ such that

H(I⋆, ai,k ) = 0.
Step 4 is carried out using the MATLAB fzero function.
Further precision can be gained by showing that

H(0) =
Rv − 1

(1 − σ)R0

and that, for σ < 1

H(1) = − 1
(1 − σ)R0

− αd(1 − e−dω−σβω)

ϕ(1 − e−dω−σβω) + d + σβ
< 0
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Define Rc as previously. For R0 > 1 and Rv < 1, there are several possibilities.
▶ If Rv < Rc , then there is no EEP. H(0) and H(1) are strictly negative, and

numerical simulations seem to indicate that H has no roots in (0, 1] (i.e., that
H < 0 on this interval).

▶ If Rc < Rv < 1, then there are endemic equilibria. Here, since H(0) and H(1)
are strictly negative, the only possibility is thus to have an even number of
zeros of H. Numerical simulations appear to indicate that the number of
endemic equilibria is 2.

In between these two situations Rv = Rc and there is one endemic equilibrium I⋆.
Using the same procedure as for the visualisation of the bifurcation, it is possible
to compute Rc by finding the value I⋆ such that H(I⋆,A) = 0 and H ′(I⋆,A) = 0, for
a given parameter ai ∈ A.
If Rv > 1 then H(0) > 0 and so there is an odd number of endemic equilibria.
Numerical simulations indicate that there is a unique EEP.
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Analyse numérique de bifurcation

Mêmes valeurs de paramètres que dans le cas ÉDO, sauf que le temps de déclin
constant (le retard) ω doit être substitué à θ. On prend ω = 1825, c’est-à-dire,
correspondant à un temps de déclin de 5 ans

Ces paramètres donnent R0 = 8.3936 et Rv (ϕ) = 0.8819, ce qui est dans la
plage de la bifurcation arrière puisque (en utilisant la méthode ci-dessus)
Rc(ϕ) = 0.8675

Le diagramme de bifurcation est très similaire à celui représenté précédemment
pour l’ÉDO. Les simulations numériques du modèle ÉDR (en utilisant dde23)
indiquent qu’il n’y a pas de bifurcations supplémentaires ; les solutions vont soit
vers l’ÉSM soit vers le (plus grand) EEP
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(a) Values of I⋆ as a function of ω by solving H(I,A) = 0 with ai = ω. (b) Value of
I(t) versus time, obtained by numerical integration of system (29) with initial data
I(t) = c, for t ∈ [−ω, 0], ω = 1825, c varying from 0 to 1 by steps of 0.02
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Âge d’infection

Nous avons vu que la dimensionnalité infinie pouvait résulter d’une description
détaillée (ou non spécifiée) du temps de séjour dans les compartiments

À l’origine, l’âge d’infection a été introduit pour tenir compte des différences
d’infectiosité en fonction du temps écoulé depuis qu’un individu est devenu infecté

Par exemple, on sait que l’infectiosité des patients VIH positifs varie en fonction du
temps écoulé depuis l’infection
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Âge de vaccination

Nous avons utilisé l’âge de vaccination pour trouver la condition initiale de (22)

Ici nous examinons de plus près ce type de modèle
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Comment modéliser le temps entre les doses de vaccin

S ′ = −fS − V1(t , 0) (36a)

A ′ =
(
(1 − p)S + (1 − p1)δ1Ṽ1 + (1 − p2)δ2V2

)
f − µAA (36b)

I ′ = (pS + p1δ1Ṽ1 + p2δ2V2)f − µI (36c)
V2

′ = V1(t , a⋆)− δ2fV2(t) (36d)(
∂

∂t
+

∂

∂a

)
V1(t , a) = −δ1fV1(t , a), 0 ≤ a ≤ a⋆ (36e)

et condition au bord

V1(t , 0) =

{
γS0

(
S(t)

S(t)+A(t)

)
si T ≤ t ≤ Te et S > 0

0 sinon
(36f)

où f = β(δAA + I) et Ṽ1(t) =
∫ a⋆

0 V1(t , a)da
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Simplifier un peu

Intégrer (36e) en utilisant les caractéristiques le long des lignes a = s et t = T + s,
avec s comme nouvelle variable

V1(t , a) = V1(t − a, 0) exp
(∫ t

t−a
−δ1f (ξ) dξ

)
(37)

Définir

ζ(t) =
∫ t

0
δ1f (ξ)dξ

et substituer dans (37), donnant

V1(t , a) = V1(t − a, 0) exp (ζ(t − a)ζ(t))

Donc le retard distribué est maintenant discret
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Simplifier encore un peu
Let

ν(t) =
∫ t

0
V1(s, 0)eζ(s)ds

Then the total number of individuals having been vaccinated with a single dose is

Ṽ1(t) = e−ζ(t) (ν(t)− ν(t − a⋆))

S ′ = −fS − V1(t , 0) (38a)

A ′ =
(
(1 − p)S + (1 − p1)δ1Ṽ1 + (1 − p2)δ2V2

)
f − µAA (38b)

I ′ = (pS + p1δ1Ṽ1 + p2δ2V2)f − µI (38c)

V2
′ = V1(t − a⋆, 0)eζ(t−a⋆) − δ2fV2(t) (38d)

ζ ′ = δ1f (38e)

ν ′ = V1(t , 0)eζ(t) (38f)
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Structure d’âge

Prendre en compte l’âge peut être important dans certains cas

▶ Les caractéristiques démographiques varient avec l’âge
▶ Les interactions sont en général plus fréquentes entre personnes d’âge

similaire. Elles sont aussi plus fréquentes chez les individus plus jeunes
▶ Certaines maladies attaquent préférentiellement les individus plus jeunes
▶ L’immunité des individus change avec l’âge, donc par exemple, les personnes

âgées peuvent être plus susceptibles à certaines maladies que les plus
jeunes

Ceci est basé sur des cours donnés par Jia Li lors d’une école d’été à Banff en
2004
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Note sur l’âge

Âge chronologique, en tant que variable structurante, est ń plus facile ż que
d’autres variables structurantes

En effet, si a est l’âge (chronologique), alors

d
dt

a = 1
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Formulation d’un modèle SIR

Soit a l’âge. Supposer que la mort naturelle et la guérison se produisent aux taux
µ et γ, respectivement, tous deux dépendant de a

Lorsqu’un individu est malade, il est soumis à la mort induite par la maladie au
taux δ(a)

Les équations gouvernantes sont

(∂t + ∂a)S(t , a) = Λ(a)− (µ(a) + λ(t , a))S(t , a) (39a)

(∂t + ∂a)I(t , a) = −(µ(a) + γ(a) + δ(a))I(t , a) + λ(t , a)S(t , a) (39b)

(∂t + ∂a)R(t , a) = γ(a)I(t , a) (39c)
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Les conditions aux limites sont

S(t , a0) = B (39d)
I(t , a0) = 0 (39e)

R(t , a0) = 0 (39f)

tandis que les conditions initiales prennent la forme

S(0, a) = Φ(a) (39g)
I(0, a) = Ψ(a) (39h)

R(0, a) = 0 (39i)
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Force d’infection

La transmission λ(t , a) de la maladie prend la forme

λ(t , a) = r(a)
∫ ∞

a0

β(a, s)ρ(a, s)
I(t , s)
N(t , s)

ds

où
▶ r(a) est le nombre de contacts par individus d’âge a par unité de temps
▶ β(a, s) est la probabilité de transmission de la maladie à un susceptible d’âge

a par un infectieux d’âge s
▶ ρ(a, s) est le taux de rencontre entre personnes d’âge a et personnes d’âge s
▶ N(t , a) = S(t , a) + I(t , a) + R(t , a) est la distribution de la population totale
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Pour simplifier, supposer que β(a, s) est séparable

β(a, s) = f (a)g(s)

où f (a) est la susceptibilité des individus d’âge a et g(s) est la force d’infection des
individus d’âge s

Alors
λ(t , a) = r(a)f (a)

∫ ∞

a0

g(s)ρ(a, s)
I(t , s)
N(t , s)

ds (40)
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Analyse du modèle SIR

Nous cherchons l’ÉSM en posant I = 0

Nous trouvons (S, I,R) = (S0(a), 0, 0) avec

S0(a) = Be−M(a) + e−M(a)
∫ a

a0

eM(x)Λ(x)dx

où

M(a) =
∫ a

a0

µ(s)ds
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Considérer la solution perturbée u(t , a) = S(t , a)− S0(a). Supposer que le taux
de rencontre ρ est également séparable,

ρ(a, s) = p1(a)p2(s)

Alors
λ̃(t , a) := r(a)f (a)p1(a)

∫ ∞

a0

g(s)p2(s)
S0(s)

I(t , s)ds ≃ λ(t , a)

et nous obtenons la linéarisation

(∂t + ∂a)u = −µ(a)u − λ̃(t , a)S0(a)

(∂t + ∂a)I = −(µ(a) + γ(a) + δ(a))I + λ̃(t , a)S0(a)
(∂t + ∂a)R = γ(a)I
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Let
u(t , a) = ũ(a)ec(t−a) I(t , a) = Ĩ(a)ec(t−a)

and denote

b(a) = S0(a)r(a)f (a)p1(a) W =

∫ ∞

a0

g(s)p2(s)
S0(s)

e−cs Ĩ(s)ds
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Then

dũ(a)
da

= −µ(a)ũ(a)− b(a)ecaW

dĨ(a)
da

= −(µ(a) + γ(a))̃I(a) + b(a)ecaW

Ĩ(a) = We−M(a)−Γ(a)
∫ ∞

a0

eM(s)+Γ(s)b(s)ecsds

where Γ(a) =
∫ a

a0
γ(s)ds

Therefore

W = W
∫ ∞

a0

g(s)p2(s)
S0(s)

e−M(s)−Γ(s)
∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds
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Let then

H(c) :=
∫ ∞

a0

g(s)p2(s)
S0(s)

e−M(s)−Γ(s)
∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds

We seek roots of the characteristic equation H(c) = 1

We have
dH(c)

dc
= −

∫ ∞

a0

g(s)p2(s)
S0(s)

e−M(s)−Γ(s)
∫ s

a0

(s − v)eM(v)+Γ(v)b(v)e−c(s−v)dvds < 0

implying that H(c) is a decreasing function
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▶ Let c⋆ be a real solution to H(c) = 1. If H(0) > 1, then c > 0, whereas if
H(0) < 1, c < 0

▶ Suppose that c⋆ = α+ iβ is a complex root of H(c) = 1. Then

Re H(c) =
∫ ∞

a0

g(s)p2(s)
S0(s)

e−M(s)−Γ(s)
∫ s

a0

eM(v)+Γ(v)b(v)e−α(s−v) cos β(s − v)dvds

As a consequence, H(0) < 1 =⇒ α < 0

So H(0) = 1 is a threshold and we take R0 = H(0)
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Analyse utilisant les semi-groupes : modèle SIA

Pour illustrer l’utilisation de la méthode des semi-groupes dans ce contexte, nous
considérons un modèle SIA décrivant l’évolution du VIH/SIDA

Le modèle est presque équivalent à (39), avec quelques différences

Le compartiment I contient les individus porteurs du VIH, mais pas encore au
stade SIDA

Le taux γ(a) représente la progression vers le stade SIDA

Le stade SIDA est représenté par le compartiment A, où les individus sont soumis
à un taux de mortalité spécifique
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(∂t + ∂a)S(t , a) = Λ(a)− (d(a) + λ(t , a))S(t , a) (41a)
(∂t + ∂a)I(t , a) = −(d(a) + γ(a))I(t , a) + λ(t , a)S(t , a) (41b)
(∂t + ∂a)A(t , a) = γ(a)A(t , a)− (d(a) + δ(a))A(t , a) (41c)

Assume

λ(t , a) = h(a)
∫ ∞

a0

ρ(a, a′)
I(t , a′)

T (t , a′)
da′ (41d)

where T (t , a′) = S(t , a′) + I(t , a′)
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Un individu au stade SIDA n’a plus de contacts. Par conséquent, la dynamique de
S et I ne dépend pas de la dynamique de A, et nous considérons le système
constitué des deux premières variables

Soit ω l’âge maximal. Le système en proportions prend la forme

x :=
S
T

y :=
I
T

Comme nous ne considérons que S et I, nous avons x + y = 1 et le système
s’écrit

(∂t + ∂a)y(t , a) = (1 − y)(−γ(a)y + λ(t , a)) (42a)

λ(t , a) = h(a)
∫ ω

0
p(a, a′)y(t , a′)da′ (42b)
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Let X = {f ∈ L1(0, ω)}. Define

(Af )(a) := − d
da

f (a), f ∈ D(A)

with D(a) = {f ∈ X , f is absolutely continuous, f (0) = 0}, and

F (f )(a) ≡ (1 − f (a))
(
−γ(a)f (a) + h(a)

∫ ω

0
p(a, a′)f (a′)da′

)
an operator from X → X

Let Ω = {f ∈ X , 0 ≤ f ≤ 1 a.e.}. Then (42) takes the form

dy
dt

= Ay + F (y)

y(0) = y0 ∈ Ω
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Let

(Bf )(a) = −df (a)
da

− γ(a)f (a) (Pf )(a) = h(a)
∫ ω

0
p(a, a′)f (a′)da′

We have

(∂t + ∂a)y = −γ(a)y + h(a)
∫ ω

0
ρ(a, a′)y(t , a′)da′ ⇔ dy

dt
= (B + P)y

B + P generates a C0-semigroup T (t), t ≥ 0, which is eventually uniformly
continuous
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The resolvant of B + P is

R(λ;B + P) = (Sλ − I)−1G

with

(Gf )(a) =
∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
f (σ)dσ

(Sλf )(a) =
∫ ω

0

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
ρ(σ, ξ)dσf (ξ)dξ

where we denoted

Γ(a) = exp

(
−
∫ a

0
γ(a′)da′

)

p. 164 – Structuration en âge



R0

R0 is the spectral radius of the operator

(Sf )(a) =
∫ ω

0

∫ a

0

Γ(a)
Γ(σ)

h(σ)p(σ, ξ)dσf (ξ)dξ
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Formation de paires

ρ(t , a, a′) proportion de partenaires d’un individu âgé de a qui ont l’âge a′

r(t , a) nombre moyen de partenaires d’un individu âgé de a

T (t , a) nombre total d’individus âgés de a

Les conditions suivantes doivent être satisfaites
▶ 0 ≤ ρ ≤ 1
▶ ∫∞

0 ρ(t , a, a′)da′ = 1
▶ ρ(t , a, a′)r(t , a)T (t , a) = ρ(t , a′, a)r(t , a′)T (t , a′)

▶ r(t , a)T (t , a)r(t , a′)T (t , a′) = 0 ⇒ ρ(t , a, a′) = 0
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