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Incidence function versus force of infection

Two different forms for the rate of movement of S individuals from
S to whatever infected compartment they end up in:
▶ S′ = −f(S, I,N) is an incidence function
▶ S′ = −λ(S, I,N)S is a force of infection

The two are of course essentially equivalent, the context tends to
drive the form used. Advanced PDE models that consider for
instance an age-of-infection structure need to integrate over I(t, a)
and thus often use force of infection, others are somewhat random..
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Interactions – Infection

▶ Rate at which new cases appear per unit time is the incidence
function

f(S, I,N)

▶ Depends of the number S of susceptible individuals, I of
infectious individuals and, sometimes, of the total population N ▶
Incidence includes two main components
▶ a denumeration of the number of contacts taking place
▶ a description of the probability that such a contact, when it

takes place, results in the transmission of the pathogen
▶ Choosing an appropriate function is hard and probably one of
the flunkiest part of epidemic modelling
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Two most frequently used functions

The two most frequently used incidence functions are mass action
incidence

f(S, I,N) = βSI

and standard (or proportional) incidence

f(S, I,N) = β
SI
N

In both cases, β is the disease transmission coefficient
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Units of β
Recall that if X(t) is the population in compartment X at time t,
then X′ has units number/time

In a differential equation, left and right hand side must have same
units, so..

Mass action incidence

βSI ∝ β × number× number

has units number/time if β has units 1/(number× time)

Standard incidence

βSI/N ∝ β × number× number/number ∝ β × number

has units number/time if β has units 1/time
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Mass action incidence

f(S, I,N) = βSI (1)

▶ There is homogenous mixing of susceptible and infectious
individuals

▶ Strong hypothesis: each individual potentially meets every
other individual

In this case, one of the most widely accepted interpretations is that
all susceptible individuals can come across all infectious individuals
(hence the name, by analogy with gas dynamics in
chemistry/physics)

When population is large, the hypothesis becomes unrealistic
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Standard (proportional) incidence

The other form used frequently:

f(S, I,N) = β
SI
N (2)

Each susceptible individual meets a fraction of the infectious
individuals

Or vice-versa! See, e.g., Hethcote, Qualitative analyses of
communicable disease models, Mathematical Biosciences (1976)

Case of a larger population
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Constant population =⇒ (1) ≡ (2)

When the total population is constant, a lot of incidence function
are equivalent (to units)

Suppose N(t) ≡ N0, then

βSI = β̃
SI
N ⇐⇒ β̃ = N0β

and if the right hand side is satisfied, then (1) and (2) identical

Keep in mind units are different, though

p. 7 – Motivation – More about incidence



General incidence

f(S, I,N) = βSqIp (3)

These functions were introduced with data fitting in mind: fitting
to data, find the p, q best matching the available data
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Incidence with refuge

The following implements a refuge effect; it assumes that a
proportion 0 < q < 1 of the population is truly susceptible,
because of, e.g., spatial heterogenities

f(S, I,N) =

βI
(

N − I
q

)
, if I < qN

0, if I ≥ qN
(4)
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Negative binomial incidence

f(S, I,N) = kS ln

(
1+ β

I
k

)
(5)

For small values of k, this function describes a very concentrated
infection process, while when k → ∞, this function reduces to a
mass action incidence
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Asymptotic contact

f(S, I,N) =
N

1− ε+ εN
F(S, I)

N
where F is one of the functions we just described
When ε = 0, contacts are proportionnal to N, whereas when ε = 1,
contacts are independent from N
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Asymptomatic transmission

f(S, I,N) = β
SI

c + S + I
where c is a constant. E.g.,

C(N)

N F(S, I)

with C(N) = N/(1− ε+ εN) the function describing the contact
rate and F(S, I) the function describing disease spread, assumed
here to be of negative binomial incidence-type
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Switching incidence

Arino & McCluskey, [Effect of a sharp change of the incidence
function on the dynamics of a simple
disease](https://doi.org/10.1080/17513751003793017), *Journal
of Biological Dynamics* (2010)
Scale population so switch occurs at N = 1 and suppose

F(S, I,N) =

βSI if N ≤ 1

β
SI
N if N > 1

In SIS with non-constant population

S′ = bN − dS − F(S, I,N) + γI (6)
I′ = F(S, I,N)− (d + δ + γ)I (7)

b ̸= d and δ disease-induced death rate, periodic solutions found
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Why all this mess?

Because contact processes are really really complicated and that
describing them mathematically is hard!
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ABM ̸= IBM

Early in the life of these models, they were called IBM
(individual-based models)

Over the years, a “philosophical” distinction has emerged:
▶ IBM are mathematical models that consider individuals as the

units; e.g., DTMC, CTMC, branching processes, etc.
▶ ABM are computational models whose study is, for the most

part, only possible numerically
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ABM vs Network models

Network models endow vertices with simple systems and couple
them through graphs

Can be ABM, but some networks can also be studied analytically
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ABM are very useful to decipher contact processes

Classic mathematical models capture contact by using
approximations of what contact could be like

Classic models allow some flexibility (see section about incidence
functions in Lecture X but they remain limited

ABM can model actual trajectories of individuals, so given a
definition of what a contact is (how close do you need to be for a
contact to take place), can count them efficaciously
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ABM are very useful to understand behavioural responses
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As with all tools, beware!

There is a law of large numbers effects happening often: if you
have many units, unless some emergent behaviour arises, you get
the same results using ODEs...

With this specific tool, beware!

There is a certain tendency in CS people to create yet another
system and seek adoption by users
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Antibiotic resistance in hospitals

D’Agata, Magal, Olivier, Ruan & Webb. Modeling antibiotic
resistance in hospitals: The impact of minimizing treatment
duration, Journal of Theoretical Biology (2007)
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An IBM that’s almost an ABM

This work is a good illustration of the “cultural proximity” between
IBM and ABM

Model is stochastic and individual-based, in good enough form
that approximating ODE can be derived

Allows for very specific tracking of the status of individuals
through the process (almost an ABM in this sense)
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The setup

Three processes:
1. admission and exit of patients
2. infection of patients by HCW (health care workers)
3. contamination of HCW by patients

Contamination of HCW is “transient”: they are carriers, if they
wash their hands properly, they become OK

Each day has 3 shifts of 8h for HCW

Patients are put in contact by visits of HCW

Rules for contaminations per unit time
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Patient–HCW contact diagram for four patients and one HCW during one shift. Patient status: uninfected (green),
infected with the non-resistant strain (yellow), infected with the resistant strain (red). HCW status:
uncontaminated (plain), contaminated with the non-resistant strain (dotted), contaminated with the resistant
strain (dashed)
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The left (respectively the right) figure corresponds to 1 trajectory (respectively the average over 80 trajectories) of
the IBM during one shift, with no exit and admission of patients, and no changes in the infection status of patients
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Effectiveness of contact tracing in TB

Tian, Osgood, Al-Azem & Hoeppner. Evaluating the Effectiveness
of Contact Tracing on Tuberculosis Outcomes in Saskatchewan
Using Individual-Based Modeling, Health Education & Behavior
(2013)
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They can then formulate scenarios

They then run these scenarios and compare results
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Contacts during Hajj

Tofighi, Asgary, Tofighi, Najafabadi, Arino, Amiche, Rahman,
McCarthy, Bragazzi, Thommes, Coudeville, Grunnill, Bourouiba
and Wu. Estimating Social Contacts in Mass Gatherings for
Disease Outbreak Prevention and Management (Case of Hajj
Pilgrimage), Tropical Diseases, Travel Medicine and Vaccines
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Contacts during Hajj

In a mass gathering event like Hajj, lots of people come together
originating from many countries

So if propagation occurs during the event, this has the capacity to
spread infection far and wide when individuals (pilgrims here)
return home

Contacts during part of the event are really specific in their
configuration
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The setup

Word of warning: I am quite fuzzy on the specifics :)

Pilgrims enter Masjid al-Haram mosque through several gates

Proceed to Mataaf (area around Kaaba), circle the Kaaba 7 times
counterclockwise (process is the Tawaf)

Then do seven trips between Safa and Marwah (process is the
Sa’ee)
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As you can gather from this:
▶ Typically high density crowds
▶ Very specific mixing patterns

Opportunities for transmission are very high

However, control mechanisms are also available

=⇒ understanding contact patterns and frequency would help
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Understand contact processes

Classic models allow a certain degree of flexibility, for instance by
using specific incidence functions or group models, but this
remains limited and an approximation

Like ABM, network models are used to make more realistic
descriptions of the transmission of pathogens
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Human life is organised in networks

Family

Friends

Workplace

. . .

Social network theory has been used for years, e.g., in a professional
context (e.g., how to fluidify interactions within a company)
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Before considering epidemics in networks, it is useful to learn a few
notions of social network theory, as this is very useful to
understand networks

Social network methods introduce measures that allow to evaluate
some properties of graphs

A network is a (mathematical) graph, oriented or not, in which
edges/arcs represent connections (whathever they are) between
individuals, who make up the vertices of the graph
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Context

▶ G(V, E) an undirected graph

▶ D(V,A) a digraph (directed graph)

▶ V the set of vertices (or nodes)

▶ E the set of edges (undirected case)

▶ A the set of arcs (directed graph)
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Example of the global air transport network

- Je vais illustrer avec des données du réseau de transport aérien
mondial - Données assez bonnes (très bonnes parfois), et un
avantage flagrant: - Quand un avion part de quelque part et arrive
ailleurs, c’est quelque chose d’assez .. déterministe
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The global air transportation network
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Example of spread of p-H1N1

Role of social networks in shaping disease transmission during a community outbreak of 2009 H1N1 pandemic
influenza, Cauchemez et al, PNAS 108(7):2825-2830 (2011)
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Example of spread of MERS

Topological dynam-
ics of the 2015 South
Korea MERS-CoV
spread-on-contact
networks, Yang &
Jung, Scientific
Reports 10:4327
(2020)
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Some “measures” concern the vertices, others the graph as a whole
In all that follows, unless otherwise indicated, G = (X,A) is a
digraph. If undirected, we write G = (X,E).
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Geodesic distance

Definition 1 (Geodesic distance)
For x, y ∈ X, the geodesic distance d(x, y) is the length of the
shortest path from x to y, with d(x, y) = ∞ if no such path exists
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▶ d(x1, x2) = 1
▶ d(x1, x3) = 2
▶ · · ·

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0



x1

x2 x3

x4 x5

x6
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▶ d(x5, x1) = ∞
▶ d(x3, x1) = ∞
▶ · · ·

0 1 2 2 4 3
1 0 1 1 3 2
∞ ∞ 0 ∞ 2 1
∞ ∞ 1 0 3 2
∞ ∞ ∞ ∞ 0 ∞
∞ ∞ ∞ ∞ 1 0



x1

x2 x3

x4 x5

x6
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Eccentricity
Definition 2 (Vertex eccentricity)
The eccentricity e(x) of vertex x ∈ X is

e(x) = max
y∈X
y ̸=x

d(x, y)



0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0



x1

x2 x3

x4 x5

x6

p. 51 – Network models



Central points, radius and centre
Definition 3 (Central point)
A central point of G is a vertex x0 with smallest eccentricity

Definition 4 (Radius)
The radius of G is ρ(G) = e(x0), where x0 is a centre of G In other
words,

ρ(G) = min
x∈X

e(x)

Definition 5 (Centre)
The centre of G is the set of vertices that are central points of G,
i.e.,

{x ∈ X : e(x) = ρ(G)}
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0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0


Radius is 3, x2 is a central point
(the only one) and the centre is
{x2}

x1

x2 x3

x4 x5

x6
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How central is a vertex?

Centrality tries to answer the question: what are the most influent
vertices?
We have seen central vertices and vertices on the periphery, let us
consider two other measures of centrality
▶ Betweenness centrality
▶ Closeness centrality

Many other forms (we will come back to this, e.g., degree
centrality)
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Betweenness
Definition 6 (Betweenness)
G = (X,U) a graph, x ∈ X. The betweenness of v is

bD(v) =
∑

s ̸=t̸=v∈X

σst(v)
σst

where
▶ σst number of shortest geodesic paths from s to t
▶ σst(v) number of shortest geodesic paths from s to t through v

In other words
▶ For each pair of vertices (s, t), compute the shortest paths

between them
▶ For each pair of vertices (s, t), determine the fraction of

shortest paths that pass through vertex v
▶ Sum this fraction over all pairs of vertices (s, t)
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Normalising betweenness

Betweenness may be normalized by dividing through the number of
pairs of vertices not including v:
▶ for directed graphs, (n − 1)(n − 2)
▶ for undirected graphs, (n − 1)(n − 2)/2
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Example of betweenness
distances(G,
mode="out")

0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0



x1

x2 x3

x4 x5

x6
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Number of shortest paths

Recall we found distances(G, mode="out")

D =



0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0



To find the number of shortest paths between pairs of vertices, we
can use powers of the adjacency matrix

Write D = [dij], for a given (i, j) (i ̸= j), if dij = k, then pick the
(i, j) in Ak
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We find 

0 1 1 1 1 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1
1 1 1 1 1 0


Recall that betweenness of v is

bD(v) =
∑

s ̸=t̸=v∈X

σst(v)
σst

σst (# shortest paths from s to t) is found in the matrix above

What about σst(v), # of those shortest paths that go through v?

We can use all_shortest_paths(G, from = s, to = t,
mode = "out")
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Example of betweenness

betweenness(G,
directed = FALSE,
normalized = TRUE)
Values shown in the ver-
tices. 0.5

0.5 0.45

0 0.45

0.45
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Closeness
Definition 7
G = (X,U), v ∈ X. The closeness of v is

cD(v) =
1

n − 1
∑

t∈X\{v}
dD(v, t)

i.e., mean geodesic distance between a vertex v and all other
vertices it has access to

Another definition is

cD(v) =
1∑

t∈X\{v}
dD(v, t)
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Example of (out) closeness

closeness(G, normalized = TRUE, mode=``out'')

0.417

0.625 0.333

0.333 0.385

0.357
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Diametre and periphery of a graph
Definition 8 (Diametre of a graph)
The diametre of G is

δ(G) = max
x,y∈X
x̸=y

d(x, y)

or, in other words,
δ(G) = max

x∈X
e(x)

δ(G) < ∞ ⇐⇒ G strongly connected

Definition 9 (Periphery)
The periphery of a graph is the set of vertices whose eccentricity
achieves the diametre, i.e.,

{x ∈ X : e(x) = δ(G)}
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0 1 2 2 4 3
1 0 1 1 3 2
3 4 0 5 2 1
4 5 1 0 3 2
1 2 3 3 0 4
2 3 4 4 1 0


Diametre is 5 and the periphery is
{x3, x4}

x1

x2 x3

x4 x5

x6

Definition 10 (Antipodal vertices)
A pair of vertices x and y are antipodal if they satisfy
d(x, y) = δ(G).
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Degree distribution
Definition 11 (Arc incident to a vertex)
If a vertex x is the initial endpoint of an arc u, which is not a loop,
the arc u is incident out of vertex x
The number of arcs incident out of x plus the number of loops
attached to x is denoted d+G (x) and is the outer demi-degree of x
An arc incident into vertex x and the inner demi-degree d−G (x)
are defined similarly

Definition 12 (Degree)
The degree of vertex x is the number of arcs with x as an
endpoint, each loop being counted twice. The degree of x is
denoted dG(x) = d+G (x) + d−G (x)
If each vertex has the same degree, the graph is regular
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Definition 13 (Isolated vertex)
A vertex of degree 0 is isolated.

Definition 14 (Average degree of G)
d(G) = 1

|V|
∑

v∈V degG(v).

Definition 15 (Minimum degree of G)
δ(G) = min{degG(v)|v ∈ V}.

Definition 16 (Maximum degree of G)
∆(G) = max{degG(v)|v ∈ V}.
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Degrees in an undirected graph

2

3 3

2 2

2

Here, vertices are la-
belled using the de-
gree
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Degrees in a directed graph

d+ = 1
d− = 2

d+ = 3
d− = 1

d+ = 1
d− = 2

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 1
d− = 2

d+ = 4
d− = 2

d+ = 1
d− = 2

d+ = 1
d− = 1

d+ = 1
d− = 1

d+ = 2
d− = 2
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What to consider about degrees?
Degrees are often considered as a measure of popularity

Often write k(i) (or ki) for “degree of vertex i”, k−(i) and k+(i) for
in- and out-degree

▶ Minimum and maximum degree
▶ Minimum and maximum in/out-degree. E.g., if you consider

the global air transportation network and the in/out-degree of
airports, in-degree is a measure of a location’s “popularity” as
a travel destination

▶ Range of degrees in a graph: are there large discrepancies in
connectivity between vertices in the graph?

▶ Average degree (often denoted ⟨k⟩ because of physicists)
▶ Average in/out-degree
▶ Variance of the degrees or in/out-degrees
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▶ Average (nearest) neighbour degree, to encode for preferential
attachment (one prefers to hang out with popular people)

knn
i =

1
k(i)

∑
j∈N (i)

k(j)

or, in terms of the adjacency matrix A = [aij],

knn
i =

1
k(i)

∑
j

aijk(j)

▶ Excess degree: take nearest neighbour degree but do not
consider the edge/arc followed to get to the neighbour

▶ Degree, nearest neighbour and excess degree distributions
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Degrees in igraph

▶ degree gives the degrees of the vertices
▶ degree_distribution gives numeric vector of the same

length as the maximum degree plus one. The first element is
the relative frequency zero degree vertices, the second vertices
with degree one, etc.

▶ knn calculate the average nearest neighbor degree of the given
vertices and the same quantity in the function of vertex degree

▶ strength sums up the edge weights of the adjacent edges for
each vertex
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Degree from adjacency matrix

Suppose adjacency matrix take the form A = [aij] with aij = 1 if
there is an arc from the vertex indexed i to the vertex indexed j
and 0 otherwise. (Could be the other way round, using AT, just
make sure)

Let e = (1, . . . , 1)T be the vector of all ones

Ae = (d+G (1), . . . , d
+
G (1))T (out-degree)

eTA = (d−G (1), . . . , d
−
G (1)) (in-degree)
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Circumference

Definition 17 (Circumference)
In an undirected (resp. directed) graph, the total number of edges
(resp. arcs) in the longest cycle of graph G is the circumference
of G

Circumference is 6.

x1

x2 x3

x4 x5

x6
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Girth

Definition 18 (Girth)
The total number of edges in the shortest cycle of graph G is the
girth g(G)

Girth is 2.

x1

x2 x3

x4 x5

x6
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Completeness

Definition 19 (Complete undirected graph)
An undirected graph is complete if every two of its vertices are
adjacent.

Definition 20 (Complete digraph)
A digraph D(V,A) is complete if ∀u, v ∈ V, uv ∈ A.

In case of simple graphs, completeness effectively means that
“information” can be transmitted from every vertex to every other
vertex quickly (1 step)

It can be useful to know how far away we are from being complete
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Number of edges/arcs in a complete graph

G = (X,E) undirected and simple of order n has at most

n(n − 1)
2

edges, while G = (X,A) directed and simple of order n has at most

n(n − 1)

arcs
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Density of a graph

Definition 21 (Density)
The fraction of maximum number of edges or arcs present in the
graph is the density of the graph.

If the graph has p edges or arcs, then its density is, respectively,

2p
n(n − 1)

or p
n(n − 1)
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Example of density

x1

x2 x3

x4 x5

x6

Graph has order 6
and thus a max of
30 arcs. Here, 8 arcs
=⇒ density 0.267
(26.7% of arcs are
present)
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Connectedness

We have already seen connectedness (quasi- or strong in the
oriented case)

Connectedness is important in terms of characteristing graph
properties, as it shows the capacity of the graph to convey
information to all the members of the graph (the vertices)
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Definition 22 (Connected graph)
A connected graph is a graph that contains a chain µ[x, y] for
each pair x, y of distinct vertices

Denote x ≡ y the relation “x = y, or x ̸= y and there exists a chain
in G connecting x and y”. ≡ is an equivalence relation since
1. x ≡ y [reflexivity]
2. x ≡ y =⇒ y ≡ x [symmetry]
3. x ≡ y, y ≡ z =⇒ x ≡ z [transitivity]

Definition 23 (Connected component of a graph)
The classes of the equivalence relation ≡ partition X into
connected sub-graphs of G called connected components
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Articulation set

Definition 24 (Articulation set)
For a connected graph, a set A of vertices is called an articulation
set (or a cutset) if the subgraph of G generated by X − A is not
connected

articulation_points(G) in igraph (assumes the graph is
undirected, makes it so if not)

p. 81 – Network models



Strongly connected graphs
G = (X,U) connected. A path of length 0 is any sequence {x}
consisting of a single vertex x ∈ X
For x, y ∈ X, let x ≡ y be the relation “there is a path µ1[x, y] from
x to y as well as a path µ2[y, x] from y to x”. This is an
equivalence relation (it is reflexive, symmetric and transitive)

Definition 25 (Strong components)
Sets of the form

A(x0) = {x : x ∈ X, x ≡ x0}

are equivalence classes; they partition X and are the strongly
connected components of G

Definition 26 (Strongly connected graph)
G strongly connected if it has a single strong component
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Definition 27 (Minimally connected graph)
G is minimally connected if it is strongly connected and removal
of any arc destroys strong-connectedness

Definition 28 (Contraction)
G = (X,U). The contraction of the set A ⊂ X of vertices consists
in replacing A by a single vertex a and replacing each arc into
(resp. out of) A by an arc with same index into (resp. out of) a
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Quasi-strong connectedness

Definition 29 (Quasi-strong connectedness)
G quasi-strongly connected if ∀x, y ∈ X, exists z ∈ X (denoted
z(x, y) to emphasize dependence on x, y) from which there is a
path to x and a path to y

Strongly connected =⇒ quasi-strongly connected (take
z(x, y) = x); converse not true

Quasi-strongly connected =⇒ connected

Lemma 30
G = (X,U) has a root ⇐⇒ G quasi-strongly connected
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Weak-connectedness

Definition 31 (Weakly connected graph)
G = (X,U) weakly connected if G = (X,E) connected, where E is
obtained from U by ignoring the direction of arcs

x1

x2 x3

x4 x5

x6

=⇒

x1

x2 x3

x4 x5

x6
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Weak components

Define for x, y ∈ X the relation x ≡ y as “x = y or x ̸= y and there
is a chain in G connecting x and y” [like for components in an
undirected graph, except the graph is directed here]

This defines an equivalence relation

Definition 32 (Weak components)
Sets of the form

A(x0) = {x : x ∈ X, x ≡ x0}

are equivalence classes partitioning X into the weakly connected
components of G

G = (X,U) is weakly connected if there is a single weak component
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Components in igraph

▶ is_connected decides whether the graph is weakly or
strongly connected

▶ components finds the maximal (weakly or strongly)
connected components of a graph

▶ count_components does almost the same as components but
returns only the number of clusters found instead of returning
the actual clusters

▶ component_distribution creates a histogram for the
maximal connected component sizes

▶ decompose creates a separate graph for each component of a
graph

▶ subcomponent finds all vertices reachable from a given
vertex, or the opposite: all vertices from which a given vertex
is reachable via a directed path
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Cliques
Definition 33 (Clique in undirected graphs)
G = (X,E) a simple undirected graph. A clique is a subgraph G′ of
G such that all vertices in G′ are adjacent

Definition 34 (n-clique)
A simple, complete graph on n vertices is called an n-clique and is
often denoted Kn

Definition 35 (Clique in directed graphs)
G = (X,U) a simple directed graph. A clique is a subgraph G′ of
G such that all vertices in G′ are mutually adjacent

Definition 36 (Maximal clique)
A maximal clique is a clique that cannot be extended by adding
another adjacent vertex
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x1

x2 x3

x4 x5

x6

x1

x2 x3

x4 x5

x6
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Cliques in igraph

▶ cliques find all complete subgraphs in the input graph,
obeying the size limitations given in the min and max
arguments

▶ largest_cliques finds all largest cliques in the input graph
▶ max_cliques finds all maximal cliques in the input graph

(The largest cliques are always maximal, but a maximal clique
is not necessarily the largest)

▶ count_max_cliques counts the maximal cliques
▶ clique_num calculates the size of the largest clique(s)
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k-core

Definition 37 (k-core of a graph)
G = (X,U) a graph. The k-core of G is a maximal subgraph in
which each vertex has degree at least k

Definition 38 (Coreness of a vertex)
G = (X,U) a graph, x ∈ X. The coreness of x is k if x belongs to
the k-core of G but not to the k + 1 core of G

For directed graphs, in-cores or out-cores depending on whether
in-degree or out-degree is used

In igraph: coreness
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Coreness in the directed case

x1

x2 x3

x4 x5

x6

G has only a 1-in-core and 1-out-core: there is no (maximal)
subgraph in which the in- or out-degree is larger than 1
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In-coreness in the directed case

x1

x2 x3

x4 x5

x6

=⇒

1

2 2

1 1

2
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Coreness in the undirected case

2

2 2

2 2

2

=⇒
2

3 3

2 2

3
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See for instance...

▶ Newman. Spread of epidemic disease on networks, 2002
▶ Keeling & Eames. Networks and epidemic models, 2005
▶ Meyers, Pourbohloul, Newman, Skowronski & Brunham.

Network theory and SARS: predicting outbreak diversity, 2005
▶ Meyers, Newman & Pourohloul. Predicting epidemics on

directed contact networks, 2006
▶ Bansal, Read, Pourbohloul & Meyers. The dynamic nature of

contact networks in infectious disease epidemiology, 2010

p. 95 – Network models

https://doi.org/10.1103/PhysRevE.66.016128
https://doi.org/10.1098/rsif.2005.0051
https://doi.org/10.1016/j.jtbi.2004.07.026
https://doi.org/10.1016/j.jtbi.2005.10.004
https://doi.org/10.1016/j.jtbi.2005.10.004
https://doi.org/10.1080/17513758.2010.503376
https://doi.org/10.1080/17513758.2010.503376


Typically, consider a graph (or digraph, depending on the cases) in
which
▶ Each vertex is an individual
▶ Existence of an arc from i to j indicates that i is in contact

with j and can transmit the pathogen to them
▶ dans le cas non orienté, l’existence d’un arc de i vers j

implique celle d’un arc (le même) de j vers i et établit que les
deux individus sont connectés

▶ La connexion n’est pas permanente, mais décrit plutôt la
possibilité d’une connexion: i et j entrent en contact de façon
régulière

p. 96 – Network models



Matrice d’adjacence
On utilisera souvent la **matrice d’adjacence** A = [aij], dans
laquelle aij = 1 si le nœud i a un lien vers le nœud j et aij = 0 sinon
On écrit parfois A(D) pour indiquer que A est la matrice
d’adjacence du digraphe D, et dans l’autre sens, D(A) pour
indiquer que le graphe est construit en utilisant la matrice
d’adjacence
Si le graphe est non orienté, alors A est symmétrique
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Nature du réseau
- Parfois on dispose de données précises sur les liens entre individus
(sondages, etc.) - Souvent on idéalise des réseaux, on choisit des
réseaux avec des propriétés données
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Distribution of vertex degrees

The transmissibility of a disease in a graph/digraph is the average
probability that an infectious individual transmits the disease to a
susceptible individual they are in contact with

In an uncorrelated network,

Tc =
⟨k⟩

⟨k2⟩ − ⟨k⟩

where ⟨k⟩ and ⟨k2⟩ are the mean and mean square degree

Il est nécessaire que T > Tc pour qu’un *outbreak* devienne une
épidémie majeure
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The EpiModel library

R library providing tools to simulate and analyse network
epidemiological models

Provides two types of approaches
▶ Simulation of ODE compartmental models (not so interesting)
▶ Simulation of network models

Their website has several useful tutorials

Part of the statnet meta-library
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