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What is mathematical modeling?

The translation of our beliefs about how a system functions
into the language of mathematics.

This has many advantages:

Mathematics is a very precise language.

Mathematics is a concise language, with well rules for
manipulations.

Many results and theorems are available.

Computers can be used to perform numerical calculations.
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Some elements of compromising in mathematical modeling:

The majority of interacting systems in the real world are too
complicated to model in their entirety; Only most important
factors are usually identified and considered.

Restrictions (or assumptions) are often applied in the math-
ematical analysis.

Objectives of mathematical modeling

Developing scientific understanding (through quantitative
expression of current knowledge of a system).

Testing the effect of changes in a system.

Aiding decisions making (tactical decisions for managers
and strategic decisions for planners).
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Stages in Modelling

Building

Analysis

Testing, interpreting, recommendations
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Outline

1 Introduction
Definition
Applications
Analytic solutions

2 Well-posedness
Existence
Uniqueness

3 Qualitative analysis
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Ordinary differential equations ODE

Notations for differentiation (y = f (t)):

Leibniz’s notation: dy
dt , d2y

dt2 , ..., d (n)y
dt(n)

Lagrange’s notation: y ′ = y (1), y ′′ = y (2), ..., y (n)

Newton’s notation: ẏ , ÿ ,
...
y , ...

General form of ODEs of order n

Explicit form

y (n) = F (t, y , y ′, y ′′, ..., y (n−1)),

implicit form

F (t, y , y ′, y ′′, ..., y (n−1), y (n)) = 0,

where F is a function of t, y = y(t), and the derivatives of y .
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Definition

Let D ⊂ Rn+1, J = (a, b) ⊂ R and F ∈ C(D,R) (set of
continuous functions f : D → R). A solution of the ODE

y (n) = F (t, y , y ′, y ′′, ..., y (n−1))

on J is a function φ ∈ Cn(J,R) such that

(t, φ(t), φ′(t), . . . , φ(n−1)(t)) ∈ D

and
φ(n)(t) = F (t, φ(t), φ′(t), . . . , φ(n−1)(t)),

for all t ∈ J.
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F (t, y , y ′, y ′′, ..., y (n−1), y (n)) = 0

Classification of ODEs

Linear:

F = a0y + ay ′ + a2y
′′ + . . . an−1y

(n−1) + any
(n) + r(t)

coefficients ai = a(t).

. Homogeneous: r(t) = 0 for all t.

. Nonhomogeneous: r(t) 6= 0 for some t.

Nonlinear: Not linear.

Autonomous: F does not explicitly depend on t.

The order of an ODE is the highest order derivative.
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Applications

Physical interpretation of the derivative

Q(t): density/size/concentration of a quantity Q at time t

∆Q = Q(t + ∆t)− Q(t): change in Q over the time ∆t
∆Q
∆t : rate of change of Q in the time ∆t

Q ′(t) = dQ
dt : instantaneous rate of change of Q w.r.t t

Example (Applications)

A drug decays in the body at a rate proportional to its present
mass concentration. If the initial mass concentration is 4 g/ml
and the half-life span is 80 years:

a. How much will be left after 50 years?

b. How long will it take for the mass concentration to be
0.75 g/ml?



Basis tools to
study

Ordinary
Differential
Equation
models

Introduction

Definition

Applications

Analytic solutions

Well-
posedness

Existence

Uniqueness

Qualitative
analysis

Equilibrium points

Linear systems

Nonlinear systems

Global stability:
Planar systems

Drug decays at a rate proportional to its present mass

Q ′(t)︸ ︷︷ ︸
rate of change

= − k︸︷︷︸
cons of proportion

× Q(t)︸︷︷︸
present mass con

Initial mass is 4 g/ml and half-life span is 80 days

Q(0) = 4 and Q(80) =
1

2
Q(0) = 2

How much will be left after 50 days?

Q(t) = Q(0)e−kt = 4e−kt

Q(80) = 4e−80k = 2 =⇒ k =
1

80
ln 2 = 0.00866

Q(50) = 4e−0.00866×50 = 2.594 g/ml



Basis tools to
study

Ordinary
Differential
Equation
models

Introduction

Definition

Applications

Analytic solutions

Well-
posedness

Existence

Uniqueness

Qualitative
analysis

Equilibrium points

Linear systems

Nonlinear systems

Global stability:
Planar systems

Drug decays at a rate proportional to its present mass

Q ′(t)︸ ︷︷ ︸
rate of change

= − k︸︷︷︸
cons of proportion

× Q(t)︸︷︷︸
present mass con

Initial mass is 4 g/ml and half-life span is 80 years

Q(0) = 4 and Q(80) =
1

2
Q(0) = 2

How long will it take for the mass to be 0.75 g/ml?

Q(t) = 4e−0.00866t = 0.75 =⇒ t = 20days
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Applications: SIR model

S(t): number of susceptible individuals at time t

I (t): number of infectious individuals at time t

R(t): number of removed individuals at time t

β: rate of infection of susceptible

S(t + ∆)︸ ︷︷ ︸
at time t + ∆t

= S(t)−
newly infected during ∆t

βS(t)I (t)∆t︸ ︷︷ ︸
I (t + ∆) = I (t) + βS(t)I (t)∆t −

newly removed during ∆t

γI (t)∆t︸ ︷︷ ︸
R(t + ∆t) = R(t) + γI (t)∆t
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S(t + ∆t)− S(t)

∆t
= −βS(t)I (t)︸ ︷︷ ︸

incidence

,

I (t + ∆t)− I (t)

∆t
= βS(t)I (t)− γI (t)

R(t + ∆t)− R(t)

∆t
= γR(t)

SIR model (small time interval ∆t → 0)

s ′(t) = −βs(t)i(t)

i ′(t) = βs(t)i(t)− γi(t)

r ′(t) = γi(t)



Basis tools to
study

Ordinary
Differential
Equation
models

Introduction

Definition

Applications

Analytic solutions

Well-
posedness

Existence

Uniqueness

Qualitative
analysis

Equilibrium points

Linear systems

Nonlinear systems

Global stability:
Planar systems

Single species model

N(t) be a population size at time t

b(N) and d(N) the birth and death rates respectively

f (N) the variation within the population (resulting from
immigration, emigration, natural disaster, etc.)

After a time ∆t,

N(t+∆t) = N(t)+
newbirths

(b(N)N(t))∆t︸ ︷︷ ︸− newdeaths

(d(N)N(t))∆︸ ︷︷ ︸ t+f (N(t))∆t.

Then

N(t + ∆t)− N(t)

∆t
= (b(N)− d(N))N(t) + f (N(t)).
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Single species model

For small time interval ∆t (i.e., when ∆t → 0), we obtain the
general single specie model

dN

dt
= r(N)N + f (N), (1)

which describes the rate of change in the population, with r(N)
being the growth rate.

. Constant growth (Malthus model): r(N) = r , r growth
rate per capita

. Linear growth (logistic equation): r(N) = r
(
1− N

K

)
. cubic growth (Allee effect): r(N) = r

(
1− N

K

) (
N
K1
− 1
)
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Analytic solutions

Methods to solve 1st order (scalar case) ODE

. Linear equations: integrating factor

. Nonlinear equations:

� Separable variables
� Substitution methods (change of variables)

Method to solve a system of 1st order linear ODE: Fundamental
matrix
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Linear 1st order ODE

How to solve the linear ODE y ′ + p(x)y = f (x)?

1 Consider the complementary equation (CE):

y ′c + p(x)yc = 0

2 Find one (nontrivial) solution y1 of the CE

3 The general solution is y = uy1, where u is solution of

u(x) =

∫
f (x)

y1(x)
dx .
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Nonlinear - separable ODE

A 1st ODE is said to be separable if it can be written in the
form

dy

dx
= f (x)g(y).

How do we solve the separable ODE?

1 Divide both sides by g(y)

1

g(y)

dy

dx
= f (x)

2 Integrate both sides w.r.t x∫
1

g(y)

dy

dx
dx =

∫
f (x)dx =⇒

∫
1

g(u)
du =

∫
f (x)dx

u = y(x)

3 Solve the integral equation to get an implicit solution.
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Nonlinear - Bernoulli

The Bernoulli’s equation is a nonlinear ODE of the form

y ′ + p(x)y = f (x)y r ,

where r ∈ R is a parameter, with r 6= 0 and r 6= 1.
How do we solve Bernoulli’s equations?

I Find a non-trivial solution y1 of the CE

y ′ + p(x)y = 0.

I Let y = uy1 be a solution of the Bernoulli’s equation.

I Substitute y = uy1 in the Bernoulli’s equation and
generate a separable DE in u.

I Solve the separable DE to find u.

I The general solution of the Bernoulli equation is y = uy1.
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System of 1st order linear ODE

Consider the nth-dimensional IVP

d

dt
X (t) = A(t)X (t) + B(t), X (t0) = X 0.

Its solution can be expressed as

X (t) = Φ(t)Φ−1(t0)X 0 + Φ(t)

∫ t

t0

Φ−1(s)B(s)ds

where Φ(t) is a fundamental matrix of the corresponding homo-
geneous system.

Definition

A fundamental matrix of solutions of the homogeneous
system X ′(t) = A(t)X (t) is Φ(t) = (X 1(t), . . . ,X n(t)), where
the columns of Φ(t) are the n linearly independent solution
vectors X i (t).
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Homogeneous linear system with constant
coefficients

d

dt
X (t) = AX (t), X (t0) = X 0

where A = (ai ,j) is a n× n constant matrix with real elements.

If det(A) 6= 0, the unique equilibrium solution is X (t) = 0,
∀t ∈ R.

The general solution is X (t) = eAtC . ∀t ∈ R,
where eAt (matrix exponent) is an n× n matrix, and C an
arbitrary constant vector.

Φ(t) = eAt is the fundamental matrix and Φ(0) = I n.

eAt = I n + At + t2

2!A
2 + t3

3!A
3 + · · · =

∑∞
i=0

t i

i!A
i , ∀t ∈ R.
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Homogeneous linear system with constant
coefficients

d

dt
X (t) = AX (t)

where A = (aij) is a n × n constant matrix with real elements.

Instead of computing eAt , we can find n linearly independent
solutions X i (t) (to form a fundamental matrix)

Let X i (t) = eλi tui (λi= unknown scalar, ui = unknown
n × 1−vector).

So Aui = λiui where λi is an eigenvalue of A and ui is an
eigenvector associated to λi .

To find λi / ui (i ∈ 1, . . . , n), solve

det(A− λI n) = 0, / (A− λi In)ui = 0.
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Homogeneous linear system with constant
coefficients : n distinct eigenvalues

Theorem

Let λ1, . . . , λn be n distinct eigenvalues of the coefficient
matrix A of the homogeneous system

d

dt
X = AX ,

and let u1, . . . , un be the corresponding eigenvectors. Then
the general solution of the homogeneous system on the interval
(−∞,∞) is given by

X (t) = c1u1e
λ1t + · · ·+ cnune

λnt

with c1, . . . , cn arbitrary constants.
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Complex conjugate eigenvalues

Theorem

Let A the matrix with real entries of the homogeneous system
d
dtX = AX , and let u1 be an eigenvector corresponding to the
complex eigenvalue λ1 = α + iβ, with α and β real. Then,

X1(t) = u1e
λ1t , X2(t) = ū1e

λ̄1t

are solutions of the homogeneous system.
Moreover, if u1 = a + ib, then

X 1(t) = (a cos(βt)− b sin(βt)) eαt ,

X 2(t) = (b cos(βt) + a sin(βt)) eαt

are linearly independent solutions of the homogeneous system
on R.
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Example

Consider the ODE
x ′(t) = sin x .

Solution∫
dx

sin x
=

∫
dt =⇒ − ln | csc x + cot x |+ c = t.

For a given initial condition x(0) = x0, we obtain the implicit
solution

ln

∣∣∣∣csc x0 + cot x0

csc x + cot x

∣∣∣∣ = t.

Does a solution exist? Is it unique? Can we describe the
feature of the solution for a given x0 (say, x0 = π/4)?
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Well-posedness

In mathematics, a problem is said to be well-posed (in the sense
of Hadamard [2]) if the following properties hold:

The problem has a solution

The solution is unique

The solution’s behavior changes continuously with the
initial conditions
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Existence

Consider the the initial value problem

x ′(t) = f (t, x(t)), (2)

x(t0) = x0, (3)

where I ⊂ R is an interval, ω ⊂ Rn is open, f : I ×Ω −→ Rn a
map, and (t0, x0) ∈ I ×Ω.

Cauchy-Peanot’s theorem(Simpson, 1984)

Assume that for every x ∈ ω, there exist δ > 0,
c ∈ L1(I , [0,∞)) and a non-decreasing function
ω : [0,∞) −→ [0,∞) with limh→0 w(h) = 0 such that

‖f (t, y)− f (t, z)‖ ≤ c(t)w (‖y − z‖) , ‖f (t, y)‖ ≤ c(t)

for a.e t ∈ I and y , z ∈ B(x , δ). Then the solution of (2)-(3)
exists locally in the interval (t0 − ε, t0 + ε), with ε > 0.
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Sketch of the proof

Subdivide [0, ε] into N sub-intervals [ti , ti+1],
i = 0 . . .N − 1 (N fixed)

Construct a equicontinuous sequence {xN} solution of the
problem

x ′(t) =f (t, xk−1(t)), on [t0, tk ]

x(tk−1) =xk−1, k = 1, . . .N

Apply Artela-Ascoli theorem to show the existence of a
convergent subsequence {xNk} of {xN}
Show that {xNk} is the solution of the IVP
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Uniqueness

Consider the the initial value problem

x ′(t) = f (t, x(t)), (4)

x(t0) = x0, (5)

where I ⊂ R is an interval, ω ⊂ Rn is open, f : I ×Ω −→ Rn a
map, and (t0, x0) ∈ I ×Ω.

Cauchy-Caratheodory’s theorem [Caratheodory, 1963]

Assume that for all x ∈ ω, there exist δ > 0, c ∈ L1 (I , [0,∞))
such that

‖f (t, y)− f (t, z)‖ ≤ c(t)‖y − z‖, ‖f (t, y)‖ ≤ c(t) (6)

for almost every t ∈ I and y , z ∈ B(x , δ). Then there is a
unique solution of the Cauchy problem (4)-(5).
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Corrolary

Picard–Lindelöf’s theorem: f is continuous and Lipschitz
in x (the second variable).

Picard’s theorem: f and ∂f
∂x are continuous on some open

rectangle.
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Example

The IVP
x ′(t) = sin x , x(0) = x0

has a unique solution in the interval [0, ε], with ε > 0, since the
function f (x) = sin x is of class C1. Implicit solution

ln

∣∣∣∣csc x0 + cot x0

csc x + cot x

∣∣∣∣ = t.

Figure: Phase portrait



Basis tools to
study

Ordinary
Differential
Equation
models

Introduction

Definition

Applications

Analytic solutions

Well-
posedness

Existence

Uniqueness

Qualitative
analysis

Equilibrium points

Linear systems

Nonlinear systems

Global stability:
Planar systems

Figure: Phase portrait

Figure: Phase portrait
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Consider the autonomous system

x ′(t) = f (x(t)), (7)

where x = (x1, . . . , xn) ∈ Rn and f : Rn → Rn. Assume that
f ∈ C1.

Definition

An equilibrium point x∗ of the system (7) is a real solution of
the equation f (x) = 0.

Example (SI model with demography)

s ′(t) = Π− βs(t)i(t) + γi(t)− µs(t)

i ′(t) = βs(t)i(t)− γi(t)− µi(t)

Equilibrium points: ( Π
µ , 0) or (s∗, i∗)
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Stability: An equilibrium point x∗ is said to be

Lyapunov stable if for all ε > 0, there exists δ > 0 such
that if ‖x(0)− x∗‖ < δ, then ‖x(t)− x‖ < ε.

Asymptotically stable if it is Lyapunov stable and for all
ε > 0, there exists δ > 0 such that if ‖x(0)− x∗‖ < δ,
then limx→∞ ‖x(t)− x∗‖ = 0.

Globally stable if limx→∞ x(t) = x∗ for all t ≥ 0.

Unstable if it is not stable.
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Example (SI model with demography)

s ′(t) = Π− βs(t)i(t) + γi(t)− µs(t)

i ′(t) = βs(t)i(t)− γi(t)− µi(t)

Stability
Disease free equilibrium ( Π

µ , 0)
Endemic equilibrium (s∗, i∗)
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Linear systems

Asymptotic behavior of solutions of

dx

dt
= Ax , (8)

where x = (x1, . . . , xn)T and A = (ai ,j) ∈M(n × n).

Theorem

If all the roots of the eigenvalues of A have negative real part,
then given any solution x(t) of (8), there exist positive
constants M and b such that

||x(t)|| ≤ Me−bt , ∀t > 0

and
lim
t→∞

||x(t)|| = 0.
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Linear systems

Consider the 2-dimensional autonomous linear system(
x ′

y ′

)
= A

(
x
y

)
, A = (ai ,j) ∈M(2× 2). (9)

Let λ1 and λ2 be the eigenvalues of the matrix A.
Case 1: Assume λ1 6= λ2. Then A is diagonalisable and can be
written in the form A = PDP−1. Then (9) can be reduced to(

u′

v ′

)
= D

(
u
v

)
=

(
λ1 0
0 λ2

)(
u
v

)
.

v ′

v
=
λ2

λ1

u′

u
= λ

u′

u
=⇒ v = kuλ.

u(t) = u(0)eλ1t , v(t) = v(0)eλ2t .



Basis tools to
study

Ordinary
Differential
Equation
models

Introduction

Definition

Applications

Analytic solutions

Well-
posedness

Existence

Uniqueness

Qualitative
analysis

Equilibrium points

Linear systems

Nonlinear systems

Global stability:
Planar systems

Linear systems

v = kuλ u(t) = u(0)eλ1t , v(t) = v(0)eλ2t .

Case 1a λ1, λ2 ∈ R∗ and have same signs: (0,0) is a node. It
is stable when λ1 < 0 and unstable when λ1 > 0.
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v = kuλ u(t) = u(0)eλ1t , v(t) = v(0)eλ2t .

Case 1b λ1, λ2 ∈ R and opposite signs: (0,0) is a saddle point.
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Linear systems

v = kuλ u(t) = u(0)eλ1t , v(t) = v(0)eλ2t .

Case 1c If λ1 = 0 or λ2 = 0, then the origin is a non isolated
equilibrium point; we have a whole line of equilibrium points.
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u′ = λ1u (10)

Case 1d λ1, λ2 ∈ C, with λ1 = α + iβ.
Assume u of the form u = re iθ and substitute into (10)

r ′ = αr , θ′ = β.

r(t) = r0e
αt = r0e

α
(

θ−θ0
β

)
= r0e

bθ, θ = βt + θ0.
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Case 2a: Assume λ1 = λ2 = λ and there are two independent
eigenvectors associated with λ: (0,0) is a star.
It is stable when λ < 0 and unstable when λ > 0.
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Case 2b: Assume λ1 = λ2 = λ and there is only one eigenvector
associated with λ: (0,0) is a degenerate node.
It is stable when λ < 0 and unstable when λ > 0.
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Diagram of the classification of equilibrium points
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Nonlinear systems

Consider the nonlinear autonomous system

x ′(t) = f (x(t)), (11)

where x = (x1, . . . , xn) ∈ Rn and f = (f1, . . . , fn) : Rn → Rn.
Assume that f ∈ C1. Let x∗ = (x∗1 , . . . , x

∗
n ) be an equilibrium

point of the system (11).
Consider the small perturbation u = x − x∗ near x∗. By the
Taylor’s expansion we get:

u′i (t) = x ′i (t)

= fi (u + x∗) = fi (u1 + x∗1 , . . . , un + x∗n )

= u1
∂fi
∂x1

(x∗) + . . . un
∂fi
∂xn

(x∗) +O(|u|2).
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In the matrix form

u′(t) = Au +O(|u|2)

where A is the Jacobian matrix of the system (11) evaluated at
x∗, given by

A =


∂f1
∂x1

(x∗) . . . ∂f1
∂x2

(x∗)
...

...
∂fn
∂x1

(x∗) . . . ∂fn
∂x1

(x∗)



The system
u′(t) = Au

is called the linearized system associated to (11) near x∗.
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Consider the nonlinear autonomous system

x ′(t) = f (x), (12)

where x ∈ Rn and f : Rn → Rn of class C1.

Hartman–Grobman theorem (linearisation theorem) [4, 3]

If the system (12) has a hyperbolic equilibrium point x∗,
then in a neighborhood of x∗, the system (12) and its
associated linearized system u′ = Au are topological
conjugate (there exists a homeomorphism that will conjugate
the one into the other).
∃N = V(x∗), ∃h : N → Rn homeomorphism with h(u∗) = 0,
such that in N the flow x ′ = f (x) is topological conjugate by
the continuous map v = h(u) to the flow v ′ = Av .
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Planar systems (with constant coefficients)

dx

dt
=f (x , y)

dy

dt
=g(x , y)

Theorem

Assume that f and g are of class C 1 in some open set
containing the equilibrium (x̄ , ȳ) of the system. Then the
equilibrium is locally asymptotically stable if

tr(J(x̄ ,ȳ)) < 0 and det(J(x̄ ,ȳ)) > 0,

where J(x̄ ,ȳ) is the Jacobian matrix evaluated at the
equilibrium. In addition, the equilibrium is unstable if either
tr(J(x̄ ,ȳ)) > 0 or det(J(x̄ ,ȳ)) > 0.
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Tools to determine the sign of eigenvalues

Consider polynomial

p(λ) = a0λ
n + a1λ

n−1 + ...+ an−1λ+ an,

where the a′i s, i = 1, ..., n, are real constants coefficients and
a0 > 0. Define the n Hurwitz matrices:

H1 = (a1),H2 =

(
a1 a0

a3 a2

)
,H3 =

 a1 a0 0
a3 a2 a1

a5 a4 a3

 ,

Hn =



a1 a0 0
... 0

a3 a2 a1
... 0

a5 a4 a3
... 0

· · · · · · · · · · · · · · ·

0 0 0
... an
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All the roots of p(λ) have negative real parts if and only if a0 > 0
and the determinants of the n Hurwitz matrices are positive, i.e.

∆1 = a1 > 0,∆2 = det(H2) > 0, · · · ,∆n = det(Hn) > 0.

In particular,

i. When n = 1: a1 > 0.

ii. When n = 2: a1 > 0 and a2 > 0.

iii. When n = 3: a1 > 0, a2 > 0 and a1a2 − a0a3 > 0.

iv. When n = 4: a1 > 0, a2 > 0, a1a2 − a0a3 > 0 and
a1a2a3 − a2

1a4 − a0a
2
3 > 0.
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Global stability: Planar systems

dx

dt
=f (x , y)

dy

dt
=g(x , y)

with the initial conditions X0 = (x(t0), y(t0)) = (x0, y0).

⇒ Poincaré-Bendixson Theorem (for global stability analysis)
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Planar systems

dx

dt
=f (x , y)

dy

dt
=g(x , y)

with initial conditions X0 = (x(t0), y(t0))T = (x0, y0)T .

Γ(X0, t): solution trajectory (as a function of time)
starting at X0

Γ+(X0, t): part of solution trajectory where t ≥ t0

(positive orbit)
Γ−(X0, t): part of solution trajectory where t ≤ t0

(negative orbit)
α−limit set, α(X0): set of points in the plane that are
approached by the negative orbit Γ−(X0, t), as t → −∞
ω−limit set, ω(X0): set of points in the plane that are
approached by the positive orbit Γ+(X0, t), as t → +∞
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Definition

A periodic solution X(t) of dX
dt = f(X) is a non-constant

solution satisfying X(t + T ) = X(t) for all t on the interval of
existence (T > 0 is called the period).

(No periodic solutions in autonomous scalar differential equa-
tions)

Definition

A limit cycle is the orbit of an isolated periodic solution.
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Existence of periodic solutions

Poincaré-Bendixson theorem

Let Γ+(X0, t) be a positive orbit of

dx

dt
=f (x , y)

dy

dt
=g(x , y)

that remains in a closed and bounded region of the plane.
Suppose that the ω−limit set does not contain any equilibria.
Then either

Γ+(X0, t) is a periodic orbit (Γ+(X0, t) = ω(X0)),

or ω−limit set, ω(X0), is a periodic orbit.

Theorem

Every periodic orbit (closed orbit) must enclose an equilibrium
(has an equilibrium in its interior).
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Poincaré-Bendixson trichotomy

Let Γ+(X0, t) be a positive orbit of

dx

dt
=f (x , y)

dy

dt
=g(x , y)

that remains in a closed and bounded region B of the plane.
Suppose B contains only a finite number of equilibria. Then
the ω−limit set takes ones of the following 3 forms:

ω(X0) is an equilibrium,

ω(X0) is a periodic orbit,

ω(X0) (cycle graph) contains a finite number of equilibria
and a set of trajectories Γi whose α− and ω−limit sets
consist of one of these equilibria for each trajectory Γi .
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Dulac’s criterion

Suppose D is a simply connected open subset of the plane and
β(x , y) is a real-valued continuously differentiable function in
D. If

∂(βf )

∂x
+
∂(βg)

∂y

is not identically zero and does not change sign in D, then
there is no periodic solutions in D of the autonomous system

dx

dt
= f (x , y),

dy

dt
= g(x , y). (13)

Definition

A region D of the plane is said to be simply connected if every
closed loop within D can be shrunk to a point without leaving
D.
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Bendixson’s criterion

Suppose D is a simply connected open subset of the plane. If

∂f

∂x
+
∂g

∂y

is not identically zero and does not change sign in D, then
there is no periodic solutions of the autonomous system

dx

dt
=f (x , y)

dy

dt
=g(x , y)

in D.
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