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Au début de la crise COVID-19

▶ Je travaillais sous contrat avec l’Agence de la santé publique du Canada sur
l’évaluation du risque d’importation de COVID-19

▶ Je produisais un rapport quotidien avec la liste des pays les plus susceptibles
de signaler des cas de COVID-19 dans les jours à venir

▶ J’utilisais des simulations ensemblistes d’un modèle de métapopulation
déterministe global ajusté

p. 1 – Pourquoi incorporer la stochasticité?





▶ Jours très très longs (18-20 heures, 7 jours par semaine)

▶ Ceci incluait un bon moment à attendre que le “cluster” finisse de tourner

=⇒ PHAC/ACSP m’a donné des sous pour acheter un vrai cluster
(Threadrippers ! ! !)

=⇒ J’ai aussi commencé à réflechir à la validité de mon modèle alors que mon
focus passait du mouvement au niveau planétaire à un mouvement plus local
entre provinces du Canada

p. 3 – Pourquoi incorporer la stochasticité?



Qu’est-ce qui ne va pas avec les modèles déterministes?

▶ J’ai souligné hier que le SARS-CoV-2 est une unique réalisation d’un processus
stochastique

▶ Les modèles déterministes « opèrent sur des moyennes » sur un grand
(→ +∞) nombre de réalisations

▶ Si nous voulons avoir une meilleure idée de ce qui pourrait se passer, pas
seulement en moyenne, alors nous devons voir ce qui peut effectivement se
passer

p. 4 – Pourquoi incorporer la stochasticité?



Mon nouveau focus – Les introductions

▶ J’ai commencé à penser en particulier aux introductions (ou importations) de
pathogènes dans de nouvelles populations

▶ En effet, les introductions sont une étape obligatoire dans la propagation
spatiale

p. 5 – Pourquoi incorporer la stochasticité?



Premier élément de preuve

Dans la vraie vie, les introductions de pathogènes ne suivent pas toujours le
schéma

{R0 < 1 =⇒→ DFE | R0 > 1 =⇒ épidémie ou→ EEP}

p. 6 – Pourquoi incorporer la stochasticité?







Deuxième élément de preuve

Le début d’une épidémie peut être extrêmement lent, avec très peu de cas
pendant un certain temps

p. 9 – Pourquoi incorporer la stochasticité?





Pourquoi ceci est pertinent

Loin d’être la seule raison, mais à titre d’exemple : le Canada a des communautés
éloignées/isolées qui sont vulnérables aux introductions de pathogènes

p. 11 – Pourquoi incorporer la stochasticité?











Pour les communautés des Premières Nations et Métis

Éloignée décrit une zone géographique où une communauté est située à plus
de 350 km du centre de services le plus proche ayant un accès toute l’année
par voies terrestres et/ou maritimes normalement utilisées par tous les temps

Isolée signifie une zone géographique qui a des vols réguliers et un bon
service téléphonique, mais est sans accès toute l’année par voies terrestres
et/ou maritimes normalement utilisées par tous les temps

Éloignée-Isolée signifie une zone géographique qui n’a ni vols réguliers ni
accès toute l’année par voies terrestres et/ou maritimes qui peuvent être utilisées
par tous les temps, indépendamment du niveau de service téléphonique et radio
disponible

p. 16 – Pourquoi incorporer la stochasticité?



Pour les communautés inuites

Les communautés inuites doivent être appelées Inuit Nunangat, et non
communautés éloignées et isolées, afin de respecter la langue et la culture
uniques des régions inuites, ainsi que les défis communs en matière de
déterminants sociaux de la santé, d’accès aux soins et d’infrastructure qui se
retrouvent dans toutes les communautés inuites

p. 17 – Pourquoi incorporer la stochasticité?



Communautés éloignées du MB
Les communautés éloignées sont des communautés du Manitoba qui
n’ont pas d’accès routier permanent (c’est-à-dire, pas de route prati-
cable en toutes saisons), sont à plus de quatre heures de route d’un
hôpital rural important (et d’une unité de dialyse), ou ont un accès uni-
quement par rail ou avion. Cela inclut Norway House, Lynn Lake, Leaf
Rapids, Gillam et Cross Lake. Si la plupart des communautés d’un dis-
trict sanitaire sont désignées comme « éloignées », l’ensemble du district
est désigné comme « éloigné ». Au Manitoba, les districts éloignés com-
prennent :
▶ Région sanitaire du Nord : NO23, NO13, NO25, NO16, NO22,

NO26, NO28, NO31, et
▶ Région sanitaire Interlake-Est : IE61.

Chartier M, Dart A, Tangri N, Komenda P, Walld R, Bogdanovic B, Burchill C, Koseva I,
McGowan K, Rajotte L. Care of Manitobans Living with Chronic Kidney Disease.
Winnipeg, MB. Manitoba Centre for Health Policy, December 2015

p. 18 – Pourquoi incorporer la stochasticité?





Voyages vers/depuis des communautés éloignées ou isolées

Comment pensez-vous que cela se compare aux voyages dans les communautés
non éloignées/isolées?

Temps de résidence (la version écologie lacustre) : temps théorique qu’une
molécule d’eau moyenne ou comparable passe dans un lac, considérant l’afflux
dans et l’écoulement hors du lac

Pensez aux temps de résidence dans ces communautés : quel est le temps
moyen qu’une personne passe dans une communauté éloignée ou isolée avant de
la quitter?

Le temps de résidence dans un lieu est le nombre total de trajets entrants et
sortants d’une localisation sur une durée (1 mois ici) divisé par la population
normale dans la localisation

p. 20 – Pourquoi incorporer la stochasticité?





Le paradoxe des voyages vers/depuis les communautés
éloignées/isolées

Volumes de voyage faibles mais taux de mouvement élevés

Les CI sont fortement connectées au(x) centre(s) urbain(s) auxquels elles sont
subordonnées

Encore renforcé à Winnipeg par la population autochtone urbaine (102 075 ou
12,45% de la population métropolitaine), ce qui signifie que de nombreux liens
familiaux existent

p. 22 – Pourquoi incorporer la stochasticité?
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Voir en particulier les travaux de Horst Thieme

Si l’on considère le temps de séjour dans les compartiments d’une perspective
plus détaillée, on obtient des modèles intégro-différentiels

Nous utilisons ici des variables aléatoires continues. Voir les chapitres 12 et 13 du
livre de Thieme pour des distributions arbitraires

p. 23 – Stochasticité dans les modèles déterministes

https://scholar.google.ca/citations?user=o7R6ZHMAAAAJ
https://press.princeton.edu/books/paperback/9780691092911/mathematics-in-population-biology


Temps jusqu’aux événements

Nous supposons qu’un système peut être dans deux états, A et B
▶ Au temps t = 0, le système est dans l’état A
▶ Un événement se produit à un certain temps t = τ , qui déclenche le passage

de l’état A à l’état B

Appelons T la variable aléatoire
“temps passé dans l’état A avant de passer à l’état B”

p. 24 – Stochasticité dans les modèles déterministes



Les états peuvent être n’importe quoi :
▶ A : fonctionnel, B : en panne
▶ A : infecté, B : rétabli
▶ A : vivant, B : mort
▶ . . .

Nous prenons une collection d’objets ou d’individus qui sont dans l’état A et
voulons une loi pour la distribution des temps passés dans A, c’est-à-dire une loi
pour T

Par exemple, nous fabriquons des ampoules et aimerions dire à nos clients qu’en
moyenne, nos ampoules durent 200 ans...

Nous effectuons un nombre infini d’expériences, et observons le temps qu’il faut,
dans chaque expérience, pour passer de A à B

p. 25 – Stochasticité dans les modèles déterministes
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p. 26 – Stochasticité dans les modèles déterministes



Une distribution de probabilité est un modèle

À partir de la séquence d’expériences, nous déduisons un modèle, qui dans ce
contexte est appelé une distribution de probabilité

Nous supposons que T est une variable aléatoire continue

p. 27 – Stochasticité dans les modèles déterministes



Fonction de densité de probabilité

Puisque T est continue, elle a une fonction de densité de probabilité continue f

▶ f ≥ 0
▶

∫ +∞
−∞ f (s)ds = 1

▶ P(a ≤ T ≤ b) =
∫ b

a f (t)dt

t

f(
t)

a b

p. 28 – Stochasticité dans les modèles déterministes



Fonction de répartition (f.r.)

La fonction de répartition est
une fonction F (t) qui caractérise
la distribution de T , et définie par

F (s) = P(T ≤ s) =
∫ s

−∞
f (x)dx

t
f(

t)

b

p. 29 – Stochasticité dans les modèles déterministes



Fonction de survie

Une autre caractérisation de la distribution de la variable aléatoire T se fait par la
fonction de survie (ou de séjour)

La fonction de survie de l’état A est donnée par

S(t) = 1− F (t) = P(T > t) (1)

Ceci donne une description du temps de séjour d’un système dans un état
particulier (le temps passé dans l’état)

S est une fonction non croissante (puisque S = 1− F avec F une f.r.), et S(0) = 1
(puisque T est une variable aléatoire non négative)

p. 30 – Stochasticité dans les modèles déterministes



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distribution, fonctions de répartition et de survie

t

V
al

ue

Densité
FR
Survie



Le temps de séjour moyen τ dans l’état A est donné par

τ = E(T ) =

∫ ∞

0
tf (t)dt

Puisque limt→∞ tS(t) = 0, il s’ensuit que

τ =

∫ ∞

0
S(t)dt

Durée de vie future espérée :

1
S(t0)

∫ ∞

0
t f (t + t0)dt

S(t)− S(a) = P {survivre pendant (a, t) ayant survécu jusqu’à a}

= exp

(
−
∫ t

a
h(u)du

)
p. 32 – Stochasticité dans les modèles déterministes



Taux de risque

Le taux de risque (ou taux de défaillance) est

h(t) = lim
∆t→0

S(t)− S(t +∆t)
∆t

= lim
∆t→0

P(T < t +∆t |T ≥ t)
∆t

=
f (t)
S(t)

Il donne la probabilité de défaillance entre t et ∆t , étant donné la survie jusqu’à t .

Nous avons
h(t) = − d

dt
lnS(t)

p. 33 – Stochasticité dans les modèles déterministes
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Risques concurrents

Supposons maintenant que le système commence dans l’état A au temps t = 0 et
que selon lequel des deux événements E1 ou E2 a lieu en premier, il passe à l’état
B1 ou B2, respectivement

Considérons les variables aléatoires TA, temps passé dans l’état A (ou temps de
séjour dans A), TAB1 , temps avant le passage à B1 et TAB2 , temps avant le
passage à B2

Si nous considérons l’état A, nous ne pouvons pas observer les variables TAB1 ou
TAB2 . Ce qui est observable est le temps de séjour dans A

T ∗
A = min

(
TAB1 ,TAB2

)
(où ∗ indique qu’une quantité est observable)

p. 35 – Stochasticité dans les modèles déterministes



Taux de défaillance par type d’événement

Nous avons deux (ou plusieurs) types d’événements dont les taux de défaillance
individuels doivent être pris en compte

hj(t) = lim
∆t→0

P(T < t +∆t ,S = Sj |T ≥ t)
∆t

où P(T < t +∆t ,S = Sj |T ≥ t) est la probabilité de défaillance due à la cause Sj
(j = 1,2 ici), c’est-à-dire S est une v.a. discrète représentant l’événement qui se
produit

p. 36 – Stochasticité dans les modèles déterministes



Par la loi de probabilité totale, puisqu’un seul des événements peut avoir lieu, s’il y
a n risques, alors

h(t) =
n∑

i=1

hj(t)

ou, de manière identique,

S(t) = exp

(
−
∫ t

0

∑
n
j=1hj(s) ds

)

p. 37 – Stochasticité dans les modèles déterministes



En conséquence, supposons qu’un processus est soumis à deux risques
exponentiels concurrents avec des distributions respectives de paramètres θ1 et θ2

Alors le temps de séjour moyen dans l’état initial avant d’être affecté par l’un des
deux risques est

1
θ1 + θ2

p. 38 – Stochasticité dans les modèles déterministes
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La distribution exponentielle

La variable aléatoire T a une distribution exponentielle si sa fonction de densité
de probabilité prend la forme

f (t) =

{
0 si t < 0,
θe−θt si t ≥ 0,

(2)

avec θ > 0. Alors la fonction de survie pour l’état A est de la forme S(t) = e−θt ,
pour t ≥ 0, et le temps de séjour moyen dans l’état A est

τ =

∫ ∞

0
e−θtdt =

1
θ

p. 39 – Stochasticité dans les modèles déterministes



Particularités de la distribution exponentielle

L’écart-type d’une distribution exponentielle est également 1/θ. Lors de
l’estimation de θ, il est impossible de distinguer la moyenne et l’écart-type

La distribution exponentielle est sans mémoire : sa probabilité conditionnelle
obéit à

P(T > s + t | T > s) = P(T > t), ∀s, t ≥ 0

Les distributions exponentielle et géométrique sont les seules distributions de
probabilité sans mémoire

La distribution exponentielle a une fonction de risque constante h(t) ≡ θ

p. 40 – Stochasticité dans les modèles déterministes
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La distribution delta de Dirac

Si pour une constante ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

ce qui signifie que T a une distribution delta de Dirac δω(t), alors le temps de
séjour moyen est

τ =

∫ ω

0
dt = ω

avec écart-type σ = 0

p. 42 – Stochasticité dans les modèles déterministes



La distribution Gamma

La v.a. X est distribuée selon une loi Gamma (X ∼ Γ(k , θ)) avec paramètre de
forme k et paramètre d’échelle θ (ou taux β = 1/θ) (tous positifs) si sa fonction
de densité de probabilité prend la forme

f (x ; k , θ) =
xk−1e−

x
θ

Γ(k)θk (3)

où x > 0 et Γ est la fonction Gamma d’Euler, définie pour tout z ∈ C tel que
Re (z) > 0 par

Γ : z 7→
∫ +∞

0
tz−1 e−t dt

p. 43 – Stochasticité dans les modèles déterministes



Propriétés de la distribution Gamma

Moyenne kθ, variance kθ2

Fonction de survie

S(t) = 1− 1
Γ(k)

γ

(
k ,

t
θ

)
= 1− 1

Γ(k)
γ (k , βt)

où

γ(a, x) =
∫ x

0
ta−1e−tdt

est une fonction Gamma incomplète

p. 44 – Stochasticité dans les modèles déterministes
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Un modèle pour une cohorte avec une cause de décès
Considérons une cohorte d’individus nés au même moment, par exemple, la
même année

▶ Au temps t = 0, il y a initialement N0 > 0 individus
▶ Toutes les causes de décès sont combinées ensemble
▶ Le temps jusqu’au décès, pour un individu donné, est une variable aléatoire

T , avec une distribution de densité de probabilité continue f (t) et une fonction
de survie S(t)

N(t) la population de la cohorte au temps t ≥ 0

N(t) = N0S(t) (4)

S(t) proportion de la population initiale encore en vie au temps t , donc N0S(t)
nombre dans la cohorte encore en vie au temps t

p. 46 – Stochasticité dans les modèles déterministes



Cas où T est distribuée exponentiellement

Supposons que T ait une distribution exponentielle avec moyenne 1/d (ou
paramètre d), f (t) = de−dt . Alors la fonction de survie est S(t) = e−dt , et (4) prend
la forme

N(t) = N0e−dt (5)

Notez maintenant que

d
dt

N(t) = −dN0e−dt

= −dN(t)

avec N(0) = N0.

⇒ L’EDO N ′ = −dN fait l’hypothèse que l’espérance de vie à la naissance est
distribuée exponentiellement

p. 47 – Stochasticité dans les modèles déterministes



Fonction de survie, S(t) = P(T > t), pour une distribution exponentielle avec
moyenne 80 ans
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p. 48 – Stochasticité dans les modèles déterministes



Cas où T a une distribution delta de Dirac

Supposons que T ait une distribution delta de Dirac en t = ω, donnant la fonction
de survie

S(t) =

{
1, 0 ≤ t ≤ ω

0, t > ω

Alors (4) prend la forme

N(t) =

{
N0, 0 ≤ t ≤ ω

0, t > ω
(6)

Tous les individus survivent jusqu’au temps ω, puis ils meurent tous au temps ω

p. 49 – Stochasticité dans les modèles déterministes



Fonction de survie, S(t) = P(T > t), pour une distribution de Dirac avec moyenne
80 ans
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p. 50 – Stochasticité dans les modèles déterministes
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Survie pour la distribution exponentielle
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p. 51 – Stochasticité dans les modèles déterministes



Problèmes avec la distribution exponentielle

▶ La survie chute rapidement

▶ La survie continue bien au-delà de la moyenne

Acceptable si ce qui compte est la durée moyenne de séjour dans un
compartiment (par ex., dynamique à long terme)

Plus délicat si l’on s’intéresse à la dynamique à court terme

▶ La distribution exponentielle avec paramètre θ a la même moyenne et
écart-type 1/θ, c’est-à-dire qu’un seul paramètre contrôle la moyenne et la
dispersion autour de la moyenne

p. 52 – Stochasticité dans les modèles déterministes



Les distributions exponentielles sont « mauvaises » mais aussi cool

X1 et X2 2 v.a. i.i.d. (indépendantes et identiquement distribuées) avec paramètres
θ1 et θ2. Alors la fonction de densité de probabilité de la v.a. Z = X1 + X2 est
donnée par la convolution

fZ (z) =
∫ ∞

−∞
fX1(x1)fX2(z − x1)dx1

=

∫ z

0
θ1e−θ1x1θ2e−θ2(z−x1) dx1

= θ1θ2e−θ2z
∫ z

0
e(θ2−θ1)x1 dx1

=


θ1θ2

θ2 − θ1

(
e−θ1z − e−θ2z) si θ1 ̸= θ2

θ2ze−θz si θ1 = θ2 =: θ
(7)

p. 53 – Stochasticité dans les modèles déterministes



L’outil que nous utilisons

Theorem 1
Soit Xi des variables aléatoires indépendantes distribuées exponentiellement avec
paramètre ξ et Y =

∑n
i=1 Xi

Alors la variable aléatoire Y ⇝ E(n, ξ), une distribution d’Erlang avec paramètre
de forme n et paramètre d’échelle ξ

(Distribution d’Erlang : distribution Gamma avec paramètre de forme entier)

p. 54 – Stochasticité dans les modèles déterministes



Conséquences pour les modèles compartimentaux
Si n compartiments sont traversés successivement par des individus, avec chaque
compartiment ayant un taux de sortie de 1/ξ (ou un temps de séjour moyen de ξ),
alors le temps de séjour depuis l’entrée dans le premier compartiment jusqu’à la
sortie du dernier est distribué selon Erlang avec moyenne E(Y ) = nξ et variance
Var(Y ) = nξ2

X

X1 X2 Xk XN−1 XN

µX

εX1 εX2
εXN−2 εXN−1 εXN

Temps de séjour moyen N/ε

Temps de séjour moyen 1/µ

J’ai une appli Shiny pour ceci :)p. 55 – Stochasticité dans les modèles déterministes

https://daytah-or-dahtah.ovh:3838/Erlang_shiny/


Exemple : périodes d’incubation de la MVE

Considérons la période d’incubation de la Maladie à Virus Ebola. Pendant la crise
de MVE de 2014 en Afrique de l’Ouest, l’Équipe de réponse Ebola de l’OMS a
estimé les périodes d’incubation dans un article de 2015

Le tableau S2 dans les Informations Supplémentaires de cet article donne le
meilleur ajustement pour la distribution des périodes d’incubation de la MVE
comme une distribution Gamma avec moyenne 10,3 jours et écart-type 8,2,
c’est-à-dire nε = 10,3 et ε

√
n = 8,2

De ceci, ε = 8,22/10,3 ≃ 6,53 et n = 10,32/8,22 ≃ 1,57. Cependant, c’est une
distribution Gamma

p. 56 – Stochasticité dans les modèles déterministes



Switching to a compartmental model approach

To use multiple compartments to better fit residence times, we need to find the
closest possible Erlang distribution to this Gamma distribution

=⇒ compute RSS errors between data points generated from the given Gamma
distribution and an Erlang

error_Gamma <- function(theta,shape,t,d) {
test_points <- dgamma(t, shape = shape, scale = theta)
ls_error <- sum((d-test_points)^2)
return(ls_error)

}
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optimize_gamma <- function(t,d) {
max_shape <- 10
error_vector <- mat.or.vec(max_shape,1)
scale_vector <- mat.or.vec(max_shape,1)
for (i in 1:max_shape) {

result_optim <- try(optim(par = 3,
fn = error_Gamma,
lower = 0,
method = "L-BFGS-B",
shape = i,
t = t,
d = d),

TRUE)
if (!inherits(result_optim,"try-error")) {

error_vector[i] <- result_optim$value
scale_vector[i] <- result_optim$par
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} else {
error_vector[i] <- NaN
scale_vector[i] <- NaN

}
}
result_optim <- data.frame(seq(1,max_shape),

scale_vector,
error_vector)

colnames(result_optim) <- c("shape","scale","error")
result_optim <- result_optim[complete.cases(result_optim),]
return(result_optim)

}
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time_points <- seq(0,60)
data_points <- dgamma(time_points, shape = 1.57,

scale = 6.53)
# Exécuter la minimisation
optim_fits <- optimize_gamma(time_points,data_points)
# Quelle est la meilleure Erlang pour ajuster les données
idx_best <- which.min(optim_fits$error)
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Nous trouvons le meilleur ajustement ci-dessous, qui est obtenu en utilisant 2
compartiments
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Un modèle SIS
Hypothèses

▶ Les individus se rétablissent typiquement de la maladie

▶ La maladie ne confère pas d’immunité

▶ Il n’y a pas de naissance ou de décès (de la maladie ou naturel)
⇒ Population totale constante N ≡ N(t) = S(t) + I(t)

▶ L’infection est de type incidence standard
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Rétablissement

▶ Les modèles traditionnels supposent que le rétablissement se produit avec un
taux constant γ

▶ Ici, parmi les individus qui deviennent infectieux au temps t0, une fraction
S(t − t0) reste infectieuse au temps t ≥ t0

▶ ⇒ Pour t ≥ 0, S(t) est une fonction de survie. En tant que telle, elle vérifie
S(0) = 1 et S est non négative et non croissante
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Modèle pour les individus infectieux

Puisque N est constant, S(t) = N − I(t) et nous n’avons besoin de considérer que
l’équation suivante (où S est utilisé pour plus de clarté)

I(t) = I0(t) +
∫ t

0
β

S(u)I(u)
N

S(t − u)du (8)

▶ I0(t) nombre d’individus qui étaient infectieux au temps t = 0 et le sont
toujours au temps t
▶ I0(t) est non négatif, non croissant, et tel que limt→∞ I0(t) = 0

▶ S(t − u) proportion d’individus qui sont devenus infectieux au temps u et qui
le sont toujours au temps t

p. 64 – Stochasticité dans les modèles déterministes



Expression sous l’intégrale

Équation intégrale pour le nombre d’individus infectieux :

I(t) = I0(t) +
∫ t

0
β
(N − I(u))I(u)

N
S(t − u)du (8)

Le terme
β
(N − I(u))I(u)

N
S(t − u)

▶ β(N − I(u))I(u)/N est le taux auquel de nouveaux infectieux sont créés, au
temps u

▶ multiplier par S(t − u) donne la proportion de ceux qui sont devenus
infectieux au temps u et qui le sont toujours au temps t

Sommer sur [0, t ] donne le nombre d’individus infectieux au temps t
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Cas d’un temps de rétablissement distribué exponentiellement

Supposons S(t) tel que le temps de séjour dans l’état infectieux ait une
distribution exponentielle avec moyenne 1/γ, c’est-à-dire, S(t) = e−γt

La fonction de condition initiale I0(t) prend la forme

I0(t) = I0(0)e−γt

avec I0(0) le nombre d’individus infectieux au temps t = 0. Obtenu en considérant
la cohorte d’individus initialement infectieux, donnant un modèle tel que (4)

L’équation (8) devient

I(t) = I0(0)e−γt +

∫ t

0
β
(N − I(u))I(u)

N
e−γ(t−u)du (9)
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Prendre la dérivée temporelle de (9) donne

I′(t) = −γI0(0)e−γt − γ

∫ t

0
β
(N − I(u))I(u)

N
e−γ(t−u)du

+ β
(N − I(t))I(t)

N

= −γ
(

I0(0)e−γt +

∫ t

0
β
(N − I(u))I(u)

N
e−γ(t−u)du

)
+ β

(N − I(t))I(t)
N

= β
(N − I(t))I(t)

N
− γI(t)

Ceci est l’équation différentielle ordinaire (EDO) classique de type logistique pour
I dans un modèle SIS sans dynamique vitale (pas de naissance ou de décès)
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Cas d’une fonction de survie en escalier

Considérons le cas où le temps passé infecté a une fonction de survie

S(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

c’est-à-dire, le temps de séjour dans l’état infectieux est une constante ω > 0

Dans ce cas (8) devient

I(t) = I0(t) +
∫ t

t−ω
β
(N − I(u))I(u)

N
du. (10)

Ici, il est plus difficile d’obtenir une expression pour I0(t). Il est cependant supposé
que I0(t) s’annule pour t > ω
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Lorsque différentiée, (10) donne, pour t ≥ ω,

I′(t) = I′0(t) + β
(N − I(t))I(t)

N
− β

(N − I(t − ω)) I(t − ω)

N
.

Puisque I0(t) s’annule pour t > ω, ceci donne l’équation différentielle à retard
(EDR)

I′(t) = β
(N − I(t))I(t)

N
− β

(N − I(t − ω))I(t − ω)

N
.
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Structure du modèle

S I

V

(1− α)dN

αdN

dS dI

dV

βSI/N

γI
ϕS

S(t) σβ
VI/N
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Hypothèses sur S

S(t) est une fonction non négative et non croissante avec S(0+) = 1, et telle que∫∞
0 S(u)du est positive et finie

Donc S(t) est une fonction de survie
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Le modèle SIS avec vaccination

dI(t)
dt

= β(S(t) + σV (t))I(t)− (d + γ)I(t) (11a)

V (t) = V0(t) +
∫ t

0
(ϕS(u) + αd)S(t − u)e−d(t−u)e−σβ

∫ t
u I(x)dxdu (11b)

▶ αd proportion de nouveau-nés vaccinés
▶ ϕS(u) proportion de susceptibles vaccinés
▶ S(t − u) fraction de la proportion vaccinée encore dans la classe V t − u

unités de temps après y être entrée
▶ e−d(t−u) fraction de la proportion vaccinée pas décédée de causes naturelles

▶ e−σβ
∫ t

u I(x)dx fraction de la proportion vaccinée pas passée dans la classe
infectieuse
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Réduction du système en utilisant des fonctions S(t) spécifiques

▶ La distribution des temps de déclin étant exponentielle conduit à un système
d’EDO

▶ S(t) provenant d’une distribution de Dirac conduit à un modèle EDR à retard
discret
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Soyez conscient (méfiez-vous?) de ce qui se cache sous le capot

Les EDO et les EDR à retard discret vont bien, mais elles cachent des hypothèses
assez fortes

Si vous utilisez une EDO pour un modèle endémique, bien : vous travaillez
typiquement avec t →∞ et l’EDO « utilise » la moyenne de votre paramètre

Si, d’autre part, vous utilisez une EDO pour évaluer le comportement pour des
temps qui ne sont pas trop différents de la moyenne de vos paramètres, alors
méfiez-vous

Les retards discrets font l’hypothèse que chaque individu dans votre population a
le même temps de séjour si un compartiment quelconque se voit appliquer un
retard... Vous pourriez vouloir penser aux retards distribués ou à d’autres
mécanismes pour compenser ceci

Vous pourriez vouloir utiliser un marteau différent
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Pourquoi incorporer la stochasticité?
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Approximations des CMTC par processus de
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Du temps discret au temps continu
Chaînes de Markov en temps discret (CMTD)

Un système transite entre états à des pas de temps fixes et discrets
(n = 0,1,2, . . . )
▶ Le futur dépend uniquement de l’état présent (Propriété de Markov)
▶ Régi par une matrice de probabilité de transition P, où Pij est la probabilité

de passer de l’état i à j en une étape

Chaînes de Markov en temps continu (CMTC)

Un système peut transiter entre états à n’importe quel moment
▶ Le temps passé dans un état est une variable aléatoire continue
▶ Le « temps de séjour » dans tout état i suit une distribution exponentielle

paramétrée par un taux de sortie qi

▶ Ceci est une conséquence directe de la Propriété de Markov appliquée au
temps continu (l’exponentielle est la seule distribution continue qui est « sans
mémoire »)
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Taux de transition

Dynamique d’une CMTC définie par des taux de transition, pas des probabilités

Definition 2 (Taux de transition)

Pour deux états i ̸= j , le taux qij ≥ 0 est le taux instantané de transition de l’état i à
l’état j
▶ Pour un petit intervalle de temps ∆t , la probabilité de transition de i à j est

approximativement qij∆t
▶ Le taux de sortie total de l’état i est qi =

∑
j ̸=i qij

▶ Le temps passé dans l’état i est une variable aléatoire exponentielle
Ti ∼ E(qi)
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La matrice génératrice

Matrice génératrice (Matrice Q)

Rassembler tous les taux de transition dans une seule matrice Q
▶ Hors diagonale : Qij = qij pour i ̸= j (Le taux de passage de i à j)
▶ Diagonale : Qii = −qi = −

∑
j ̸=i qij . (Le négatif du taux de sortie total de i)

Une propriété clé est que toutes les lignes de Q somment à zéro :
∑

j Qij = 0.
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Équations de Kolmogorov

Soit P(t) la matrice où Pij(t) = P(X (t) = j |X (0) = i). Comment P(t) évolue-t-elle
dans le temps?

Équations de Kolmogorov progressives

Décrit le taux de changement de probabilité de finir dans un état cible j

d
dt

P(t) = P(t)Q

Sous forme élémentaire :
P ′

ij(t) =
∑

k

Pik (t)Qkj
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Solution de l’ÉKP

La solution est l’exponentielle matricielle

P(t) = etQ =
∞∑

k=0

(tQ)k

k !

La matrice génératrice Q « génère » l’évolution du processus
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Convertir votre modèle compartimentale EDO en CMTC

Facile comme π :)

▶ Le modèle compartimentale EDO se concentre sur les flux entrants et
sortants des compartiments

▶ Le modèle EDO a autant d’équations qu’il y a de compartiments

▶ Le modèle compartimentale CMTC se concentre sur les transitions

▶ Le modèle CMTC a autant de transitions qu’il y a de flèches entre (ou vers ou
depuis) les compartiments

p. 81 – Chaînes de Markov en temps continu



EDO vers CMTC : focus sur différents composants

S I S I

−βSI

+γI

+βSI

−γI

βSI

γI

EDO CMTC

focus focus
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SIS sans démographie

Transition Effet Poids Probabilité

S → S − 1, I → I + 1 nouvelle infection βSI
βSI

βSI + γI

S → S + 1, I → I − 1 rétablissement
d’un infectieux

γI
γI

βSI + γI

Les états sont S, I

p. 83 – Chaînes de Markov en temps continu



SIS avec démographie

Transition Effet Poids Probabilité

S → S + 1 naissance d’un
susceptible

b b
b+d(S+I)+βSI+γI

S → S − 1 décès d’un sus-
ceptible

dS dS
b+d(S+I)+βSI+γI

S → S − 1, I →
I + 1

nouvelle infection βSI βSI
b+d(S+I)+βSI+γI

I → I − 1 décès d’un infec-
tieux

dI dI
b+d(S+I)+βSI+γI

S → S + 1, I →
I − 1

rétablissement
d’un infectieux

γI γI
b+d(S+I)+βSI+γI

Les états sont S, I
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Modèle de Kermack & McKendrick

Transition Effet Poids Probabilité

S → S − 1, I → I + 1 nouvelle infection βSI
βSI

βSI + γI

I → I − 1, R → R + 1 rétablissement
d’un infectieux

γI
γI

βSI + γI

Les états sont S, I,R
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L’algorithme de Gillespie

▶ Aussi appelé l’algorithme de simulation stochastique (SSA)

▶ Dérivé en 1976 par Daniel Gillespie

▶ Génère des solutions possibles pour les CMTC

▶ Extrêmement simple, donc vaut la peine d’apprendre à implémenter ; il existe
cependant des paquets que vous pouvez utiliser (voir plus tard)
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L’algorithme de Gillespie

Supposons que le système a un état x(t) avec condition initiale x(t0) = x0 et
fonctions de propension ai des réactions élémentaires

définir t ← t0 et x(t)← x0
tant que t ≤ tf
- ξt ←

∑
j aj(x(t))

- Tirer τt de T ∼ E(ξt)
- Tirer ζt de U([0,1])
- Trouver r , le plus petit entier tel que

∑j
k=1 ak (x(t)) > ζt

∑
j aj(x(t)) = ζtξt

- Effectuer la prochaine réaction (celle indexée r )
- t ← t + τt
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Tirer aléatoirement d’une distribution exponentielle
Si vous n’avez pas de générateur de nombres aléatoires de distribution
exponentielle.. Nous voulons τt de T ∼ E(ξt), c’est-à-dire, T a une fonction de
densité de probabilité

f (x , ξt) = ξte−ξt x1x≥0

Utiliser la fonction de distribution cumulative F (x , ξt) =
∫ x
−∞ f (s, ξt)ds

F (x , ξt) = (1− e−ξt x)1x≥0

qui a des valeurs dans [0,1]. Donc tirer ζ de U([0,1]) et résoudre F (x , ξt) = ζ pour
x

F (x , ξt) = ζ ⇔ 1− e−ξt x = ζ

⇔ e−ξt x = 1− ζ

⇔ ξtx = − ln(1− ζ)

⇔ x =
− ln(1− ζ)

ξt
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L’algorithme de Gillespie (modèle SIS avec seulement l’éq. I)

définir t ← t0 et I(t)← I(t0)
tant que t ≤ tf
- ξt ← β(P⋆ − i)i + γi
- Tirer τt de T ∼ E(ξt)
- v ← [β(P⋆ − i)i , ξt ] /ξt
- Tirer ζt de U([0,1])
- Trouver pos tel que vpos−1 ≤ ζt ≤ vpos
- selon pos

- 1 : Nouvelle infection, I(t + τt) = I(t) + 1
- 2 : Fin de la période infectieuse, I(t + τt) = I(t)− 1

- t ← t + τt
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Parfois Gillespie tourne mal

▶ Rappelons que le temps inter-événements est distribué exponentiellement
▶ Étape critique de l’algorithme de Gillespie :

▶ ξt ← poids de tous les événements possibles (propension)
▶ Tirer τt de T ∼ E(ξt)

▶ Donc le temps inter-événements τt → 0 si ξt devient très grand pour un
certain t

▶ Ceci peut causer le ralentissement de la simulation jusqu’à l’arrêt
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Exemple : un processus de naissance et de mort

▶ Individus nés à un taux per capita b
▶ Individus meurent à un taux per capita d
▶ Implémentons cela en utilisant le Gillespie classique

(Voir simulate_birth_death_CTMC.R sur le dépôt GitHub du cours)
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L’algorithme de Gillespie (modèle naissance-mort)

définir t ← t0 et N(t)← N(t0)
tant que t ≤ tf
- ξt ← (b + d)N(t)
- Tirer τt de T ∼ E(ξt)
- v ← [bN(t), ξt ] /ξt
- Tirer ζt de U([0,1])
- Trouver pos tel que vpos−1 ≤ ζt ≤ vpos
- selon pos

- 1 : Naissance, N(t + τt) = N(t) + 1
- 2 : Décès, N(t + τt) = N(t)− 1

- t ← t + τt
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birth_death_CTMC = function(b = 0.01, d = 0.01) {
t_0 = 0 # Initial time
N_0 = 100 # Initial population

# Vectors to store time and state. Initialise with initial condition.
t = t_0
N = N_0

t_f = 1000 # Final time

# Track the current time and state (could just check last entry in t
# and N, but will take more operations)
t_curr = t_0
N_curr = N_0
while (t_curr<=t_f) {

xi_t = (b+d)*N_curr
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if (N_curr == 0) {
break # Avoid error with rexp when xi_t = 0

}
tau_t = rexp(1, rate = xi_t)
t_curr = t_curr+tau_t
v = c(b*N_curr, xi_t)/xi_t
zeta_t = runif(n = 1)
pos = findInterval(zeta_t, v)+1
switch(pos,

{ N_curr = N_curr+1}, # Birth
{ N_curr = N_curr-1}) # Death

N = c(N, N_curr)
t = c(t, t_curr)

}
plot(t, N, type = "l",

xlab = "Time", ylab = "Population size",
main = paste("Birth-death CTMC with b =", b, "and d =", d))
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}

p. 95 – Chaînes de Markov en temps continu



0 200 400 600 800 1000

60
80

10
0

12
0

Birth−death CTMC with b = 0.01 and d = 0.01

Time

P
op

ul
at

io
n 

si
ze



0 100 200 300 400 500 600

0
20

40
60

80
10

0

Birth−death CTMC with b = 0.01 and d = 0.02

Time

P
op

ul
at

io
n 

si
ze



b = 0.03 & d = 0.01...

Nous voulons exécuter la fonction avec ces valeurs de paramètres mais je sais à
l’avance que cela ne fonctionnera pas bien, donc modifions un peu la fonction.
Nous ajoutons un test :

if (t[length(t)]-t[(length(t)-1)] < 1e-8) {
# If the time step is too small, stop the simulation
message("Stopping simulation because time step is too small")
break

}
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Last one did not go well

▶ Wanted 1000 time units (days?)
▶ Interrupted at 257.3144961 because of the test

(Slide with b < d : sim stopped because the population went extinct, I did not
stop it !)

▶ At stop time
▶ N = 1.6116× 104

▶ |N| = 31977 (et |t | aussi, bien sûr !)
▶ le temps avançait lentement

tail(diff(results$t))

## [1] 4.201952e-04 4.017531e-03 7.198722e-04 2.877816e-04 4.953929e-04
## [6] 2.904073e-09
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Tau-leaping (et les paquets) à la rescousse !

▶ Méthode d’approximation (comparée au Gillespie classique, qui est exact)
▶ Grosso modo : considérer des « groupes » d’événements au lieu

d’événements individuels
▶ Bonne nouvelle : GillespieSSA2 et adaptivetau, deux paquets standard

pour SSA dans R, implémentent le tau leaping
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library(GillespieSSA2)
Pop <- 1000
I_0 <- 2
IC <- c(S = (Pop-I_0), I = I_0)
gamma = 1/3
# R0=beta/gamma*S0, donc beta=R0*gamma/S0
beta = as.numeric(1.5*gamma/IC["S"])
params <- c(gamma = gamma, beta = beta)
t_f = 100
reactions <- list(

reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)
set.seed(NULL)

p. 103 – Chaînes de Markov en temps continu



sol <- ssa(
initial_state = IC,
reactions = reactions,
params = params,
method = ssa_exact(),
final_time = t_f,

)
plot(sol$time, sol$state[,"I"], type = "l",

xlab = "Time (days)", ylab = "Number infectious")

p. 104 – Chaînes de Markov en temps continu
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Parallélisation

Pour voir plusieurs réalisations : bonne idée de paralléliser, puis interpoler les
résultats. Écrire une fonction, par ex., run_one_sim qui.. exécute une simulation

Utiliser certains mécanismes de parallélisation pour exécuter run_one_sim en
parallèle. Une façon facile de le faire est d’utiliser une version parallèle de lapply,
qui applique une fonction à une liste

Ici, je montre la parallélisation en utilisant un paquet assez récent appelé future
(et future.apply, qui contient l’équivalent pertinent de lapply)

J’illustre également une autre bibliothèque SSA que je trouve moins délicate sous
Windows car les réactions ne sont pas précompilées : adaptivetau

p. 106 – Chaînes de Markov en temps continu



Partie commune – la fonction utilisée I

run_one_sim = function(params) {
IC <- c(S = (params$Pop-params$I_0), I = params$I_0)
params_local <- c(gamma = params$gamma, beta = params$beta)
reactions <- list(

# propensity function effects name for reaction
reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)
set.seed(NULL)
sol <- ssa(

initial_state = IC,
reactions = reactions,
params = params_local,
method = ssa_exact(),

p. 107 – Chaînes de Markov en temps continu



Partie commune – la fonction utilisée II

final_time = params$t_f,
log_firings = TRUE # This way we keep track of events

)
# Interpolate result (just I will do)
wanted_t = seq(from = 0, to = params$t_f, by = 0.01)
sol$interp_I = approx(x = sol$time, y = sol$state[,"I"],

xout = wanted_t)
names(sol$interp_I) = c("time", "I")
# Return result
return(sol)

}

p. 108 – Chaînes de Markov en temps continu
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Bénéfices de la parallélisation

Faisons tourner 100 sims entre tictoc::tic() and tictoc::toc(), donnant
66.958 sec elapsed, puis la version séquentielle

tictoc::tic()
SIMS = lapply(X = 1:params$number_sims,

FUN = function(x) run_one_sim(params))
tictoc::toc()

ce qui donne 318.141 sec elapsed sur un Intel(R) Core(TM) i9-8950HK CPU @
2.90GHz 6C/12T (4.75× plus rapide) ou 12.067 sec elapsed versus 258.985 sec
elapsed sur un processeur AMD Ryzen Threadripper 3970X 32-Core/64-Threads
(21.46× plus rapide !)

p. 110 – Chaînes de Markov en temps continu
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Exemple simple – Naissance et mort

Nous considérons un modèle de démographie avec un compartiment N, avec flux
entrant de naissance constant et décès per capita

dN
dt

= b − d N, b,d > 0

▶ Équilibre N⋆ = b/d

▶ Si d est connu, ce modèle est identifiable : il y a un unique b = dN⋆ tel que
N(t)→ N⋆

La CMTC correspondante prend la forme N(t) ∈ N, avec les transitions
▶ N → N + 1 au taux b
▶ N → N − 1 au taux dN

p. 111 – Chaînes de Markov en temps continu



Une petite expérience

Supposons qu’on ait une population humaine de 1 000 personnes

Prétendons qu’on ne connait pas vraiment l’ordre de grandeur de d (1/d est la
durée moyenne de vie). On veut garder une population autour de 1 000 individus

J’illustre 2 cas :
▶ mortalité d = 1/45 ans (d = 1/(45 · 365) avec unités de temps les jours)
▶ mortalité d = 1/45 jours

p. 112 – Chaînes de Markov en temps continu



Pensez à une population de 1 000 personnes. Laquelle des figures ci-dessous
vous semble convenir mieux en terme du nombre d’évènements ayant lieu tous
les jours?
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Enquête sur les types d’épidémie à l’aide d’un CMTC SIS simple

X(t) =
(

SA(t), IA(t)
)

CMTC X(t) caractérisée par les transitions

Description Transition Taux

Infection
(
SA, IA)→ (

SA − 1, IA + 1
)

βASAIA

Rétablissement
(
SA, IA)→ (

SA + 1, IA − 1
)

γAIA

p. 116 – Chaînes de Markov en temps continu



Enquête sur les types d’épidémie à l’aide d’un CMTC SIS simple
avec une variante

Une chaîne régulière de ce type a I = 0 comme seul état absorbant

Nous ajoutons un autre état absorbant : si I = Î, alors la chaîne a quitté la phase
stochastique et est dans une phase quasi-déterministe avec croissance
exponentielle

En faisant cela, les mesures de temps d’absorption deviennent utilisables en plus
des mesures de temps de premier passage

Et la question devient : combien de temps la chaîne « persiste »avant d’être
absorbée? Nous définissons la trajectoire inter-absorption comme la phase
stochastique

p. 117 – Chaînes de Markov en temps continu







Problème de la valeur de la borne supérieure Î

▶ Choisir Î trop petit et la phase stochastique ne durera pas longtemps

▶ Choisir Î trop grand et l’absorption ne se fera qu’au DFE

▶ Alors, comment choisir Î ?
▶ Une formule de Whittle (1955)
▶ Processus de branchement multitype (MTBP)

p. 120 – Chaînes de Markov en temps continu
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Une dernière pensée pour la route

V. Chetail. Crisis without borders: What does international law say about border
closure in the context of Covid-19? Frontiers in Political Science, 2 (12) (2020)

[..] a powerful expression of state’s sovereignty, immigration control pro-
vides a typical avenue for governments to reassure their citizens and bol-
ster a national sense of belonging, while providing an ideal scapegoat for
their own failure or negligence.

p. 127 – Chaînes de Markov en temps continu
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Pourquoi incorporer la stochasticité?

Stochasticité dans les modèles déterministes

Chaînes de Markov en temps continu

Approximations des CMTC par processus de
branchement



Qu’est-ce qu’un processus de branchement?

Un processus de branchement est un modèle mathématique pour une population
où les individus produisent un nombre aléatoire de descendants puis meurent

Pensez aux bactéries qui se divisent, à un virus qui se propage, ou même à la
survie des noms de famille

▶ Commençons avec une population initiale, Z0

▶ Chaque individu de la génération n produit un nombre de descendants pour
la génération n + 1

▶ Ce « nombre de descendants » est une variable aléatoire. Tous les individus
produisent des descendants selon la même distribution de probabilité,
indépendamment les uns des autres

p. 128 – Approximations des CMTC par processus de branchement



Le processus de Galton-Watson
Soit Zn la taille de la population à la génération n. Nous commençons typiquement
avec Z0 = 1
La population évolue selon la règle

Zn+1 =
Zn∑

i=1

Xn,i

▶ Xn,i : nombre de descendants produits par le i-ème individu de la génération n
▶ Les variables {Xn,i} sont des variables aléatoires indépendantes et

identiquement distribuées (i.i.d.) à valeurs entières
▶ Nous appelons leur distribution commune {pk}∞k=0 la distribution des

descendants, où pk = P(X = k)

Questions fondamentales

1. Taille espérée à long terme de la population?
2. Probabilité que la population finisse par s’éteindre?

p. 129 – Approximations des CMTC par processus de branchement



Moyenne de la distribution des descendants

Le destin de la population dépend d’un seul paramètre : la moyenne de la
distribution des descendants

µ = E [X ] =
∞∑

k=0

k · pk

p. 130 – Approximations des CMTC par processus de branchement



Taille de population espérée

En utilisant la loi de l’espérance totale, nous trouvons la taille espérée de la
prochaine génération

E [Zn+1|Zn] = E

[
Zn∑

i=1

Xn,i

∣∣∣∣Zn

]
= ZnE [X ] = Znµ

En prenant l’espérance à nouveau, nous obtenons une récurrence simple

E [Zn+1] = µE [Zn]

Ceci implique
E [Zn] = Z0µ

n

p. 131 – Approximations des CMTC par processus de branchement



Les trois régimes de croissance de population

Le comportement de E [Zn] = Z0µ
n suggère trois cas distincts

Sous-critique (µ < 1)

E [Zn]→ 0. La population
devrait rétrécir. Elle s’éteint
avec probabilité 1

Critique (µ = 1)

E [Zn] = Z0. La population
devrait rester stable.
Curieusement, elle s’éteint
quand même avec
probabilité 1

Super-critique (µ > 1)

E [Zn]→∞. La population
devrait croître
exponentiellement. Elle a
une probabilité non nulle
de survivre à jamais

p. 132 – Approximations des CMTC par processus de branchement



Fonction génératrice de probabilité

Pour trouver la probabilité d’extinction, nous utilisons la fonction génératrice de
probabilité (FGP) de la distribution des descendants X .

G(s) = E [sX ] =
∞∑

k=0

pksk pour |s| ≤ 1

Propriétés clés

▶ G(1) =
∑

pk = 1
▶ La moyenne peut être trouvée à partir de la dérivée : G′(1) =

∑
kpk = µ

▶ La FGP de Zn est le n-ième itéré de G(s) avec elle-même. Si Gn(s) est la
FGP de Zn, alors Gn+1(s) = G(Gn(s))

p. 133 – Approximations des CMTC par processus de branchement



Équation de la probabilité d’extinction
Soit π0 la probabilité d’extinction éventuelle, en commençant avec Z0 = 1

π0 = P(la population s’éteint) = lim
n→∞

P(Zn = 0)

Puisque P(Zn = 0) = Gn(0), et Gn+1(0) = G(Gn(0)), à la limite la probabilité
d’extinction π0 doit satisfaire l’équation

π0 = G(π0)

Theorem 3
La probabilité d’extinction π0 est la plus petite solution non négative de
l’équation s = G(s)

▶ Si µ ≤ 1, la seule solution dans [0,1] est s = 1. Donc π0 = 1
▶ Si µ > 1, il existe une solution unique dans [0,1), qui est la probabilité

d’extinction π0 < 1
p. 134 – Approximations des CMTC par processus de branchement



Du temps discret au temps continu

Limitation de Galton-Watson
Les générations n’arrivent pas en étapes synchronisées dans le monde réel. Les
individus donnent naissance et meurent à des moments aléatoires

Cela nous amène aux Chaînes de Markov en temps continu (CMTC)
▶ L’état du système est la taille de la population, k ∈ {0,1,2, . . . }
▶ Au lieu de générations, nous avons des taux de transition :

▶ λk : taux de naissance lorsque la population est de taille k (passe à k + 1)
▶ δk : taux de décès lorsque la population est de taille k (passe à k − 1).

▶ Souvent, nous supposons que ces taux sont linéaires : λk = kλ et δk = kδ.
Cela signifie que les individus agissent indépendamment

p. 135 – Approximations des CMTC par processus de branchement



Approximation d’une CMTC par processus de branchement
L’idée clé
Au début d’une épidémie (ou pour une très grande population), la dynamique
causée par un seul individu est largement indépendante des autres

Cela nous permet d’approximer le début d’un processus de population CMTC
avec un processus de branchement
Exemple : Une épidémie simple (modèle SIR)
▶ S : Susceptible, I : Infecté, R : Rétabli
▶ Une personne infectée rencontre d’autres personnes à un certain taux. Si elle

rencontre un susceptible, une nouvelle infection peut se produire (un «
descendant »)

▶ La personne infectée se rétablit (ou meurt) à un autre taux, terminant sa
période infectieuse

▶ Question : Combien de nouvelles infections une seule personne infectée
cause-t-elle en moyenne?

p. 136 – Approximations des CMTC par processus de branchement



Étude de cas : Le nombre de reproduction de base R0

Considérons un seul individu infecté dans une grande population de susceptibles
▶ Soit β le taux d’infection (taux de production de « descendants »)
▶ Soit γ le taux de rétablissement (taux de « mort »)

La durée de vie infectieuse de l’individu est une variable aléatoire exponentielle
avec moyenne 1/γ
Le nombre moyen d’infections secondaires qu’il cause est

R0 = (taux d’infection)× (période infectieuse moyenne) = β × 1
γ
=

β

γ

La connexion
R0 est précisément le nombre moyen de descendants µ pour le processus de
branchement intégré qui approxime le début de l’épidémie

p. 137 – Approximations des CMTC par processus de branchement



Application aux épidémies

Le destin de la phase initiale de l’épidémie est déterminé par R0

▶ Si R0 ≤ 1 (µ ≤ 1) : Le nombre d’individus infectés est un processus
sous-critique ou critique. L’épidémie s’éteint avec probabilité 1

▶ Si R0 > 1 (µ > 1) : Le processus est super-critique. Il y a une probabilité
positive que l’épidémie décolle et cause une épidémie majeure

Nous pouvons même calculer la probabilité d’une épidémie majeure ! C’est 1− π0,
où π0 est la probabilité d’extinction
Pour ce processus d’infection naissance-mort simple, la FGP est
G(s) = γ

β+γ + β
β+γ s. Résoudre s = G(s) donne la probabilité d’extinction

π0 =
γ

β
=

1
R0

La probabilité d’une épidémie majeure est 1− 1/R0
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Résumé pour APB

▶ Les processus de branchement modélisent les populations avec une
génération de descendants i.i.d.

▶ Le destin de la population est déterminé par le nombre moyen de
descendants µ. L’extinction est certaine si µ ≤ 1

▶ La probabilité d’extinction π0 peut être calculée comme le plus petit point
fixe non négatif de la fonction génératrice de probabilité G(s)

▶ Les stades initiaux de nombreuses chaînes de Markov en temps continu à
grande échelle peuvent être approximés par un processus de branchement

▶ Cela nous permet d’appliquer la théorie à des problèmes du monde réel,
comme le calcul du nombre de reproduction de base R0 d’une épidémie et
sa probabilité de causer une épidémie majeure

p. 139 – Approximations des CMTC par processus de branchement
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