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Au début de la crise COVID-19

» Je travaillais sous contrat avec ’Agence de la santé publique du Canada sur
I'évaluation du risque d’importation de COVID-19

» Je produisais un rapport quotidien avec la liste des pays les plus susceptibles
de signaler des cas de COVID-19 dans les jours a venir

» J'utilisais des simulations ensemblistes d’'un modéle de métapopulation
déterministe global ajusté

p. 1 — Pourquoi incorporer la stochasticité ?






» Jours trés trés longs (18-20 heures, 7 jours par semaine)

» Ceci incluait un bon moment a attendre que le “cluster” finisse de tourner

— PHAC/ACSP m’a donné des sous pour acheter un vrai cluster
(Threadrippers!'!!)

= J’ai aussi commencé a réflechir a la validité de mon modéle alors que mon
focus passait du mouvement au niveau planétaire a un mouvement plus local
entre provinces du Canada

p. 3 — Pourquoi incorporer la stochasticité ?



Qu’est-ce qui ne va pas avec les modeles déterministes ?

» J'ai souligné hier que le SARS-CoV-2 est une unique réalisation d’'un processus
stochastique

» Les modéles déterministes « opérent sur des moyennes » sur un grand
(— +00) nombre de réalisations

» Si nous voulons avoir une meilleure idée de ce qui pourrait se passer, pas
seulement en moyenne, alors nous devons voir ce qui peut effectivement se
passer

p. 4 — Pourquoi incorporer la stochasticité ?



Mon nouveau focus — Les introductions

» J'ai commencé a penser en particulier aux (ou importations) de
pathogenes dans de nouvelles populations

» En effet, les introductions sont une étape obligatoire dans la propagation
spatiale

p. 5 — Pourquoi incorporer la stochasticité ?



Premier élément de preuve

Dans la vraie vie, les introductions de pathogénes ne suivent pas toujours le
schéma

{Ro <1 = — DFE | Rop > 1 = épidémie ou — EEP}

p. 6 — Pourquoi incorporer la stochasticité ?
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Table 1. Effect of vaccination scaling-up on the probability of successful viral introduction.

Before vaccination 94 (69.1%) 311 (85.0%) Ref

January 15 to January 31 12 (8.8%) 37 (10.1%) 0.89 042 -1.92 0.770
February 01 to February 15 17 (12.5%) 14 (3.8%) 0.23 0.10-0.52 <0.001
February 16 to February 28 13 (9.6%) 4(1.1%) 0.08 0.02-0.29 <0.001

* Adjusted on study period, country, staffing ratio, cumulative attack rate at onset of introduction, and number of PCR per
1000-residents or 1000-staff members, at onset of introduction, and nursing home maximal capacity.



Deuxieme élément de preuve

Le début d’'une épidémie peut étre extrémement lent, avec trés peu de cas
pendant un certain temps

p. 9 — Pourquoi incorporer la stochasticité ?
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Pourquoi ceci est pertinent

Loin d’étre la seule raison, mais a titre d’exemple : le Canada a des communautés
éloignées/isolées qui sont vulnérables aux introductions de pathogenes

p. 11— Pourquoi incorporer la stochasticité ?
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Northern Manitoba chiefs call for immediate
federal action on health-care crisis

Recent deaths linked to inadequate medical care include mother of 5 from Manto Sipi
Cree Nation, chief says

CBC News - Posted: Apr 03, 2023 3:20 PM CDT | Last Updated: April 3, 2023




'A lengthy process to get help here'

Wasagamack is one of four First Nations communities that make up Island Lake, an
area in northeastern Manitoba dotted with hundreds of small islands.

Island Lake has a population of at least 15,000, according to Scott Harper, the grand
chief of Anisininew Okimawin, which represents the four communities.

Despite having a population roughly the size of Thompson, and having diabetes and
hospitalization rates well above provincial averages, |Island Lake has no hospital of its
own. The region is accessible only by air, boat and an unreliable winter road.

The nursing station in Wasagamack First Nation, which has about 2,300 people,
according to federal government data, typically operates short-staffed, with only two
or three of five registered nurses working on any given rotation and a fly-in doctor

who comes weekly.



Pour les communautés des Premieres Nations et Métis

décrit une zone géographique ou une communauté est située a plus
de 350 km du centre de services le plus proche ayant un acces toute I’'année
par voies terrestres et/ou maritimes normalement utilisées par tous les temps

signifie une zone géographique qui a des vols réguliers et un bon
service téléphonique, mais est sans acces toute I’année par voies terrestres
et/ou maritimes normalement utilisées par tous les temps

signifie une zone géographique qui n’a ni vols réguliers ni
acces toute I’'année par voies terrestres et/ou maritimes qui peuvent étre utilisées
par tous les temps, indépendamment du niveau de service téléphonique et radio
disponible

p. 16 — Pourquoi incorporer la stochasticité ?



Pour les communautés inuites

Les communautés inuites doivent étre appelées , et non
communautés éloignées et isolées, afin de respecter la langue et la culture
uniques des régions inuites, ainsi que les défis communs en matiére de
déterminants sociaux de la santé, d’acces aux soins et d’infrastructure qui se
retrouvent dans toutes les communautés inuites

p. 17 — Pourquoi incorporer la stochasticité ?



Communautés éloignées du MB

Les sont des communautés du Manitoba qui
n’ont pas d’acces routier permanent (c’est-a-dire, pas de route prati-
cable en toutes saisons), sont a plus de quatre heures de route d’un
hépital rural important (et d’'une unité de dialyse), ou ont un acces uni-
quement par rail ou avion. Cela inclut Norway House, Lynn Lake, Leaf
Rapids, Gillam et Cross Lake. Si la plupart des communautés d’un dis-
trict sanitaire sont désignées comme « éloignées », 'ensemble du district
est désigné comme « éloigné ». Au Manitoba, les districts éloignés com-
prennent :

» Région sanitaire du Nord : NO23, NO13, NO25, NO16, NO22,

NO26, NO28, NO31, et
» Région sanitaire Interlake-Est : IE61.

Chartier M, Dart A, Tangri N, Komenda P, Walld R, Bogdanovic B, Burchill C, Koseva |,
McGowan K, Rajotte L. Care of Manitobans Living with Chronic Kidney Disease.
Winnipeg, MB. Manitoba Centre for Health Policy, December 2015

p. 18 — Pourquoi incorporer la stochasticité ?






Voyages vers/depuis des communautés éloignées ou isolées

Comment pensez-vous que cela se compare aux voyages dans les communautés
non éloignées/isolées ?

Temps de résidence (la version écologie lacustre) : temps théorique qu’une
molécule d’eau moyenne ou comparable passe dans un lac, considérant I'afflux
dans et I'écoulement hors du lac

Pensez aux temps de résidence dans ces communautés : quel est le temps
moyen qu’une personne passe dans une communauté éloignée ou isolée avant de
la quitter ?

Le est le nombre total de trajets entrants et

sortants d’une localisation sur une durée (1 mois ici) divisé par la population
normale dans la localisation

p. 20 — Pourquoi incorporer la stochasticité ?
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Le paradoxe des voyages vers/depuis les communautés
éloignées/isolées

Volumes de voyage faibles mais taux de mouvement élevés

Les Cl sont fortement connectées au(x) centre(s) urbain(s) auxquels elles sont
subordonnées

Encore renforcé a Winnipeg par la population autochtone urbaine (102 075 ou
12,45% de la population métropolitaine), ce qui signifie que de nombreux liens
familiaux existent

p. 22 — Pourquoi incorporer la stochasticité ?
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Voir en particulier les travaux de Horst Thieme

Si I'on considére le temps de séjour dans les compartiments d’une perspective
plus détaillée, on obtient des modéles intégro-différentiels

Nous utilisons ici des variables aléatoires continues. Voir les chapitres 12 et 13 du
livre de Thieme pour des distributions arbitraires

p. 23 — Stochasticité dans les modeles déterministes


https://scholar.google.ca/citations?user=o7R6ZHMAAAAJ
https://press.princeton.edu/books/paperback/9780691092911/mathematics-in-population-biology

Temps jusqu’aux événements

Nous supposons qu’un systéme peut étre dans deux états, A et B
> Autemps t = 0, le systeme est dans I'état A

» Un événement se produit a un certain temps t = 7, qui déclenche le passage
de I'état A a I'état B

Appelons T la variable aléatoire
“temps passé dans I'état A avant de passer a I'état B”

p. 24 — Stochasticité dans les modeles déterministes



Les états peuvent étre n’importe quoi :
» A :fonctionnel, B : en panne
» A:infecté, B : rétabli
> A :vivant, B : mort
> ...

Nous prenons une collection d’objets ou d’individus qui sont dans I'état A et
voulons une loi pour la des temps passés dans A, c’est-a-dire une loi
pour T

Par exemple, nous fabriquons des ampoules et aimerions dire a nos clients qu’en
moyenne, nos ampoules durent 200 ans...

Nous effectuons un nombre d’expériences, et observons le temps qu'’il faut,
dans chaque expérience, pour passer de Aa B

p. 25 - Stochasticité dans les modeles déterministes



Il

time

p. 26 — Stochasticité dans les modeles déterministes



Une distribution de probabilité est un modéle

A partir de la séquence d’expériences, nous déduisons un modeéle, qui dans ce
contexte est appelé une distribution de probabilite

Nous supposons que T est une variable aléatoire continue

p. 27 — Stochasticité dans les modeles déterministes



Fonction de densité de probabilité
Puisque T est continue, elle a une fonction de densité de probabilité continue f

> >0
> [T f(s)ds =1
> P(a< T <b)= [PHt)dt

p. 28 - Stochasticité dans les modeles déterministes



Fonction de répartition (f.r.)

La fonction de répartition est
une fonction F(t) qui caractérise
la distribution de T, et définie par ¢

F(s):IP’(T<s):/S f(x)dx

—00

p. 29 - Stochasticité dans les modeles déterministes



Fonction de survie

Une autre caractérisation de la distribution de la variable aléatoire T se fait par la
fonction de (ou de )

La fonction de survie de I'état A est donnée par
Sty=1-F(t)=P(T>1 (1)

Ceci donne une description du d'un systéme dans un état
particulier (le temps passé dans I'état)

S est une fonction non croissante (puisque S =1 — F avec F une fr.), et S(0) = 1
(puisque T est une variable aléatoire non négative)

p. 30 — Stochasticité dans les modeles déterministes



Distribution, fonctions de répartition et de survie
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Le 7 dans I'état A est donné par
T:Eujz/ t(t) it
0

Puisque lim;_,, tS(t) = 0, il S’ensuit que

T:Awsmm

1 o)
S(to)/o tF(t+ to) ot

S(t) —S(a) = P{survivre pendant (a,t) ayant survécu jusqu’a a}

= exp <— /at h(u)du)

p. 32 — Stochasticité dans les modeles déterministes



Taux de risque

Le (ou ) est

S(t) — S(t+ At)

At—0 At
_ i BT <t AT > 1)
At—0 At
f(1)
(1)

Il donne la probabilité de défaillance entre t et At, étant donné la survie jusqu’a t.

Nous avons

moz—imsm

p. 33 — Stochasticité dans les modeles déterministes
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Risques concurrents

Supposons maintenant que le systeme commence dans I'état A au temps t = 0 et
que selon lequel des deux événements £; ou &, a lieu en premier, il passe a I'état
By ou By, respectivement

Considérons les variables aléatoires T,, temps passé dans I'état A (ou temps de
séjour dans A), Tapg,, temps avant le passage a By et Tyg,, temps avant le
passage a B,

Si nous consideérons I'état A, nous ne pouvons pas observer les variables Tyg, ou
Tas,- Ce qui est observable est le temps de séjour dans A

T,Z = min (TAB17 TABZ)

(ou * indique qu’une quantité est observable)

p. 35 — Stochasticité dans les modeles déterministes



Taux de défaillance par type d’événement

Nous avons deux (ou plusieurs) types d’événements dont les taux de défaillance
individuels doivent étre pris en compte

P(T <t+At,S=S|T>t)
At—0 At

ouP(T < t+ At, S = §j|T > t) est la probabilité de défaillance due a la cause S;
(j =1,2ici), c'est-a-dire S est une v.a. discréte représentant 'événement qui se
produit

p. 36 — Stochasticité dans les modeles déterministes



Par la loi de probabilité totale, puisqu’un seul des événements peut avoir lieu, s’il y
a nrisques, alors

h(t) = > (1)
=1

ou, de maniére identique,

S(1) = exp (- /O v 7 hy(s) ds)

p. 37 — Stochasticité dans les modeles déterministes



En conséquence, supposons qu’un processus est soumis a deux risques
exponentiels concurrents avec des distributions respectives de parameétres 64 et 65

Alors le temps de séjour moyen dans I'état initial avant d’étre affecté par I'un des

deux risques est
1

01+ 0>

p. 38 — Stochasticité dans les modeles déterministes
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La distribution exponentielle

La variable aléatoire T a une distribution si sa fonction de densité
de probabilité prend la forme

e sit>0,

(t) = {0 sit<O, @)

avec 0 > 0. Alors la fonction de survie pour I'état A est de la forme S(t) = e~ 7,
pour t > 0, et le temps de séjour moyen dans I'état A est

& 1
T = / e dt = ~
0 0

p. 39 - Stochasticité dans les modeles déterministes



Particularités de la distribution exponentielle

Lécart-type d’une distribution exponentielle est également 1/6. Lors de
I'estimation de 0, il est impossible de distinguer la moyenne et I'écart-type

La distribution exponentielle est : sa probabilité conditionnelle
obéit a
P(T>s+t|T>8)=P(T>t), Vst>0

Les distributions exponentielle et géométrique sont les seules distributions de
probabilité sans mémoire

La distribution exponentielle a une fonction de risque constante h(t) = 6

p. 40 — Stochasticité dans les modeles déterministes
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La distribution delta de Dirac

Si pour une constante w > 0,

1, 0<t<w
S(t):{o w <t

ce qui signifie que T a une distribution delta de Dirac §,,(t), alors le temps de

séjour moyen est
T= / at=w
0

avec écart-type 0 =0

p. 42 - Stochasticité dans les modeles déterministes



La distribution Gamma

La v.a. X est distribuée selon une loi (X ~T(k,0)) avec
k et 6 (ou B = 1/0) (tous positifs) si sa fonction
de densité de probabilité prend la forme

X

xk—1e=%
f(X,k,@)—W (3)
ou x > 0 et I est la fonction Gamma d’Euler, définie pour tout z € C tel que
Re (z) > 0 par

+oo
M.z / 7o tdt
0

p. 43 — Stochasticité dans les modeles déterministes



Propriétés de la distribution Gamma
Moyenne k6, variance k6?

Fonction de survie

ou

est une fonction Gamma incompléte

p. 44 — Stochasticité dans les modeles déterministes
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Un modele pour une cohorte avec une cause de décées

Considérons une

d’individus nés au méme moment, par exemple, la
méme année

» Autemps t =0, il y a initialement Ny > 0 individus
» Toutes les causes de décés sont combinées ensemble

» Le temps jusqu’au décés, pour un individu donné, est une variable aléatoire

T, avec une distribution de densité de probabilité continue f(t) et une fonction
de survie S(t)

N(t) la population de la cohorte au temps t > 0
N(t) = NoS(t) (4)

S(t) proportion de la population initiale encore en vie au temps t, donc NoS(t)
nombre dans la cohorte encore en vie au temps t

p. 46 — Stochasticité dans les modeles déterministes



Cas ou T est distribuée exponentiellement

Supposons que T ait une distribution exponentielle avec moyenne 1/d (ou
paramétre d), f(t) = de—. Alors la fonction de survie est S(t) = e~ et (4) prend

la forme
N(t) = Noe™ (5)

Notez maintenant que

d

—N(t) = —dNoe™

ot (t) dNye

= —dN(t)

avec N(0) = Np.
= LEDO N’ = —dN fait I'hypothése que I'espérance de vie a la naissance est

distribuée exponentiellement

p. 47 — Stochasticité dans les modeles déterministes



Fonction de survie, S(t) = P(T > t), pour une distribution exponentielle avec
moyenne 80 ans
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p. 48 — Stochasticité dans les modeles déterministes



Cas ou T a une distribution delta de Dirac

Supposons que T ait une distribution delta de Dirac en t = w, donnant la fonction
de survie
1, 0<t<
sy=<" ==
0, t>w

Alors (4) prend la forme

NQ 0<t<fw
N(t) = T T 6
(1) {07 . (6)

Tous les individus survivent jusqu’au temps w, puis ils meurent tous au temps w

p. 49 - Stochasticité dans les modeles déterministes



Fonction de survie, S(t) = P(T > t), pour une distribution de Dirac avec moyenne
80 ans
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Survie pour la distribution exponentielle
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Problemes avec la distribution exponentielle
» La survie chute rapidement
» La survie continue bien au-dela de la moyenne

Acceptable si ce qui compte est la durée moyenne de séjour dans un
compartiment (par ex., dynamique a long terme)

Plus délicat si I'on s’intéresse a la dynamique a court terme

» La distribution exponentielle avec parametre ¢ a la méme moyenne et
écart-type 1/6, c’est-a-dire qu’un seul parametre contréle la moyenne et la
dispersion autour de la moyenne
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Les distributions exponentielles sont « mauvaises » mais aussi cool
Xi et Xo 2 v.a. i.i.d. (indépendantes et identiquement distribuées) avec paramétres

01 et 6. Alors la fonction de densité de probabilité de la v.a. Z = X; + X5 est
donnée par la convolution

fz(Z):/ fx1(X1)fX2(Z—X1)dX1
:
= / 016”0141 0,0702(2=41) gy,
0
z
=04 929—922/ el02—01)x adxq
0

010 .
- { 172 (6_912 — 8_022) Si 01 # 0o

0> — 0
62 ze—92 Sify=6,=:0
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Loutil que nous utilisons

Theorem 1

Soit X; des variables aléatoires indépendantes distribuées exponentiellement avec
paramétre { et Y = Y"1 1 X;

Alors la variable aléatoire Y ~~ E(n, &), une distribution d’Erlang avec parametre
de forme n et parametre d’échelle &

(Distribution d’Erlang : distribution Gamma avec parameétre de forme entier)
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Conséquences pour les modeles compartimentaux
Si n compartiments sont traversés successivement par des individus, avec chaque
compartiment ayant un taux de sortie de 1/£ (ou un temps de séjour moyen de &),
alors le temps de séjour depuis I'entrée dans le premier compartiment jusqu’a la
sortie du dernier est distribué selon Erlang avec moyenne E(Y) = n¢ et variance
Var(Y) = n¢?

X
X

- J
I |
Temps de séjour moyen 1/

s €. € h
eXq eXo eXn-2 eXn-1 eXn
cog -0
J

I
I
Temps de séjour moyen N/e

055 J @tNG AR SRINYROHLLEC 1)


https://daytah-or-dahtah.ovh:3838/Erlang_shiny/

Exemple : périodes d’'incubation de la MVE

Considérons la période d'incubation de la Maladie a Virus Ebola. Pendant la crise
de MVE de 2014 en Afrique de I'Ouest, 'Equipe de réponse Ebola de 'OMS a
estimé les périodes d’'incubation dans un article de 2015

Le tableau S2 dans les Informations Supplémentaires de cet article donne le
meilleur ajustement pour la distribution des périodes d’'incubation de la MVE
comme une distribution Gamma avec moyenne 10,3 jours et écart-type 8,2,
c'est-a-dire ne = 10,3 ets/n=28,2

De ceci, e = 8,22/10,3 ~ 6,53 et n = 10,32/8,22 ~ 1,57. Cependant, c’est une
distribution Gamma
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Switching to a compartmental model approach

To use multiple compartments to better fit residence times, we need to find the
closest possible Erlang distribution to this Gamma distribution

— compute RSS errors between data points generated from the given Gamma
distribution and an Erlang

error_Gamma <- function(theta,shape,t,d) {
test_points <- dgamma(t, shape = shape, scale = theta)
ls_error <- sum((d-test_points)~2)
return(ls_error)

}
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optimize_gamma <- function(t,d) {
max_shape <- 10
error_vector <- mat.or.vec(max_shape,1)
scale_vector <- mat.or.vec(max_shape,1)
for (i in 1:max_shape) {
result_optim <- try(optim(par = 3,
fn = error_Gamma,
lower = 0,
method = "L-BFGS-B",
shape = 1,
t = t,
d =4d)),
TRUE)
if (!inherits(result_optim,"try-error")) {
error_vector[i] <- result_optim$value
scale_vector[i] <- result_optim$par
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} else {
error_vector[i] <- NaN
scale_vector[i] <- NaN
}
}
result_optim <- data.frame(seq(1l,max_shape),
scale_vector,
error_vector)
colnames (result_optim) <- c("shape","scale","error"
result_optim <- result_optim[complete.cases(result_optim),]
return(result_optim)
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time_points <- seq(0,60)
data_points <- dgamma(time_points, shape = 1.57,

scale = 6.53)
# Exécuter la minimisation

optim_fits <- optimize_gamma(time_points,data_points)
# (Quelle est la metlleure Erlang pour ajuster les données
idx_best <- which.min(optim_fits$error)
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Nous trouvons le meilleur ajustement ci-dessous, qui est obtenu en utilisant 2
compartiments

e Data
Best Erlang fit
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Un modele SIS

Hypothéses

» Les individus se rétablissent typiquement de la maladie

» La maladie ne confere pas d'immunité

» Il n’y a pas de naissance ou de décés (de la maladie ou naturel)
= Population totale constante N = N(t) = S(t) + /()

> Linfection est de type
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Rétablissement

> Les modeles traditionnels supposent que le rétablissement se produit avec un
taux constant ~

» Ici, parmi les individus qui deviennent infectieux au temps fy, une fraction
S(t — fp) reste infectieuse au temps t > fy

» = Pourt > 0, S(t) est une fonction de survie. En tant que telle, elle vérifie
S(0) = 1 et S est non négative et non croissante
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Modéle pour les individus infectieux

Puisque N est constant, S(t) = N — /(t) et nous n’avons besoin de considérer que
I'équation suivante (ou S est utilisé pour plus de clarté)

/ 2 st uyet ®)

» Iy(t) nombre d’'individus qui étaient infectieux au temps t = 0 et le sont

toujours au temps t
> Io(t) est non négatif, non croissant, et tel que lim;_, () =0

» S(t— u) proportion d’individus qui sont devenus infectieux au temps u et qui
le sont toujours au temps t
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Expression sous l'intégrale

Equation intégrale pour le nombre d’individus infectieux :

t _
I(t) = Ip(1) +/o B(NI(AIIJ))I(U)S(t— u)du

Le terme
(N = I(u))I(u)

B N

S(t—u)

» B(N — I(u))I(u)/N est le taux auquel de nouveaux infectieux sont créés, au
temps u

» multiplier par S(t — u) donne la proportion de ceux qui sont devenus
infectieux au temps u et qui le sont toujours au temps t

Sommer sur [0, {] donne le nombre d’'individus infectieux au temps ¢
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Cas d’un temps de rétablissement distribué exponentiellement

Supposons S(t) tel que le temps de séjour dans I'état infectieux ait une
distribution exponentielle avec moyenne 1/, c’est-a-dire, S(t) = e~ !

La fonction de condition initiale Iy(f) prend la forme
Io(t) = lo(0)e™ "

avec Iy(0) le nombre d’individus infectieux au temps t = 0. Obtenu en considérant
la cohorte d’individus initialement infectieux, donnant un modéle tel que (4)

Léquation (8) devient

I(t) = Ih(0)e™ " + /0 t p N = Hu))i(u) /I(\;’))/(”) ey 9)
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Prendre la dérivée temporelle de (9) donne

Il(t) _ _,ylo(o)e—'yt _ ,y/otﬁ(N — IE\;J))/(U) e—’y(t—u)du

N H0)D)
=—n </o ey /5 _/ (u) e (t= “)du>
4+ N 10)D)
G ) GRS

N

Ceci est I'équation différentielle ordinaire (EDO) classique de type logistique pour
I dans un modéle SIS sans dynamique vitale (pas de naissance ou de déces)
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Cas d’'une fonction de survie en escalier

Considérons le cas ou le temps passé infecté a une fonction de survie

1 <t<
S(t)—{’ 0<t<w,
0, t>w.

c’est-a-dire, le temps de séjour dans I'état infectieux est une constante w > 0

Dans ce cas (8) devient

I(t) = lo(t) + tB(N_II(\;I))/(U)du. (10)
t—w

Ici, il est plus difficile d’obtenir une expression pour ly(t). Il est cependant supposé
que Ip(t) s’annule pour t > w
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Lorsque différentiée, (10) donne, pour t > w,

(N — 1) 1(t)
N

(N—I(t—w)) /(t—w).

I(t) = ly(t) + 8 =

B

Puisque Ip(t) s’annule pour t > w, ceci donne I'équation différentielle a retard

(EDR)
/() B(N - IIE/t))I(t) B B(N —I(t —ACIU))/(T —w)
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Structure du modele
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Hypothéses sur S

S(t) est une fonction non négative et non croissante avec S(01) = 1, et telle que
Jo~ S(u)du est positive et finie

Donc S(t) est une fonction de survie
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Le modeéle SIS avec vaccination

di(t)
dt

f t
V(t) = Vo(t) + / (6S(u) + ad)S(t — u)e~ =t g8 [y gy (11b)
0

= B(S(t) +aV()I(t) = (d +)I(t) (11a)

v

ad proportion de nouveau-nés vaccinés
» ¢»S(u) proportion de susceptibles vaccinés

» S(t — u) fraction de la proportion vaccinée encore dans la classe V t — u
unités de temps aprés y étre entrée
» e 9(1-U) fraction de la proportion vaccinée pas décédée de causes naturelles

t . . . g /
> e 7L 10 fraction de la proportion vaccinée pas passée dans la classe
infectieuse
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Réduction du systeme en utilisant des fonctions S(t) spécifiques

> La distribution des temps de déclin étant exponentielle conduit a un systéme
d’EDO

» S(t) provenant d’une distribution de Dirac conduit & un modéle EDR a retard
discret
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Soyez conscient (méfiez-vous ?) de ce qui se cache sous le capot

Les EDO et les EDR a retard discret vont bien, mais elles cachent des hypothéses
assez fortes

Si vous utilisez une EDO pour un modéle endémique, bien : vous travaillez
typiquement avec t — oo et 'EDO « utilise » la moyenne de votre parameétre

Si, d’autre part, vous utilisez une EDO pour évaluer le comportement pour des
temps qui ne sont pas trop différents de la moyenne de vos parametres, alors
méfiez-vous

Les retards discrets font I’hypothése que chaque individu dans votre population a
le méme temps de séjour si un compartiment quelconque se voit appliquer un
retard... Vous pourriez vouloir penser aux retards distribués ou a d’autres
mécanismes pour compenser Ceci

Vous pourriez vouloir utiliser un marteau différent
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Chaines de Markov en temps continu

Approximations des CMTC par processus de
branchement
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Du temps discret au temps continu

Chaines de Markov en temps discret (CMTD)
Un systéme transite entre états a des pas de temps fixes et discrets
(n=0,1,2,...)

> Le futur dépend uniquement de I'état présent (Propriété de Markov)

> Reégi par une matrice de probabilité de transition P, ou P; est la probabilite
de passer de I'état j a j en une étape

Chaines de Markov en temps continu (CMTC)

Un systeme peut transiter entre états a n’importe quel moment
> Le temps passé dans un état est une variable aléatoire continue
> Le « temps de séjour » dans tout état i suit une distribution exponentielle
paramétrée par un taux de sortie q;

> Ceci est une conséquence directe de la Propriété de Markov appliquée au
temps continu (I'exponentielle est la seule distribution continue qui est « sans
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Taux de transition

Dynamique d’'une CMTC définie par des taux de transition, pas des probabilités

Definition 2 (Taux de transition)
Pour deux états i # j, le taux g; > 0 est le taux instantané de transition de I'état / a
I'état j
» Pour un petit intervalle de temps At, la probabilité de transition de i a j est
approximativement g; At

> Le total de l'état iest g; = >_;,; qj
> Le temps passé dans I'état i est une variable aléatoire exponentielle
Ti ~ E(qi)
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La matrice génératrice

Matrice génératrice (Matrice Q)
Rassembler tous les taux de transition dans une seule matrice Q

» Hors diagonale : Q; = g pour i # j (Le taux de passage de / a )

> Diagonale : Qi = —q; = —>_,; g;. (Le négatif du taux de sortie total de /)
Une propriété clé est que toutes les lignes de Q somment a zéro : Z/- Q; = 0.
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Equations de Kolmogorov

Soit P(t) la matrice ou Pj(t) = P(X(t) = j|X(0) = i). Comment P(t) évolue-t-elle
dans le temps ?

Equations de Kolmogorov progressives

Décrit le taux de changement de probabilité de finir dans un état cible j

d
ZP(0=P0)Q

Sous forme élémentaire :

Pi(t) = Pi(t)Qy
k
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Solution de 'EKP

La solution est 'exponentielle matricielle

P(t) — etQ — i (tQ)k

k!
k=0

La matrice génératrice Q « génére » I'évolution du processus
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Convertir votre modéle compartimentale EDO en CMTC

Facile comme 7 :)

» Le modéle compartimentale EDO se concentre sur les flux entrants et
sortants des compartiments

» Le modéle EDO a autant d’équations qu’il y a de compartiments
» Le modéle compartimentale CMTC se concentre sur les transitions

» Le modéle CMTC a autant de transitions qu’il y a de fleches entre (ou vers ou
depuis) les compartiments
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EDO vers CMTC : focus sur différents composants

EDO : CMTC
_3SI 148l 38!
"""" N X
Y- \/‘
+v1 — Syl
f'ocué focUs
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SIS sans démographie

Transition Effet Poids Probabilité
S—S—1,I-1+1 nouvelle infection S/ 5361?,”
S—S+1,I—1-1 retablissement ol ﬂS/ViJF,Y/

d’un infectieux

Les états sont S, /
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SIS avec démographie

Transition Effet Poids Probabilité

S— S+1 naissance dun b b+d(S+/[))+,BS/+yl
susceptible

S—S-1 décés d'un sus-  dS  prgsiEsI
ceptible

S = S—1, 1 — nouvelle infection  3SI b+d(s+ﬁl)sfrﬁsmy/

I+1

[ —1—1 décés dun infec-  dl  prgsriiasIT
tieux

S — S+ 1,1 — rétablissement vl b+d(s+7)l+5$l+~/l

/-1 d’un infectieux

Les états sont S, /
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Modeéele de Kermack & McKendrick

Transition Effet Poids  Probabilite
S—+S—1,I—1+1 nouvelleinfection Sl 536/?;7/
I—1-1,R—R+1 rétablissement v 5877%

d’un infectieux

Les états sont S, I, R
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Lalgorithme de Gillespie
> Aussi appelé I'algorithme de simulation stochastique (SSA)
» Dérivé en 1976 par Daniel Gillespie
» Géneére des solutions possibles pour les CMTC

» Extrémement simple, donc vaut la peine d’apprendre a implémenter; il existe
cependant des paquets que vous pouvez utiliser (voir plus tard)
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Lalgorithme de Gillespie

Supposons que le systeme a un état x(t) avec condition initiale x(f) = X et
fonctions de propension a; des réactions élémentaires

définir t < t et x(f) < Xo

tant que t < t;

-G ax(0)

- Tirer 1 de T ~ E(&)

- Tirer (; de U([0, 1]) ‘

- Trouver r, le plus petit entier tel que >~} _; ak(x(t)) > ¢t 3=; ai(x(t)) = Gt
- Effectuer la prochaine réaction (celle indexée r)

- t—t+¢
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Tirer aléatoirement d’'une distribution exponentielle
Si vous n'avez pas de générateur de nombres aléatoires de distribution
exponentielle.. Nous voulons s de T ~ £(&;), c’est-a-dire, T a une fonction de
densité de probabilité

f(x, &) = 67 10
Utiliser la fonction de distribution cumulative F(x, &;) = ffoo f(s,&) ds
F(x,&) = (1 - e )10

qui a des valeurs dans [0, 1]. Donc tirer ¢ de U([0, 1]) et résoudre F(x, &) = ¢ pour
X

F(x,&)=(e1—e =
et =1-¢

<=>&X: —|n(1 —C)
o[ 2RO
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Lalgorithme de Gillespie (modéle SIS avec seulement I'éq. |)

définir t + ty et I(t) «+ I(fp)

tant que t < t

- &+ B(P —1)i+~i

- Tirer iy de T ~ £(&)

- v [BP - )iE] /&

- Tirer (; de U([0, 1])

- Trouver pos tel que Vpos—1 < (¢ < Vpos

- selon pos
- 1 : Nouvelle infection, I(t + 7¢) = I(t) + 1
- 2 : Fin de la période infectieuse, I(t + ¢) = I(t) — 1

-t t+ T
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Parfois Gillespie tourne mal

» Rappelons que le temps inter-événements est distribué exponentiellement

» Etape critique de I'algorithme de Gillespie :

> ¢ « poids de tous les événements possibles (propension)
> Tireryde T ~ E(&)

» Donc le temps inter-événements 7 — 0 si & devient trés grand pour un
certain t

» Ceci peut causer le ralentissement de la simulation jusqu’a I'arrét
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Exemple : un processus de naissance et de mort

» Individus nés a un taux per capita b
» Individus meurent a un taux per capita d
» Implémentons cela en utilisant le Gillespie classique

(Voir simulate_birth_death_CTMC.R sur le dépbt GitHub du cours)
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https://raw.githubusercontent.com/julien-arino/3MC-course-epidemiological-modelling/main/CODE/simulate_birth_death_CTMC.R

Lalgorithme de Gillespie (modéle naissance-mort)

définir t + ty et N(t) «+ N(f)
tant que t < t;
- G (b+d)N(1)
- Tirer iy de T ~ £(&)
- v [BN(), &) /&
- Tirer (; de U([0, 1])
- Trouver pos tel que Vpos—1 < (¢ < Vpos
- selon pos
- 1 : Naissance, N(t + 7¢) = N(t) + 1
-2 :Décés, N(t+ 1) = N(t) —1
-t t+ T
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birth_death_CTMC = function(b = 0.01, d = 0.01) {
t_0=20 # Inttial time
N_O = 100 # Initial population

# Vectors to store time and state. Initialise with inttial condition.
t =t_0
N = N_O

t_f = 1000 # Fanal time

# Track the current time and state (could just check last entry in t
# and N, but will take more operations)
t_curr = t_0
N_curr = N_O
while (t_curr<=t_f) {
xi_t = (b+d)*N_curr
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if (N_curr == 0) {

break # Avoid error with rexp when zi_t = 0
}
tau_t = rexp(l, rate = xi_t)
t_curr = t_curr+tau_t
v = c(b*N_curr, xi_t)/xi_t
zeta_t = runif(n = 1)
pos = findInterval(zeta_t, v)+1
switch(pos,

{ N_curr = N_curr+1}, # Birth

{ N_curr = N_curr-1}) # Death
N = ¢(N, N_curr)
t = c(t, t_curr)
}
plot(t, N, type = "1",
xlab = "Time", ylab = "Population size",
main = paste("Birth-death CTMC with b =", b, "and d =", d))

p. 94 - Chaines de Markov en temps continu
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b=0.03&d=0.01...

Nous voulons exécuter la fonction avec ces valeurs de parameétres mais je sais a
I'avance que cela ne fonctionnera pas bien, donc modifions un peu la fonction.
Nous ajoutons un test :

if (t[length(t)]-t[(length(t)-1)] < 1le-8) {
# If the time step is too small, stop the simulation
message ("Stopping simulation because time step is too small")
break
3

p. 98 — Chaines de Markov en temps continu
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Last one did not go well

» Wanted 1000 time units (days ?)
» Interrupted at 257.3144961 because of the test
(Slide with b < d : sim stopped because the population went extinct, | did not
stop it!)
> At stop time
» N=1.6116 x 10*

> |N| = 31977 (et |t| aussi, bien sOr!)
> le temps avancait lentement

tail (diff (results$t))

## [1] 4.201952e-04 4.017531e-03 7.198722e-04 2.877816e-04 4.953929e-04
## [6] 2.904073e-09

p. 100 — Chaines de Markov en temps continu
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Tau-leaping (et les paquets) a la rescousse !

» Méthode d’approximation (comparée au Gillespie classique, qui est exact)

» Grosso modo : considérer des « groupes » d’événements au lieu
d’événements individuels

» Bonne nouvelle : GillespieSSA2 et adaptivetau, deux paquets standard
pour SSA dans R, implémentent le tau leaping

p. 102 — Chaines de Markov en temps continu



library(GillespieSSA2)

Pop <- 1000

I_0<-2

IC <- ¢(S = (Pop-I_0), I =1_0)
gamma = 1/3

# RO=beta/gamma*S0, donc beta=R0*gamma/S0

beta = as.numeric(l.5*gamma/IC["S"])

params <- c(gamma = gamma, beta = beta)

t_f = 100

reactions <- list(
reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)

set.seed (NULL)

p. 103 — Chaines de Markov en temps continu



sol <- ssa(
initial_state = IC,
reactions = reactions,
params = params,
method = ssa_exact(),
final_time = t_f£,
)
plot(sol$time, sol$statel,"I"], type = "1",
xlab = "Time (days)", ylab = "Number infectious")

p. 104 — Chaines de Markov en temps continu
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Parallélisation

Pour voir plusieurs réalisations : bonne idée de paralléliser, puis interpoler les
résultats. Ecrire une fonction, par ex., run_one_sim qui.. exécute une simulation

Utiliser certains mécanismes de parallélisation pour exécuter run_one_sim en
paralléle. Une fagon facile de le faire est d'utiliser une version paralléle de 1apply,
qui applique une fonction a une liste

Ici, je montre la parallélisation en utilisant un paquet assez récent appelé future
(et future.apply, qui contient I'équivalent pertinent de lapply)

Jillustre également une autre bibliotheque SSA que je trouve moins délicate sous
Windows car les réactions ne sont pas précompilées : adaptivetau

p. 106 — Chaines de Markov en temps continu



Partie commune — la fonction utilisée |

run_one_sim = function(params) {
IC <- c(S = (params$Pop-params$I_0), I = params$I_0)
params_local <- c(gamma = params$gamma, beta = params$beta)
reactions <- list(
# propensity function effects name for reaction
reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")
)
set.seed (NULL)
sol <- ssa(
initial_state = IC,
reactions = reactions,
params = params_local,
method = ssa_exact(),

p. 107 — Chaines de Markov en temps continu



Partie commune — la fonction utilisée I

final time = params$t_f,
log_firings = TRUE # This way we keep track of events
)
# Interpolate result (just I will do)
wanted_t = seq(from = 0, to = params$t_f, by = 0.01)
sol$interp_I = approx(x = sol$time, y = sol$statel[,"I"],
xout = wanted_t)
names (sol$interp_I) = c("time", "I")
# Return result
return(sol)

p. 108 — Chaines de Markov en temps continu
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Bénéfices de la parallélisation

Faisons tourner 100 sims entre tictoc::tic() and tictoc: :toc(), donnant
66.958 sec elapsed, puis la version séquentielle

tictoc::tic()

SIMS = lapply(X = 1:params$number_sims,

FUN = function(x) run_one_sim(params))
tictoc::toc()

ce qui donne 318.141 sec elapsed sur un Intel(R) Core(TM) i9-8950HK CPU @
2.90GHz 6C/12T (4.75x plus rapide) ou 12.067 sec elapsed versus 258.985 sec
elapsed sur un processeur AMD Ryzen Threadripper 3970X 32-Core/64-Threads
(21.46x plus rapide !)

p. 110 — Chaines de Markov en temps continu
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Exemple simple — Naissance et mort

Nous considérons un modele de démographie avec un compartiment N, avec flux
entrant de naissance constant et décés per capita

dN
E—b—dN, b,d>0

» Equiliore N* = b/d

» Si d est connu, ce modele est identifiable : il y a un unique b = dN* tel que
N(t) — N*

La CMTC correspondante prend la forme N(t) € N, avec les transitions
» N— N+ 1autaux b
» N — N—1autaux dN

p. 111 — Chaines de Markov en temps continu



Une petite expérience

Supposons qu’on ait une population humaine de 1 000 personnes

Prétendons qu’on ne connait pas vraiment I'ordre de grandeur de d (1/d est la
durée moyenne de vie). On veut garder une population autour de 1 000 individus

Jlillustre 2 cas :
» mortalité d = 1/45 ans (d = 1/(45 - 365) avec unités de temps les jours)
» mortalité d = 1/45 jours

p. 112 — Chaines de Markov en temps continu



Pensez a une population de 1 000 personnes. Laquelle des figures ci-dessous
vous semble convenir mieux en terme du nombre d’évenements ayant lieu tous
les jours ?
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Enquéte sur les types d’épidémie a I'aide d’'un CMTC SIS simple

X(t) = <SA(t), /A(t))

CMTC X(t) caractérisée par les transitions

Description Transition Taux

Infection (SA ") — (SA—1,1"+1) pASAA
Rétablissement  (SA, 14) — (SA+1,A—1)  AAA

p. 116 — Chaines de Markov en temps continu



Enquéte sur les types d’épidémie a I'aide d’'un CMTC SIS simple
avec une variante

Une chaine réguliére de ce type a I = 0 comme seul état absorbant
Nous ajoutons un autre état absorbant : si / = 7, alors la chaine a quitté la phase
stochastique et est dans une phase quasi-déterministe avec croissance

exponentielle

En faisant cela, les mesures de temps d’absorption deviennent utilisables en plus
des mesures de temps de premier passage

Et la question devient : combien de temps la chaine « persiste »avant d’étre

absorbée ? Nous définissons la trajectoire inter-absorption comme la phase
stochastique

p. 117 — Chaines de Markov en temps continu
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A

Probleme de la valeur de la borne supérieure /

> Choisir 1 trop petit et la phase stochastique ne durera pas longtemps

» Choisir  trop grand et I'absorption ne se fera qu’au DFE

» Alors, comment choisir 1?

» Une formule de Whittle (1955)
» Processus de branchement multitype (MTBP)

p. 120 — Chaines de Markov en temps continu
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Une derniére pensée pour la route

V. Chetail. Crisis without borders: What does international law say about border
closure in the context of Covid-19? Frontiers in Political Science, 2 (12) (2020)

[..] a powerful expression of state’s sovereignty, immigration control pro-
vides a typical avenue for governments to reassure their citizens and bol-

ster a national sense of belonging, while providing an ideal scapegoat for
their own failure or negligence.

p. 127 — Chaines de Markov en temps continu
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Qu’est-ce qu’un processus de branchement ?

Un processus de branchement est un modele mathématique pour une population
ou les individus produisent un nombre aléatoire de descendants puis meurent

Pensez aux bactéries qui se divisent, a un virus qui se propage, ou méme a la
survie des noms de famille

» Commengons avec une population initiale, £,

» Chaque individu de la génération n produit un nombre de descendants pour
la génération n + 1

» Ce « nombre de descendants » est une variable aléatoire. Tous les individus
produisent des descendants selon la méme distribution de probabilité,
indépendamment les uns des autres

p. 128 — Approximations des CMTC par processus de branchement



Le processus de Galton-Watson

Soit Z, la taille de la population a la génération n. Nous commengons typiquement
avec 4y = 1

La population évolue selon la regle
Zn
Zn+1 = Z Xn,i
i=1

» X, :nombre de descendants produits par le i-eme individu de la génération n
> Les variables { X, ;} sont des variables aléatoires indépendantes et
identiquement distribuées (i.i.d.) a valeurs entiéres
» Nous appelons leur distribution commune {px}72, la
, 0l px = P(X = k)

Questions fondamentales

1. Taille espérée a long terme de la population ?
2. Probabilité que la population finisse par s’éteindre ?

p. 129 — Approximations des CMTC par processus de branchement



Moyenne de la distribution des descendants

Le destin de la population dépend d’un seul paramétre : la moyenne de la
distribution des descendants

p=EX] =Y k-p
k=0

p. 130 — Approximations des CMTC par processus de branchement



Taille de population espérée

En utilisant la loi de I'espérance totale, nous trouvons la taille espérée de la
prochaine génération

Zn
E[Zn11Z0] = E [Z X
i=1

Zn] - ZnE[X] — ZnILL

En prenant 'espérance a nouveau, nous obtenons une récurrence simple

E[Zni1] = pE[Zn]

Ceci implique
E[Z)]) = Zou"

p. 131 — Approximations des CMTC par processus de branchement



Les trois régimes de croissance de population

Le comportement de E[Z,] = Zyn" suggeére trois cas distincts

Sous-critique (1 < 1) Critique (u=1) Super-critique (1 > 1)

E[Z,] — 0. La population E[Z,] = Zy. La population E[Z,] — oc. La population

devrait rétrécir. Elle s’éteint  devrait rester stable. devrait croitre

avec probabilité 1 Curieusement, elle s’éteint  exponentiellement. Elle a
quand méme avec une probabilité non nulle
probabilité 1 de survivre a jamais

p. 132 — Approximations des CMTC par processus de branchement



Fonction génératrice de probabilité

Pour trouver la probabilité d’extinction, nous utilisons la
(FGP) de la distribution des descendants X.

G(s) = E[s] =) pxs* pour s <1
k=0

Propriétés clés

> G(1) =2 pk=1
> La moyenne peut étre trouvée a partir de la dérivée : G'(1) = > kpx = 1

» La FGP de Z, est le n-ieme itéré de G(s) avec elle-méme. Si G (s) est la
FGP de Z,, alors Gn.1(s) = G(Gn(s))

p. 133 — Approximations des CMTC par processus de branchement



Equation de la probabilité d’extinction
Soit 7y la probabilité d’extinction éventuelle, en commengant avec Z; = 1

mo = P(la population s’éteint) = nli_)n;O P(Z,=0)

Puisque P(Z, = 0) = Gy(0), et G,.1(0) = G(Gnr(0)), a la limite la probabilité
d’extinction 7y doit satisfaire I'équation

mo = G(o)

Theorem 3

La probabilité d’extinction my est la plus petite solution non négative de
I'équation s = G(S)

» Siu <1, laseule solution dans [0, 1] est s = 1. Donc 7y = 1

» Siu > 1, il existe une solution unique dans [0, 1), qui est la probabilité
d’extinction my < 1

p. 134 — Approximations des CMTC par processus de branchement



Du temps discret au temps continu

Limitation de Galton-Watson

Les générations n’arrivent pas en étapes synchronisées dans le monde réel. Les
individus donnent naissance et meurent a des moments aléatoires

Cela nous amene aux Chaines de Markov en temps continu (CMTC)

> Létat du systéme est la taille de la population, k € {0,1,2,...}
> Au lieu de générations, nous avons des taux de transition :
> )\, : taux de naissance lorsque la population est de taille k (passe a k + 1)
> Jy :taux de déces lorsque la population est de taille k (passe a k — 1).
» Souvent, nous supposons que ces taux sont linéaires : A\x = k\ et dx = ké.
Cela signifie que les individus agissent indépendamment

p. 135 — Approximations des CMTC par processus de branchement



Approximation d’'une CMTC par processus de branchement
Lidée clé
Au début d’'une épidémie (ou pour une tres grande population), la dynamique
causée par un seul individu est largement indépendante des autres

Cela nous permet d’approximer le début d’'un processus de population CMTC
avec un processus de branchement
Exemple : Une épidémie simple (modéle SIR)
» S : Susceptible, /: Infecté, R : Rétabli
» Une personne infectée rencontre d’autres personnes a un certain taux. Si elle
rencontre un susceptible, une nouvelle infection peut se produire (un «
descendant »)
> La personne infectée se rétablit (ou meurt) a un autre taux, terminant sa
période infectieuse
» Question : Combien de nouvelles infections une seule personne infectée
cause-t-elle en moyenne ?

p. 136 — Approximations des CMTC par processus de branchement



Etude de cas : Le nombre de reproduction de base R,

Considérons un seul individu infecté dans une grande population de susceptibles
» Soit g le taux d’infection (taux de production de « descendants »)
» Soit v le taux de rétablissement (taux de « mort »)

La durée de vie infectieuse de l'individu est une variable aléatoire exponentielle
avec moyenne 1/~
Le nombre moyen d’infections secondaires qu’il cause est

B
5

, . - . , 1
Ro = (taux d’infection) x (période infectieuse moyenne) = 5 x S =

La connexion

Ro est précisément le nombre moyen de descendants 1. pour le processus de
branchement intégré qui approxime le début de I'épidémie

p. 137 — Approximations des CMTC par processus de branchement



Application aux épidémies

Le destin de la phase initiale de I'épidémie est déterminé par R
» SiRg <1 (u<1):Lenombre dindividus infectés est un processus
sous-critique ou critique. Lépidémie s’éteint avec probabilité 1
» SiRg > 1(u>1):Le processus est super-critique. Il y a une probabilité
positive que I'épidémie décolle et cause une épidémie majeure
Nous pouvons méme calculer la probabilité d’une épidémie majeure! C’est 1 — my,
ou mq est la probabilité d’extinction
Pour ce processus d’infection naissance-mort simple, la FGP est
G(s) = Bﬂ + 55 s. Résoudre s = G(s) donne la probabilité d’extinction

oy 1
™ = —

B Ro
La probabilité d’'une épidémie majeure est 1 — 1/Rg

p. 138 — Approximations des CMTC par processus de branchement



Résumé pour APB

> Les processus de branchement modélisent les populations avec une
génération de descendants i.i.d.

» Le destin de la population est déterminé par le nombre moyen de
descendants .. Lextinction est certaine si p < 1

» La probabilité d’extinction 7, peut étre calculée comme le plus petit point
fixe non négatif de la fonction génératrice de probabilité G(s)

> Les stades initiaux de nombreuses chaines de Markov en temps continu a
grande échelle peuvent étre approximés par un processus de branchement

» Cela nous permet d’appliquer la théorie a des problémes du monde réel,
comme le calcul du nombre de reproduction de base R, d’'une épidémie et
sa probabilité de causer une épidémie majeure

p. 139 — Approximations des CMTC par processus de branchement
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