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Basic facts from Calculus. In one-dimensional space R, typical

sets with which we will be concerned are open intervals ]a, b[,

where −∞ ≤ a < b ≤ +∞. For −∞ < a < b < +∞, by [a, b] we

will denote the closed interval with endpoints a, b. In this case, we

say that (a, b) is the interior of the interval, [a, b] is its closure and

the two-point set consisting of {a} and {b} constitutes the

boundary.

For a general set Ω ∈ Rn, by Ω̊ we denote its interior, by Ω its

closure, and by ∂Ω its boundary.
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In typical cases considered here, the boundary ∂Ω of a

two-dimensional region Ω is a closed curve. The two most used

analytic descriptions of curves in R2 are:

(i) as a level curve of a function of two variables

F (x1, x2) = c ,

(ii) by using two functions of a single variable

x1(t) = f (t), x2(t) = g(t),

where t ∈ [t0, t1] (parametric description).

Note that if the curve is to be closed, we must have f (t0) = f (t1)

and g(t0) = g(t1).
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When Ω ∈ R3, typically ∂Ω is a two-dimensional surface. This

surface can be analytically described as a level surface of a

function of three variables

F (x1, x2, x3) = c ,

or parametrically by, this time, three functions of two variables

each:

x1(t, s) = f (t, s), x2(t, s) = g(t, s), x3(t, s) = h(t, s),

t ∈ [t0, t1], s ∈ [s0, s1].
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Examples. Let us consider the elliptical disk
x21
a2

+
x22
b2

≤ 1. The

boundary is then the ellipse, given either as the level curve

F (x1, x2) =
x21
a2

+
x22
b2

= 1.

or

x1(t) = a cos t, x2(t) = b sin t,

with t ∈ [0, 2π].

In R3, the boundary of
x21
a2

+
x22
b2

+
x23
c2

≤ 1 is given as the level curve

F (x1, x2, x3) =
x21
a2

+
x22
b2

+
x23
c2

= 1.

or parametrically as

f (t, s) = a cos t sin s, g(t, s) = b sin t sin s, h(t, s) = c cos s,

where t ∈ [0, 2π], s ∈ [0, π].
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Vanishing theorems

Theorem 1

Let f be a continuous function in Ω̄, where Ω ⊂ Rd is a bounded

domain. Assume that ∀x∈Ω̄ f (x) ≥ 0 and
∫
Ω

f (x)dx = 0. Then

f ≡ 0 in Ω̄.

Theorem 2

Let f be a continuous function in a domain Ω such that∫
Ω0

f (x)dx = 0 for any Ω0 ⊂ Ω. Then f ≡ 0 in Ω.

In the proofs of both theorems the crucial role is played by the

theorem on local sign preservation by continuous functions.
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Normal vectors. For a given point p ∈ ∂Ω the outward normal

vector is the vector n, normal (perpendicular) to the boundary at

p, pointing outside Ω, and having unit length.

If the boundary of set Ω ∈ Rn, n ≥ 2, is given as a level set of a

function F , then the vector given by

N(p) = ∇F (p),

is perpendicular to the boundary at p. However, it is not

necessarily unit, nor outward. To make it a unit vector, we divide

N by its length; then the unit outward normal is either

n = N/∥N∥, or n = −N/∥N∥ and the proper sign must be

selected by inspection.
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Example. To find the unit outward normal to the ellipsoid

F (x1, x2, x3) = x21 +
x22
4

+
x23
9

= 1,

at the point p = (1/
√
2, 0, 3/

√
2) , we have

∇F (x1, x2, x3) = (2x1, x2/2, 2x3/9), hence

N(p) = ∇F (p) = (2/
√
2, 0, 2/3

√
2)

with

∥N(p)∥ =
√

2 + 2/9 =
√

20/9 = 2
√
5/3.

Since the vector pointing outside the ellipsoid must necessarily

point away from the origin, we obtain

n(p) = (3/
√
10, 0, 1/

√
10).
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Normal derivative of a function. Let now f be defined in a

neighbourhood of a point p ∈ ∂Ω. The normal derivative of f at p

is defined as the derivative of f in the direction of n(p):

∂f

∂n
(p) = fn(p) = ∇f |p · n(p).
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Example. Let us consider the spherical coordinates

x1 = r cos θ sinϕ, x2 = r sin θ sinϕ, x3 = r cosϕ.

Any function f (x1, x2, x3) of three variables can be expressed in the

spherical coordinates as

F (r , θ, ϕ) = f (r cos θ sinϕ, r sin θ sinϕ, r cosϕ) = f (x1, x2, x3).

Using the Chain Rule we have

∂F

∂r
=

∂f

∂x1

∂x1
∂r

+
∂f

∂x2

∂x2
∂r

+
∂f

∂x3

∂x3
∂r

.

Since, for i = 1, 2, 3, ∂xi/∂r = xi/r , we can write

∂F

∂r
=

1

r
∇f · (x1, x2, x3) =

1

r
∇f · r. (1)
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Assume now that f (and thus F ) be given in some neighbourhood

of the sphere

F (x1, x2, x3) = x21 + x22 + x23 = R2.

To find the outward unit normal to this sphere we note that

∇F = (2x1, 2x2, 2x3) and ∥∇F∥ = 2
√

x21 + x22 + x23 = 2R. Thus,

n =
1

R
(x1, x2, x3) =

1

R
r. (2)

Geometrically, n is parallel to the radius but of unit length.

Combining (1) with (2), we see that the normal derivative of f at

any point of the sphere is given by

∂f

∂n
= ∇f · n =

∂F

∂r
.
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Flux of a vector field. Vector field is a function ϕ : Ω → Rd ,

where Ω ⊂ Rd , where d = 1, 2, 3..., that is, a vector field assigns a

vector to each point of a subset of the space.

Definition 3

The flux of a vector field ϕ across the boundary ∂Ω of a domain

Ω ⊂ Rd , d ≥ 2 is ∫
∂Ω

ϕ · ndS .

Here, if d = 2, then ∂Ω is a closed curve and the integral above is

the line integral (of the second kind). The arc length element dS is

to be calculated according to the description of ∂Ω.
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If ∂Ω is described parametrically by r(s) = (f (s), g(s)),

s ∈ [s0, s1], running in the clockwise direction, then

dS =
√
(f ′)2 + (g ′)2ds and∫

∂Ω

ϕ · ndS =

s1∫
s0

ϕ(s) · (−g ′(s), f ′(s))
√

(f ′)2(s) + (g ′)2(s)ds.

When d = 3, then ∂Ω is a surface and the integral above is the

surface integral. If ∂Ω is given in a parametric form

r(t) = (f (u, s), g(u, s), h(u, s)), u ∈ [u0, u1], s ∈ [s0, s1]. Then

dS = |ru × rs |duds and, using the formula for the normal vector,∫
∂Ω

ϕ · ndS = ±
u1∫

u0

s1∫
s0

ϕ(u, s) · ru(u, s)× rs(u, s)duds.

where the sign is determined by the orientation of the boundary.
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Remark. In 1D, let Ω = [a, b] with ∂Ω = {a} ∪ {b}. A vector field

in one-dimension is just a scalar function. The unit outward normal

at {a} is −1, and at {b} is 1. Thus fn(a) = f (a)(−1) and

fn(b) = f (b)(1) and the flux across the boundary of Ω is

f · n(a) + f · n(b) = f (b)− f (a). (3)
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Example. Consider a fluid moving in a certain domain of space

with velocity v(p) at point p. Thus, we have the velocity field of

the fluid.

In 1D, if v(x) > 0, then the fluid flows to the right at x , and if

v(x) < 0, then it flows to the left. Let the points x = a and x = b

be the end-points of a section of the pipe and consider the new

field f (x) = ρ(x)v(x), where ρ is the (linear) density of the fluid at

point x . The flux of f , as defined by (3), is

f (b)− f (a) = ρ(b)v(b)− ρ(a)v(a).
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In 3D, if fluid of density ρ(p) moves in Ω with velocity v(p) at

point p, we define the mass-velocity field f (p) = ρ(p)v(p).

Imagine a small portion ∆σ of ∂Ω, which could be considered flat

with normal n and consider the rate at which the fluid crosses ∆σ.

The mass of fluid crossing ∆σ in time ∆t is given by

∆m = ρ(v · n)∆t∆σ.

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



Fig. 3.2 The fluid that flows through the patch ∆σ in a short time

∆t fills a slanted cylinder whose volume is approximately equal to

the base times height, v · n∆σ∆t. The mass of the fluid in the

cylinder is then ρv · n∆σ∆t.
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Thus, the rate at which the fluid is crossing the whole boundary

∂Ω is obtained by summing up all the contributions ∆m over all

patches ∆σ, that is, the flux of ρv is∫
∂Ω

(ρv · n)dσ.
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Gauss theorem

x1

x2

p +∆x1

q

p

q +∆x2

f2(p, q)∆x1

f2(p, q +∆x2)∆x1

f1(p, q)∆x2 f1(p +∆x1, q)∆x2

Figure: Flux across the boundary of a box.
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Outflow across the boundary

= (f1(p +∆x1, q)− f1(p, q))∆x2 + (f2(p, q +∆x2)− f2(p, q))∆x1

≈
(
∂f1
∂x1

(p, q) +
∂f2
∂x2

(p, q)

)
∆x1∆x2.

Theorem 4

Let Ω be a bounded domain in Rd , d ≥ 1, with a piecewise C 1

boundary ∂Ω. Let n be the unit outward normal vector on ∂Ω. Let

f (x) = (f1(x), · · · , fn(x)) be any C 1 vector field on Ω̄ = Ω ∪ ∂Ω.

Then ∫
Ω

div f dx =

∫
∂Ω

f · ndσ. (4)
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Conservation laws. Consider u = u(x , t), x ∈ Ω ⊂ R, t > 0. We

assume that u is a density of certain quantity Q such as

population, mass, energy.

Figure: Tube I.

If I is the section of the tube between x and x + h, then

Total amount of quantity in I = A

x+h∫
x

u(s, t)ds,

where A is the area of the cross section of I.
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We define the flux density of u at t, x to be the scalar function

ϕ(x , t, u) equal to the amount of the quantity u passing through

the cross section at x at time t, per unit area, per unit time. By

convention, the flux density at x is positive if the flow at x is in

the positive x direction. Then

Net rate that Q flows into I = A(ϕ(x , t, u(x , t))−ϕ(x+h, t, u(x+h, t))).

Earlier, we considered ϕ = vu, where v is the velocity of the flow.

Here we the flux density of an arbitrary quantity (arbitrary

one-dimensional vector field).
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The considered quantity may be destroyed or created inside I, e.g.,

by a chemical reaction, or by birth/death processes. We introduce

the source function f (x , t, u) giving the rate at which u is created

or destroyed at x at time t, per unit volume. Note that f may

depend on u itself (e.g., the rate of chemical reactions is

determined by concentration of the chemicals). Then

Rate that Q is produced in I by sources = A

x+h∫
x

f (s, t, u(s, t))ds.
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The fundamental conservation law can be formulated as follows:

for any section I

The rate of change of the total amount of Q in I

= net rate that Q flows into I

+rate that Q is produced in I

Thus, mathematically,

d

dt

x+h∫
x

u(s, t)ds = ϕ(x , t, u(x , t))−ϕ(x+h, t, u(x+h, t))+

x+h∫
x

f (s, t, u)ds.

(5)

The equation above is called a conservation law in integral form

and holds even if u, f , ϕ are not smooth functions.
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This form is useful in many cases but rather difficult to handle,

therefore it is convenient to reduce it to a differential equation. If

all involved functions are continuously differentiable, then we can

rewrite (5) in the form

x+h∫
x

(ut(s, t) + ϕs(s, t, u(s, t))− f (s, t, u))ds = 0. (6)

Since this equation is valid for any interval I = [x , x + h], we can

use Theorem 2 to infer that the integral must vanish identically;

that is, changing the independent variable back into x we must

have

ut(x , t) + ϕx(x , t, u(x , t)) = f (x , t, u) (7)

for any x ∈ Ω and t > 0.
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Note that in (7) we have two unknown functions: u and ϕ;

function f is assumed to be given. Function ϕ is usually to be

determined from empirical considerations. Equations resulting from

such considerations, which specify ϕ, are often called constitutive

relations or equations of state.
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Conservation laws in higher dimensions. Let u = u(x , t),

x ∈ R3 be a scalar density function of some quantity Q distributed

in R3. Let Ω ⊂ R3 be an arbitrary region with a smooth boundary

∂Ω. The total amount of Q in Ω at time t is given by∫
Ω

u(x, t)dx,

and the rate that the quantity is produced in Ω is given by∫
Ω

f (x, t, u)dx,

where f is the rate at which the quantity is being produced in Ω.
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Here, the flow can occur in any direction, the flux density is given

by a vector Φ (earlier, it was given by ρ(x)v(x)), and the net

outward flux of Q through the boundary ∂Ω is given by the surface

integral ∫
∂Ω

Φ(x , t,u(x , t)) · n(x)dσ.

Finally, the conservation law for u is given by

d

dt

∫
Ω

u dx = −
∫
∂Ω

Φ · ndσ +

∫
Ω

fdx. (8)

The minus sign at the flux term occurs because the outward flux

decreases the amount of u in Ω.
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If all functions are sufficiently smooth, the Gauss theorem yields∫
Ω

(ut + divΦ− f ) dx = 0

for any subregion Ω. Using the vanishing theorem (Theorem 2) we

finally obtain the differential form of the general conservation law

in higher-dimensional spaces,

ut(x , t) + divΦ(x , t, u(x , t)) = f (x , t, u(x , t)). (9)
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Constitutive relations and examples.

Conservation law is a mathematical expression of fundamental

laws,

Constitutive relation – originates in empirics.

Transport equation. A substance of density u moving through a

surrounding medium with a velocity which may depend on x and

u. Then

Φ(x , u) = v(x , u)u,

and, if there are no sources or sinks, the transport equation is

given by

ut + div (vu) = v · ∇u + udiv v = 0. (10)
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McKendrick partial differential equation. Transport in the

derivation of conservation law can occur in other state space.

Consider an age-structured population, described by the density of

the population n(a, t) with respect to age a and look at the

population as if it was ’transported’ through stages of life. The

number of individuals in the age group [a, a+∆a) at time t is

n(a, t)∆a and the rate of change is

change in [a, a+∆a)

= amount entering at a− amount exiting at a+∆a− deaths.

Denoting per capita mortality rate for individuals by µ(a, t), the

last term is simply −µ(a, t)n(a, t)∆t.
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Thus, over ∆t,

(n(a, t +∆t)− n(a, t))∆a

= n(a−∆t, t)∆t − n(a+∆a−∆t)∆t − µ(a, t)n(a, t)∆a∆t

and, dividing by ∆a∆t and passing to the limit with ∆t,∆a → 0,

we obtain

∂n(a, t)

∂t
+
∂n(a, t)

∂a
= −µ(a, t)n(a, t). (11)
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This equation is defined for a > 0 and the flow is to the right

hence we need a boundary condition. In this model the birth rate

enters here: the number of neonates (a = 0) is the number of

births across the whole age range:

n(0, t) =

ω∫
0

n(a, t)β(a, n(a, t))da,

where β is the maternity function. Eq. (11) also must be

supplemented by the initial condition

n(a, 0) = n0(a)

describing the initial age distribution.
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Diffusion/heat equation. Assume at first that there are no

sources, and write the basic conservation law in one-dimension as

ut + ϕx = 0 (12)

In many problems the substance moves from the regions of higher

concentration to regions of lower concentration and the larger

difference, the more rapid flow is observed. Large differences can

be expressed as a large gradient of the concentration u, so it is

reasonable to assume that

ϕ(x , t) = −F (ux(x , t)),

where F is an increasing function passing through (0, 0).
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The minus sign is due to the fact that the flow occurs in the

opposite direction of of the gradient. The simplest increasing

function passing through (0, 0) is a linear function with positive

leading coefficient, and this assumption gives Fick’s law:

ϕ(x , t) = −Dux(x , t) (13)

where D is a positive diffusion constant. Thus, we get the one

dimensional diffusion equation

ut − Duxx = 0, (14)

which governs conservative processes, when the flux is specified by

Fick’s law.
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Multidimensional case. If the medium is isotropic, that is, the

process of diffusion is independent of the orientation in space, then

Fick’s law states that the flux density is proportional to the

gradient of u, that is,

Φ = −D∇u

and the diffusion equation, obtained from the conservation law (9)

in the absence of sources, reads

ut = div(D∇u) = D∆u, (15)

where the second equality is valid if D is a constant.
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Diffusion through correlated random walk. Consider particle

starting at the origin of the x-axis which jumps the length δ to the

right with probability p or to the left with probability q. Let xi be

a random variable that assumes the value δ if the particle moves to

the right at the ith step and −δ if it moves to the left. Assume

that each step is independent, so that the xi s are identically

distributed independent random variables. Then

P(xi = δ) = p, P(xi = −δ) = q

for each i . If the particle cannot rest, then p+ q = 1. The position

of the particle after n jumps is given by the random variable

Xn = x1 + x2 + . . .+ xn.
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The expected value of xi is

E (xi ) = ⟨xi ⟩ = (p − q)δ

and, since the expectation is linear

E (Xn) = ⟨Xn⟩ = (p − q)nδ.

For the variance we have

V (Xn) = E (Xn − E (Xn))
2 = E (X 2

n )− (E (Xn))
2.
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Since E (x2i ) = δ2(p + q) = δ2, again by linearity of E , we see that

V (Xn) =
n∑

i=1

(⟨x2i ⟩ − ⟨xi ⟩2) =
n∑

i=1

(δ2 − (p − q)2δ2)

= nδ2(1− (p − q)2) = 4pqnδ2,

upon using p + q = 1.

Random walk is a model for a Brownian motion, where the

movement is caused by collisions of the particle with the particles

of the fluid and, in one dimension, each collision results in a small

jump by δ of the particle to the right or to the left. Many such

collisions occur in a unit time.
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Experimentally, we can observe the average displacement per unit

time, denoted by c and the variance of the observed displacement

around the average, which we denote by D > 0. Thus, after n

collisions in unit time, should have

c ≈ (p − q)δn, (16)

and

D ≈ 4pqδ2n. (17)

Since the motion appears to be continuous, we have to consider

the limit of the above equations as δ → 0 while n → ∞ in such a

way that D and c given above remain constant.
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• If p ̸= q and p − q does not tend to zero as δ → 0, n → ∞ we

have

δn → c

p − q

but then 4pqδ2n → 0 yielding D = 0 in which case the motion

would be deterministic.

• If we want D ̸= 0, then p − q → 0 yielding p, q → 1/2. If

p = q = 1/2 in the discrete case, then c = 0. However, if

p − q ̸= 0, then c ̸= 0 and we have a drift. This conditions can be

realized if

p =
1 + bδ

2
, q =

1− bδ

2

for some yet unspecified b chosen so that 0 ≤ p, q ≤ 1.
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These leads to p → 1/2, q → 1/2 and

(p − q)δn = bδ2n

so that, to be consistent with (17), we must have

δ2n → D. (18)

and thus b = c/D, yielding

(p − q)δn → c . (19)
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Let us derive the equation governing the random walk in the

continuous limit as δ → 0, n → ∞ in such a way that (18) holds.

For n steps to occur in a unit time, one step must occur in

τ = 1/n units of time. We derive the formula for the probability

that a particle starting at x = 0 at t = 0 will be at the position x

at the time t. Thus, we must have

kτ = t, Xk = x .

We define

v(x , t) = P(Xk = x)

at time t.
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Then, v satisfies the difference equation

v(x , t + τ) = pv(x − δ, t) + qv(x + δ, t). (20)

If we assume that v is differentiable, we can expand it in the Taylor

series

v(x , t + τ) = v(x , t) + τvt(x , t) + O(τ2),

v(x ± δ, t) = v(x , t)± δvx(x , t) +
1

2
δ2vxx(x , t) + O(δ3).

(21)
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Substituting into (20), we obtain

vt = (q − p)
δ

τ
vx +

1

2

δ2

τ
vxx + τ−1O(τ2) + τ−1O(δ3)

Now, since δ2n = δ2/τ = O(1), we have

τ−1O(δ3) = O(1)δ−2O(δ3) and we can re-write the above as

vt = (q − p)
δ

τ
vx +

1

2

δ2

τ
vxx + O(τ) + O(δ)

and passing to the limit as δ → 0, τ → 0 in such a way that (18)

(with τ = 1/n) holds

vt = −cvx +
1

2
Dvxx ,

where we used (19) and (18).
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In this equation, v must be interpreted as the probability density,

that is, at time t,

P(a ≤ x ≤ b) =

b∫
a

v(x , t)ds.
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Boundary condition. The derivation above assumed that the

random walks occurs on R. If the movement is restricted to, say,

(−∞, l), then we have to specify what happens at x = l .

• Absorbing boundary. A particle reaching x = l stays there,

v(t + τ, l) = pv(t, l − δ).

Expanding

v(t, l) + vt(t, l)τ + o(τ) = pv(t, l)− pδvx(t, l) + o(δ).

Letting δ, τ → 0,

v(t, l) = 0;

Dirichlet boundary condition.
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• Reflecting boundary.

ll − δ

v(t + τ, l) = pv(l − δ, t) + pv(l , t)

Expanding,

v(t, l) + vt(t, l)τ + o(τ) = 2pv(t, l)− pδvx(t, l) + o(δ).

Using 2p − 1 = p − q, multiplying by δ/τ ,

vt(t, l)δ = (p − q)v(t, l)
δ

τ
− pδvx(t, l)δτ + o(τ)

δ

τ
+
δ

τ
o(δ).
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With δ2

τ → D and (p − q) δτ → c , we obtain

D

2
vx(l , t)− cv(l , t) = 0,

often called the Robin condition.

In particular, if p = q, then c = 0 and

vx(l , t) = 0,

called the (homogeneous) Neumann boundary condition.
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We note that the derivation of the diffusion limit required

δ2/τ → D which, in turn, implies δ/τ → ∞ since δ → 0. In other

words, for the finite diffusion coefficient (variance) the velocity of

the particle must be infinite. While certainly nonphysical, it is in

agreement with the properties of the diffusion equation which

predicts instantaneous transmission of signals. This drawback can

be removed by considering the correlated random walk.
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Correlated random walk. Similarly, we consider a particle which

can jump by δ to the left or to the right. Each jump is executed in

time τ . However, here p and q are the probabilities that the

particle will, respectively, persist moving in the same direction and

reverse the direction. Thus, let α(x , t) be the probability that a

particle is at the point x and arrived there from the left, whereas

β(x , t) is the probability that a particle is at x and arrived there

from the right.
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Thus, using the total probability, we have

α(x , t + τ) = pα(x − δ, t) + qβ(x − δ, t),

β(x , t + τ) = qα(x + δ, t) + pβ(x + δ, t). (22)

We assume that the shorter the time τ , the greater probability of

persistence; that is, p → 1 as τ → 0, so q → 0. Assuming that

both p and q are differentiable functions of τ , we can write

p = 1− λτ + o(τ),

q = λτ + o(τ) (23)

where λ is the rate of reversal of direction as τ → 0.
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If we expand α and β, we get

αt(x , t)τ + α(x , t) + o(τ) = −pαx(x , t)δ + pα(x , t)− qβx(x , t)δ

+ qβ(x , t) + o(δ),

βt(x , t)τ + β(x , t) + o(τ) = pβx(x , t)δ + pβ(x , t) + qαx(x , t)δ

+ qτα(x , t) + o(δ)

or, using (23),

αt(x , t) = −(1− λτ)αx(x , t)
δ

τ
− λα(x , t)− λτβx(x , t)

δ

τ

+ λβ(x , t) + o(1),

βt(x , t) = (1− λτ)βx(x , t)
δ

τ
− λβ(x , t) + λταx(x , t)

δ

τ

+ λα(x , t) + o(1).
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Next, assuming that δ/τ → γ, the speed of motion, as δ, τ → 0, we

obtain the following coupled system of partial differential equation

αt(x , t) = −γαx(x , t)− λα(x , t) + λβ(x , t),

βt(x , t) = γβx(x , t) + λα(x , t)− λβ(x , t), (24)

where, as before α and β are to be interpreted as the probability

densities.

Since at the point x the particle must have arrived either from the

left or from the right, the function

v(x , t) = α(x , t) + β(x , t) (25)

is the probability density that a particle is at the point x at the

time t.
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If we introduce the net flux density to the right

w(x , t) = α(x , t)− β(x , t),

then (24) can be transformed, by adding and subtracting, into

vt(x , t) + γwx(x , t) = 0,

wt(x , t) + γvx(x , t) = −2λw . (26)

In particular, (26) can be reduced to

vtt − γ2vxx + 2λvt = 0 (27)

which is the damped wave equation with waves moving with the

speed γ, as follows from the microscopic description.
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For λ close to 0, we have strong correlations resulting in a wave

motion which does not display any stochasticity.

On the other hand, when we divide both sides of Eq. (27) by 2λ

and let λ→ ∞ (which corresponds to very weak correlations) in

such a way that γ2/λ→ D, formally the equation becomes

−D

2
vxx + vt = 0 (28)

which is the diffusion equation of the uncorrelated random walk.

This agrees well with intuition.
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However, it is important to remember that the above reasoning

does not constitute a proof that a correlated random walk tends to

an uncorrelated random walk if both the reversal rate and the

speed tend to infinity. For instance, (27) is second order in time

and requires two initial conditions whereas (28) is first order in

time, so imposing these initial conditions would render the problem

unsolvable. Problems of this type are called singularly perturbed

and require a delicate analysis. It can be proved, however, that

solutions of (27) tend to a solution of (28) for large t.
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Variations of the diffusion equation. In many cases the

evolution is governed by more then one process.

• Simultaneous transport and diffusion – drift-diffusion equation.

By combining (10) and (15), we get

ut + div (vu) = D∆u. (29)

• When the sources are present and the constitutive relation is

given by Fick’s law, then the resulting equation

ut − D∆u = f (x , t, u) (30)

is called the reaction-diffusion equation.
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• If f describes spontaneous decay (or creation) of the substance

at the exponential rate,

ut − D∆u = ru. (31)

• The Fisher equation, where we assume that the population obeys

the logistic law. Introduce the density of the population u(x , t);

the conservation law takes the form

ut + divΦ = ru
(
1− u

N

)
. (32)

With Fick’s law, individuals migrate from the regions of higher

density to regions of lower density. Then

ut − D∆u = ru
(
1− u

N

)
. (33)
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Systems.

Epidemiology with age structure. In epidemiological problems, the

rate of infection often significantly varies with age and thus it is

important to consider the age structure of the population. We

assume that in the absence of the disease, the age-dependent

density of the population n(a, t) would be the solution to (11).

Due to the epidemics, we partition the population susceptibles,

infectives and removed, represented by their respective age

densities s(a, t), i(a, t) and r(a, t).

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



The SIRS model becomes

∂ts(a, t) + ∂as(a, t) + µ(a)s(a, t) = −λ(a, t)s(a, t)

+ γ(a)i(a, t),

∂t i(a, t) + ∂ai(a, t) + µ(a)i(a, t) = λ(a, t)s(a, t)

− (ν(a) + γ(a))i(a, t),

∂tr(a, t) + ∂ar(a, t) + µ(a)r(a, t) = ν(a)i(a, t),

(34)
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with boundary conditions

s(0, t) =

ω∫
0

β(a)(s(a, t) + (1− q)i(a, t)

+ (1− w)r(a, t))da,

i(0, t) = q

ω∫
0

β(a)i(a, t)da,

r(0, t) = w

ω∫
0

β(a)r(a, t)da,

(35)

where q ∈ [0, 1] and w ∈ [0, 1] are the vertical transmission

coefficients of infectiveness and immunity, respectively. The system

is complemented by initial conditions s(a, 0) = s0(a), i(a, 0) = i0(a)

and r(a, 0) = r0(a).
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We assumed that the death and birth coefficients are not affected

by the disease so that (34) is a conservation law, that is, for

regular solutions, the total population density

n(a, t) = s(a, t) + i(a, t) + r(a, t) satisfies

∂tn(a, t) + ∂an(a, t) + µ(a)n(a, t) = 0,

n(0, t) =

ω∫
0

β(a)n(a, t)da, n(a, 0) = s0(a) + i0(a) + r0(a).

The force of infection λ is given by

λ(a, t) = K0(a)i(a, t) +

ω∫
0

K (a, s)i(s, t)ds, (36)

where K0 gives the intracohort infection (same age) and K gives

the intercohort infections.
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Spread of rabies in a fox population. Consider a population of

foxes divided into subpopulations susceptible, infectious and

removed individuals. Foxes are territorial, so we assume that

susceptibles are stationary. Infectives lose orientation and move in

a random way. Removed are the foxes that died of the disease. If

we ignore vital processes, we get

∂S

∂t
= −βIS ,

∂I

∂t
= βIS − µI + D

∂2I

∂x2
,

∂R

∂t
= µI ,

(37)

where β is the infection rate, µ–disease-induced death rate and D

is the diffusion coefficient.
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First-order equations – methods. We start with the simplest

transport equation

aut + bux = 0, t, x ∈ R (38)

where a and b are constants. This equation can be written as

(a, b) · (ut , ux) = v∇u = Dvu = 0,

where v = (a, b), and Dv is the directional derivative. Thus u is

constant along each line with direction v , that is, having the

equation bt − ax = ξ, called characteristics. The solution can

change from one line to another, hence

u(t, x) = f (ξ) = f (bt − ax), (39)

where f is an arbitrary differentiable function.
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The Cauchy problem. Let us assume that a ̸= 0. To obtain a

unique solution, we specify the initial value for u. Hence, let us

consider the initial value problem for (38): find u satisfying

aut + bux = 0 x ∈ R, t > 0,

u(0, x) = g(x), x ∈ R,
(40)

where g is an arbitrary given function. From (39) we find that

u(t, x) = g

(
−bt − ax

a

)
. (41)

The initial shape propagates without any change along the

characteristic lines

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



Figure: The graph of the solution to (40) where g = 1− x2 for |x | < 1

and zero elsewhere, and b/a = 1.
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Figure: Travelling wave profile of the solution (40) for t = 0 (solid),

t = 1 (dashed), t = 2 (dotted).
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Initial–boundary value problems Let us consider a variation of this

problem and solve the initial–boundary value problem

aut + bux = 0, x , t > 0,

u(x , 0) = g(x), x > 0,

u(t, 0) = h(t), t > 0,

(42)

for a, b > 0. The general solution of the equation is

u(t, x) = f (bt − ax).
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• Setting t = 0 gives f (−ax) = g(x) for x > 0, hence

f (x) = g(−x/a) for x < 0.

• Setting x = 0 gives f (bt) = h(t) for t > 0, hence f (x) = h(x/b)

for x > 0.

Combining

u(t, x) =

 g(−bt−ax
a ) for x > bt/a

h(bt−ax
b ) for x < bt/a
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Figure: The solution of the initial–boundary problem (42) with a = b,

g(x) = x and h(t) = 1− e−t .
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Incorrect boundary condition. Assume a = 1 > 0, b = −1 < 0.

Then, the initial condition defines f (x) = g(−x) for x < 0, and

the boundary condition gives f (x) = h(−x) also for x < 0! Hence,

we cannot specify both initial and boundary conditions in an

arbitrary way as this could make the problem ill-posed.

The physical explanation of this comes from the observation that

since the characteristics are given by ξ = x + t, the flow occurs in

the negative direction, and therefore, the values at x = 0 for any t

are uniquely determined by the initial condition. Therefore, to have

a well-posed problem, we must specify the boundary conditions at

the point where the medium flows into the region.
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Figure: The solution of ut − ux = 0 and u(0, x) = x given by

u(t, x) = x + t. The boundary condition u(t, 0) = t is determined by the

initial condition, and cannot be imposed.
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Characteristic coordinates. We reformulate the above in a more

analytic language, allowing for treatment of inhomogeneous

problems. Let us introduce the change of variables according to

ξ = ξ(t, x), η = η(t, x) and v(ξ, η) = u(t, x), then

ut = vξξt + vηηt , ux = vξξx + vηηx ,

and the equation can be written as

a(vξξt+vηηt)+b(vξξx+vηηx) = vξ(aξt+bξx)+vη(aηt+bηx) = 0.

If we require the coefficient at uη to be zero, the easiest way is to

introduce ηt = b, ηx = −a, that is η = bt − ax .
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Note that this is exactly the characteristic direction! This is an

incomplete change of variables as knowing η alone, we are not able

to determine the values of x and t. We need another variable

ξ = ξ(x , t) such that the system

η = bt − ax , ξ = ξ(x , t)

is uniquely solvable. E.g., if a ̸= 0, the easiest choice is ξ = t.

However, sometimes, it is more convenient to use the orthogonal

lines given by ξ = at + bx .
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Inhomogeneous equations. Find the solution to the following

equation

ut + 2ux − (x + t)u = −(x + t),

which satisfies the initial condition

u(0, x) = h(x), x > 0,

and

u(t, 0) = g(t), t > 0.

Introducing new variables according to ξ = t, η = 2t − x we

transform the equation into

vξ − (3ξ − η)v = −(3ξ − η).

This equation can be regarded as a linear first-order ordinary

differential equation in ξ with a parameter η.J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



The integrating factor is given by

µ(ξ, η) = e−(
3
2
ξ2−ηξ).

Multiplying both sides of the equation by µ and rearranging the

terms we obtain(
e−(

3
2
ξ2−ηξ)v(ξ, η)

)
ξ
= −(3ξ − η)e−(

3
2
ξ2−ηξ),

hence, the general solution is given by

v(ξ, η) = 1 + C (η)e(
3
2
ξ2−ηξ),

where C is an arbitrary differentiable function of one variable.
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In the original variables, we obtain

u(t, x) = 1 + C (2t − x)e

(
− t2

2
+tx

)
,

where C is an arbitrary differentiable function. Next,

h(x) = u(0, x) = 1 + C (−x)

for x > 0. Thus

C (s) = h(−s)− 1, s < 0.

On the other hand,

g(t) = u(t, 0) = 1 + C (2t)e−
t2

2 , t > 0,

hence

C (s) = e
s2

8

(
g
( s
2

)
− 1
)
, s > 0.
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Thus, we have defined C for all values of the argument by

C (s) =

 h(−s)− 1 for s < 0,

e
s2

8

(
g
(
s
2

)
− 1
)

for s > 0.

Therefore,

u(t, x) =

 1 + (h(−2t + x)− 1)e

(
− t2

2
+tx

)
for x > 2t,

1 + e

(
x2+tx

8

) (
g
(
t − x

2

)
− 1
)

for x < 2t.
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If h(x) = x and g(t) = sin t, then

u(t, x) =

 1 + (−2t + x − 1)e

(
− t2

2
+tx

)
for x > 2t,

1 + e

(
x2+tx

8

) (
sin
(
t − x

2

)
− 1
)

for x < 2t.
(43)
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Figure: The graph of the solution (43).
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Figure: Snapshot of the solution (43) at t = 0.5.
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We use the same principle to solve variable coefficient equations

a(t, x)ut + b(t, x)ux = 0. (44)

This equation states that the derivative of u in the direction of the

vector (b(t, x), a(t, x)) is equal to zero. Consider a family of curves

(t(s), x(s)), 0 ≤ s <∞, which are tangent to these vectors, that is,

x ′(s) = b(t(s), x(s)), x(0) = ξ

t ′(s) = a(t(s), x(s)), t(0) = 0,
(45)

where ξ ∈ R. Then, for each ξ, we denote vξ(s) := u(t(s), x(s))

for (x(s), t(s)) satisfying (45), obtaining

v ′ξ = utt
′(s) + uxx

′(s) = uta+ uxb = 0. (46)
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Thus, vξ is constant for each ξ; hence, u(t, x) is constant along

each trajectory defined by ξ.

x

t (x(s), t(s))

(x(0), t(0)) = (ξ, 0)

(x ′, y ′) = (b, a)

Figure: A characteristic line determined by the initial value (ξ, 0).
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Summarizing, for the inhomogeneous problem

ut + c(t, x)ux = f (t, x , u),

u(x , 0) = u0(x).
(47)

we form the so-called characteristic system

dv

dt
= f (x , t, v), u(0) = u0(ξ),

dx

dt
= c(x , t), x(0) = ξ,

(48)

ξ ∈ R. Here, as above, v(t) = u(t, x(t)), so v(t) is u(t, x)

evaluated along a given characteristic.
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The second equation is independent of the first and it determines

the equation of characteristics x = x(t, ξ). This solution can be

substituted into the first equation, the solution of which gives the

values of u as a function of t that is a parameter along a

characteristic, and the parameter ξ. Assuming that only one

characteristic passes through each (x , t) and determines a unique

ξ = ξ(x , t) at which it crosses the x-axis, we can eliminate ξ and

produce the solution u in terms of x and t only.
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Example. Find the solution to the following initial value problem

ut + xux + u =0, t > 0, x ∈ R,

u(x , 0) = u0(x),
(49)

where u0(x) = 1− x2 for |x | < 1, and u0(x) = 0 for |x | ≥ 1.

The differential equation for characteristic curves is

dx

dt
= x

which gives x = ηet , thus η = xe−t = ϕ(t, x).
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Fig 4.4. Characteristics of (49).
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If the equation hadn’t contained the zero-order term u, that is, if it

had been in the form

ut + xux = 0,

then the general solution would have had the form

u(t, x) = f (xe−t),

for arbitrary function f .

The characteristic system is

v ′ = −v ,

x ′ = x ,
(50)

with the initial conditions v(0) = u0(ξ), x(0) = ξ. Hence, with

integration constants a, b,

v(t) = ae−t , x(t) = bet .J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



Using the initial conditions we get

v(0) = a = u0(ξ), x(0) = b = ξ.

Thus, x(t) = ξet and, eliminating ξ, we get

u(x , t) = u0(xe
−t)e−t .

For the chosen initial condition, we obtain

u(t, x) =

 (1− x2e−2t)e−t for |x | ≤ et ,

0 for |x | > et .
(51)
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Figure: The graph of the solution (51).
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Figure: Snapshots of the solution (51) times t = 0 (solid), t = 0.2

(dashed) and t = 0.4 (dotted).
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Multidimensional problems. The described procedure can be

applied in multidimensional problems. Consider

ut + 2ux + 3uy + u = 0, (x , y) ∈ R2, t > 0,

u(0, x , y) = u0(x , y) = e−x2−y2
.

(52)

The characteristic system for this equation is of the form

v ′ = −v ,

x ′ = 2,

y ′ = 3,

with initial conditions v(0) = u0(ξ, η), x(0) = ξ, y(0) = η.
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Then, we obtain

v(t) = u0(ξ, η)e
−t , x = 2t + ξ, y = 3t + η,

where ξ, η are constants. Eliminating ξ and η, we obtain

u(t, x , y) = u0(x − 2t, y − 3t)e−t = e−(x−2t)2−(y−3t)2e−t . (53)
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Figure: Snapshots of the solution (53) for t = 0, 0.2, 0.5.
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Applications of first-order equations.

Birth-and-death type problem. Consider a population of N(t)

individuals at time t. We allow stochasticity to intervene in the

process so that N(t) becomes a random variable. Accordingly, we

denote by

pn(t) = P{N(t) = n}, n = 1, 2, . . . , (54)

the probability that the population has n individuals at time t.

Assume that, for a single individual,

P{1 birth in (t, t +∆t]|N(t) = 1} = β∆t + o(∆t),

P{1 death in (t, t +∆t]|N(t) = 1} = δ∆t + o(∆t),

P{no change in (t, t +∆t]|N(t) = 1} = 1− (β + δ)∆t + o(∆t).
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Possibility of more than one birth or death occurring in (t, t +∆t]

is assumed to be of order o(∆t) and will be omitted in the

discussion. Further, assume that in the population of n individuals

births and deaths occur independently. Then, the probability of

one birth is given by

P{1 birth in (t, t +∆t]|N(t) = n}

= n(β∆t + o(∆t))(1− (β + δ)∆t + o(∆t))n−1

= nβ∆t + o(∆t).

(55)
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Similarly, the probability of one (net) death in the population is

P{1 death in (t, t +∆t]|N(t) = n}

= n(δ∆t + o(∆t))(1− (β + δ)∆t + o(∆t))n−1

= nδ∆t + o(∆t),

(56)

and, finally,

P{no change in (t, t +∆t]|N(t) = n}

= (1− (β + δ)∆t + o(∆t))n

= 1− n(β + δ)∆t + o(∆t).

(57)

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



Now, using the law of total probability,

pn(t) = (n−1)β∆tpn−1+(n+1)δ∆tpn+1+(1−n(β+δ)∆t)pn(t)+o(∆t)

(58)

and, finally,

dpn(t)

dt
= −n(β+δ)pn(t)+(n−1)βpn−1(t)+(n+1)δpn+1(t). (59)

This system has to be supplemented by the initial condition

pn(0) =

 1 for n = n0,

0 for n ̸= n0.
(60)
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System (59) difficult to solve. Even proving that there is a solution

to it is a highly nontrivial exercise. In what follows, we assume

that (p0(t), p1(t), . . . , ) exists and describes a probability, that is,

for all t ≥ 0, pn(t) ≥ 0 and

∞∑
n=0

pn(t) = 1. (61)

Then, we will be able to find formulae for pn by the generating

function method.
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We define

F (t, x) =
∞∑
n=0

pn(t)x
n

By (61), the generating function is defined in the closed circle

|x | ≤ 1 and analytic in |x | < 1. The generating function has the

following interpretation in this context.

(1) The probability of extinction at time t, p0(t), is

given by

p0(t) = F (t, 0). (62)

(2) The probabilities pn(t) are given by

pn(t) =
1

n!

∂nF

∂xn

∣∣∣∣
x=0

. (63)
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If F (t, x) is analytic in a slightly larger circle containing x = 1, we

can use F to find other useful quantities. The expected value of

N(t) at time t is defined by

E (N(t)) =
∞∑
n=1

npn(t)

On the other hand,

∂F

∂x
(t, x) =

∞∑
n=1

npn(t)x
n−1

so that

E [N(t)] =
∞∑
n=1

npn(t) =
∂F

∂x

∣∣∣∣
(t,x)=(t,1)

(64)
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Similarly, the variance is defined by

Var [N(t)] = E [N2(t)]− (E [N(t)])2.

On the other hand,

∂2F

∂x2
(t, x)

∣∣∣∣
x=1

=
∞∑
n=0

n(n − 1)pn(t) = E [N2(t)]− E [N(t)].

Combining these formulae, we get

Var [N(t)] =

(
∂2F

∂x2
+
∂F

∂x
−
(
∂F

∂x

)2
)∣∣∣∣∣

(t,x)=(t,1)

(65)
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Let us find the equation satisfied by F . Using (59) and p−1 = 0,

we have

∂F

∂t
(t, x) =

∞∑
n=0

n
dpn
dt

(t) = −(β + δ)
∞∑
n=0

npn(t)x
n

+β
∞∑
n=0

(n − 1)pn−1(t)x
n + δ

∞∑
n=0

(n + 1)pn+1(t)x
n

= −(β + δ)x
∂F

∂x
(t, x) + βx2

∂F

∂x
(t, x) + δ

∂F

∂x
(t, x).

That is, to find F , we have to solve the equation

∂F

∂t
=
(
βx2 − (β + δ)x + δ

) ∂F
∂x

, (66)

supplemented by the initial condition

F (0, x) = xn0 .
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It is a homogeneous equation, so that F is constant along

characteristics, which are given by

dx

dt
= −(βx − δ)(x − 1),

that is,

−t + C =

∫
dt

(βx − δ)(x − 1)
=

1

β − δ

(
−
∫

dx

x − δ
β

+

∫
dx

x − 1

)

=
1

β − δ
ln

∣∣∣∣∣ x − 1

x − δ
β

∣∣∣∣∣
provided β ̸= δ and x ̸= 1, δβ .
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This gives ∣∣∣∣βx − δ

x − 1

∣∣∣∣ = Cert

where r = β − δ. Thus, we have a general solution

F (t, x) = G

(
e−rt

∣∣∣∣βx − δ

x − 1

∣∣∣∣) ,
where G is an arbitrary function. Using the initial condition, we get

xn0 = G

(∣∣∣∣βx − δ

x − 1

∣∣∣∣) .
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Assume x < min{1, δ/β} or x > max{1, δ/β} so that we can drop

absolute value bars. Solving

s =
βx − δ

x − 1
,

we get

x =
s − δ

s − β
,

so that

G (s) =

(
s − δ

s − β

)n0

.

Thus, the solution is given by

F (x , t) =

(
e−rt βx−δ

x−1 − δ

e−rt βx−δ
x−1 − β

)n0

=

(
ertδ(1− x) + (βx − δ)

ertβ(1− x) + (βx − δ)

)n0

. (67)
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Consider the zeroes of the denominator:

x =
ert − δ

β

ert − 1

• If δ/β < 1, then r > 0 and we see that x > 0 and, as t → ∞, x

moves from +∞ to 1 and thus F is analytical in the circle

stretching from the origin to the first singularity, which is bigger

than 1 for any finite t.

• If δ/β > 1, then r < 0 and x above is again positive and moves

from infinity to δ/β > 1 so again F is analytic in a circle with a

radius bigger than 1.
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Since we know that the generating function (defined by the series),

coincides with F defined above for |x | < min{1, δ/β}, by the

principle of analytic continuation, the generation function coincides

with F in the whole domain of its analyticity (note that this is not

necessarily solution of the equation (66) outside this region as we

have removed the absolute value bars).
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Consider now the case β = δ. Then the characteristic equation is

dx

dt
= −β(x − 1)2,

solving which we obtain

1

x − 1
= βt + ξ,

or

ξ =
1− xβt + βt

x − 1
.

Hence, the general solution is given by

F (t, x) = G

(
1− xβt + βt

x − 1

)
for some function G .
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Using the initial condition, we have

xn0 = G

(
1

x − 1

)
.

Hence

G (s) =

(
1 +

1

s

)n0

.

Therefore

F (t, x) =

(
1 +

x − 1

1− xβt + βt

)n0

=

(
βt + (1− βt)x

1− xβt + βt

)n0

.

Summarizing,

F (t, x) =


(

ertδ(1−x)+(βx−δ)
ertβ(1−x)+(βx−δ)

)n0
if β ̸= δ(

βt+(1−βt)x
1−xβt+βt

)n0
if β = δ.

(68)
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Let us complete this section by evaluating some essential

parameters. The probability of extinction at time t is given by

p0(t) = F (t, 0) =


(
δ(ert−1
ertβ−δ

)n0
if β ̸= δ(

βt
1+βt

)n0
if β = δ,

(69)

where, recall, r = β − δ. Hence, the asymptotic probability of

extinction is given by

lim
t→∞

p0(t) =


(

δ
β

)n0
if β > δ

1 if β ≤ δ.
(70)

We note that even for positive net growth rates β > δ the

probability of extinction is non-zero. Populations with small initial

numbers are especially susceptible to extinction.
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To derive the expected size of the population, we use (64). We

have

E [N(t)] =
∂F

∂x

∣∣∣∣
(t,x)=(t,1)

= n0
(−ertδ + β)(β − δ) + β(ert − 1)(β − δ)

(β − δ)2

= n0e
rt .

The variance is given by

Var [N(t)] =
ert(−1 + ert)n0(β + δ)

β − δ

for β ̸= δ, while for β = δ we obtain

V (t) = 2n0βt.
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McKendrick–von Foerster model. Thus, we have the classical

formulation of the McKendrick–von Foerster model

∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t), a > 0, t > 0, (71)

n(0, t) =

ω∫
0

β(α)n(α, t)dα, t > 0, (72)

n(a, 0) = n0(a), (73)

where the last equation provides the initial distribution of the

population.
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If ω < +∞, then we have to ensure that n(a, t) = 0 for

t ≥ 0, a ≥ ω, which can be done either by imposing an additional

boundary condition on n, or by introducing assumptions on the

coefficients which ensure that no individual survives beyond ω. If

ω = ∞ then, instead of such an additional condition, we impose

some requirements on the behaviour of the solution at ∞, e.g.,

that they are integrable over [0,∞).
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Linear constant coefficient case. Before we embark on more

advanced analysis of (71)–(73), let us get a taste of the structure

of the problem by solving the simplest case with µ(a) = µ and

β(a) = β:

∂tn(a, t) + ∂an(a, t) = −µn(a, t). (74)

coupled with the boundary condition

n(0, t) = β

∞∫
0

n(a, t)da,

and the initial condition

n(a, 0) = n̊(a).
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First, let us simplify the equation (74) by introducing the

integrating factor

∂t(e
µan(a, t)) = −∂a(eµan(a, t))

and denote u(a, t) = eµan(a, t). Then

u(0, t) = n(0, t) = β

∞∫
0

e−µau(a, t)da

with u(a, 0) = eµap̊(a) =: ů(a). Now, if we knew ψ(t) = u(0, t),

then

u(a, t) =

 ů(a− t), t < a,

ψ(t − a), a < t.
(75)
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The boundary condition can be rewritten as

ψ(t) = β

∞∫
0

e−µau(a, t)da

= β

t∫
0

e−µaψ(t − a)da+ β

∞∫
t

e−µaů(a− t)da

= βe−µt

t∫
0

eµσψ(σ)dσ + βe−µt

∞∫
0

e−µr ů(r)dr

which, upon denoting ϕ(t) = ψ(t)eµt and using the original initial

value, can be written as

ϕ(t) = β

t∫
0

ϕ(σ)dσ + β

∞∫
0

n̊(r)dr . (76)
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Now, if we differentiate both sides, we get

ϕ′ = βϕ,

which is just a first order linear equation. Letting t = 0 in (76), we

obtain the initial value for ϕ: ϕ(0) = β
∞∫
0

p̊(r)dr . Then

ϕ(t) = βeβt
∞∫
0

n̊(r)dr

and

ψ(t) = βe(β−µ)t

∞∫
0

n̊(r)dr .
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Then

n(a, t) = e−µau(a, t) = e−µt


n̊(a− t), t < a,

βeβ(t−a)
∞∫
0

n̊(r)dr , a < t.

Observe that

lim
a→t+

n(a, t) = n̊(0)

and

lim
a→t−

n(a, t) = β

∞∫
0

n̊(r)dr ,

so that the solution is continuous, let alone differentiable, only if

the initial condition satisfies the following compatibility condition

n̊(0) = β

∞∫
0

n̊(r)dr . (77)
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Thus, as we noted earlier, we must be very careful with using

(71)-(73) in the differential form and interpreting the solution.

Figure: Discontinuity of the population density n(a, t).
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General linear McKendrick-von Foerster problem. The ideas used

to solve the McKendrick-von Foerster case in the constant

coefficient case can be also used in more general situations but,

unfortunately, the resulting integral equation (76) cannot be

explicitly solved. Before, however, we discuss the solvability of

more general cases, let us introduce certain functions related to

(71)-(73), which are relevant to the population dynamics.

Consider again the general McKendrick problem

∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t)

n(0, t) =

ω∫
0

β(α)n(α, t)dα,

n(a, 0) = n̊(a).
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We recall that β(a) is the age specific fertility which can be

defined by saying that the number of newborns, in one time unit,

coming from a single individual whose age is in the small time age

interval [a, a+ da), is β(a)da. So, the number of births coming

from all individuals in the population aged between a1 and a2 in a

one time unit is
a2∫

a1

β(α)n(α, t)da

and we can define the total birth rate as

B(t) =

ω∫
0

β(α)n(α, t)da

which gives the total number of newborns in a unit time (ω is the

maximum age in the population).
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Let us consider the death rate µ(a), which is average number of

deaths per unit of population aged a. We can relate µ(a) to a

number of vital characteristics of the population. Similarly to the

discrete case, we introduce the survival probability S(a) as the

proportion of the initial population surviving to age a. We can

relate µ and S by the following argument.
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Consider a population beginning with p̊ individuals of age 0. Then

n̊(a)S(a)(= n(a)) is the average number of individuals that

survived to age a. The decline in the population over a short age

period [a, a+ da] is n̊(a)S(a)− n̊(a)S(a+ da). On the other hand,

this decline can only be attributed to deaths: if the death rate is µ,

then in this age interval we will have approximately n̊(a)S(a)µ(a)da

deaths. Equating and passing to the limit as da → 0 yields

dS

da
= −Sµ

or

S(a) = S(0)e
−

a∫
0

µ(σ)dσ
= e

−
a∫
0

µ(σ)dσ
,

since the probability of surviving to age 0 is 1.
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We note that if no individuals can survive beyond ω, we must have

S(ω) = 0 or, equivalently,

ω∫
0

µ(σ)dσ = ∞. (78)
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These considerations can be used to find the average life span of

individuals in the population. In fact, the average life span is the

mean value of the length of life in the population, which can be

expressed as

L =

ω∫
0

an(a)da,

where n(a) is the probability (density) of an individual dying at age

a. We approximate the integral as the Riemann sum

L ≈
∑
i

ain(ai )∆ai ,

where n(ai ) is the probability that an individual survived till the

age ai and died at this age.
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Thus

n(ai ) = S(ai )µ(ai ).

We note that S(a)µ(a) is, indeed, a probability density. Thus

L =

ω∫
0

aµ(a)e
−

a∫
0

µ(s)ds
da = −

ω∫
0

a
d

da
e
−

a∫
0

µ(s)ds
da =

ω∫
0

S(a)da,

where we used integration by parts and S(ω) = 0.
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Further, we introduce

K (a) = β(a)S(a) (79)

which is called the maternity function and describes the rate of

birth relative to the surviving fraction of the population. Further,

we define

R =

ω∫
0

β(a)S(a)da, (80)

and call it the net reproduction rate of the population. It is the

expected number of offspring produced by an individual during her

life.
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Solution of general McKendrick-von Foerster model. One of the

easiest way of analysing the general model

∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t)

n(0, t) =

ω∫
0

β(a)n(a, t)da,

n(a, 0) = n̊(a), (81)

is to reduce it to an integral equation in the same way as for the

constant coefficient case, though the technicalities are slightly

more involved due to age dependence of the mortality and

maternity functions.
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First, we simplify (81) by introducing the integrating factor

∂t

e

a∫
0

µ(σ)dσ
n(a, t)

 = −∂a

e

a∫
0

µ(σ)dσ
n(a, t)

 (82)

and denote u(a, t) = e

a∫
0

µ(σ)dσ
n(a, t). Then

u(0, t) = n(0, t) =

ω∫
0

β(a)e
−

a∫
0

µ(σ)dσ
u(a, t)da =

ω∫
0

K (a)u(a, t)da,

where we recognized that the kernel in the integral above is the

maternity function introduced in (79).
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Further, u(a, 0) = e

a∫
0

µ(s)ds
n̊(a) =: ů(a). Also, the right hand side

defines the total birth rate B(t).

Now, if we knew B(t) = u(0, t), then

u(a, t) =

 ů(a− t), t < a,

B(t − a), a < t.
(83)
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The boundary condition can be rewritten as

B(t) =

∞∫
0

β(a)e
−

a∫
0

µ(σ)dσ
u(a, t)da

=

t∫
0

β(a)e
−

a∫
0

µ(σ)dσ
B(t − a)da+

∞∫
t

β(a)e
−

a∫
0

µ(σ)dσ
ů(a− t)da

=

t∫
0

K (t − a)B(a)da+

∞∫
0

β(a+ t)e
−

a+t∫
0

µ(σ)dσ
e

a∫
0

µ(s)ds
n̊(a)da,

where to shorten notation we extended coefficients by zero beyond

a = ω.
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Summarizing, we arrived at the integral equation for the total birth

rate

B(t) =

t∫
0

K (t − a)B(a)da+ G (t) (84)

where

G (t) =

∞∫
0

β(a+ t)
S(a+ t)

S(a)
n̊(a)da, (85)

is a known function.
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Explicitly, we have

B(t) =

t∫
0

K (t − a)B(a)da+

ω−t∫
0

β(a+ t)
S(a+ t)

S(a)
n̊(a)da

=

t∫
0

K (t − a)B(a)da+

ω∫
t

β(a)
S(a)

S(a− t)
n̊(a− t)da, (86)

for 0 ≤ t ≤ ω, and

B(t) =

ω∫
0

K (t − a)B(a)da (87)

for t > ω.
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This equation cannot be solved explicitly and we have to use more

abstract approach. For this we have to introduce a proper

mathematical framework. As in the discrete case, the natural norm

will be

∥p∥1 =
ω∫

0

|n(α)|dα

which in the current context, with p ≥ 0 being the density of the

population distribution with respect to age, is the total population.

Thus, the state space is the space X0 = L1([0, ω)) of Lebesgue

integrable functions on [0, ω).
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Since we are dealing with functions of two variables, we often

consider (a, t) → n(a, t) as a function t → u(t, ·), that is, for each

t the value of this function is a function with argument a. For such

functions, we consider the space C ([0,T ], L1([0, ω])) of

L1([0, ω])-valued continuous functions. For functions f bounded on

[0, ω] we introduce ∥f ∥∞ = sup0≤a≤ω |f (a)|.
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We make the following assumptions.

(i)

β ≥ 0 is bounded on [0, ω], (88)

(ii)

0 ≤ µ ∈ L1([0, ω
′]) for any ω′ < ω (89)

with
ω∫

0

µ(α)dα = ∞, (90)

(iii)

0 ≤ p̊ ∈ L1([0, ω]). (91)
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Now, if (88)-(91) are satisfied, then we can show that K is a

non-negative bounded function which is zero for t ≥ ω and G is a

continuous function which also is zero for t ≥ ω. If, additionally

p̊ ∈ W 1,1([0, ω]) and µp̊ ∈ L1([0, ω]), (92)

(here by W 1
1 we denote the Sobolev space of functions from L1

with generalized derivatives in L1), then G is differentiable with

bounded derivative. Indeed, let us look at G for t < ω

G (t) =

ω∫
t

β(a)
S(a)

S(a− t)
n̊(a− t)da =

ω∫
t

β(a)e
−

a∫
a−t

µ(s)ds

n̊(a− t)da
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If we formally differentiate using the Leibnitz rule, we get

G ′(t) = −β(t)S(t)n̊(0) +
ω∫
t

β(a)e
−

a∫
a−t

µ(s)ds

µ(a− t)n̊(a− t)da

+

ω∫
t

β(a)e
−

a∫
a−t

µ(s)ds

µ(a− t)n̊′(a− t)da

so we see that for existence of the integrals we need integrability of

µp̊ and differentiability of p̊. Then we can prove the main result

Theorem 5

If (88)-(91) are satisfied, then (84) has a unique continuous and

nonnegative solution. If, additionally, (92) is satisfied that B then

B is differentiable with B ′ bounded on bounded intervals.
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Proof. We define iterates

B0(t) = G (t),

Bk+1(t) = G (t) +

t∫
0

K (t − s)Bk(s)ds. (93)

Take T > 0. Then, for any t ∈ [0,T ] we have

|B1(t)− B0(t)| =
t∫

0

|K (t − s)F (s)|ds ≤ tKmFm

where Km = sup0≤t≤T |K (s)| and Lm = sup0≤t≤T |F (s)|. Then

|B2(t)− B1(t)| ≤ Km

t∫
0

|B1(s)− B0(s)|ds ≤ K 2
mFm
2

t2
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and, by induction,

|Bk+1(t)− Bk(t)| ≤ Km

t∫
0

|Bk(s)− Bk−1(s)|ds ≤ K k+1
m Fm

(k + 1)!
tk+1.

(94)

Further

lim
k→∞

Bk+1(t) = G (t) + lim
k→∞

k∑
i=0

(B i+1(t)− B i (t))

with

sup
0≤t≤T

∣∣∣∣∣
k∑

i=0

(B i+1(t)− B i (t))

∣∣∣∣∣ ≤
k∑

i=0

sup
0≤t≤T

∣∣B i+1(t)− B i (t)
∣∣

≤ Fm

k∑
i=0

(TKm)
k+1

(k + 1)!
.
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The series on the right hand side converges to Fme
TKm and thus

(Bk(t))k≥0 converges uniformly to a continuous solution B of

(84). Uniqueness follows by the Gronwall inequality.

If, in addition, (92) is satisfied, then Bk can be differentiated with

respect to t and the functions

V k :=
d

dt
Bk

satisfy the recurrence

V k+1(t) = F ′(t) + K (t)F (0) +

t∫
0

K (t − s)V k(s)ds,

which converges uniformly to some continuous function V which,

by the theorem of uniform convergence of derivatives, must be the

derivative of B. □
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Once we have B, we can recover p by (109) and back substitution

n(a, t) = e
−

a∫
0

µ(σ)dσ
u(a, t) =


S(a)

S(a−t) n̊(a− t), t < a,

S(a)B(t − a), a < t.
(95)

Thus, if (92) is satisfied in addition to (88)-(91), then it is easy to

see that p defined above satisfies the equation (71) everywhere

except the line a = t. Along this line we have, as before,

lim
a→t+

n(a, t) = S(0)n̊(0) = n̊(0)

and

lim
a→t−

n(a, t) = S(0)B(0) =

ω∫
0

β(a)n̊(a)da.
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To ensure at least continuity of the solution we need to assume the

compatibility condition

n̊(0) =

ω∫
0

β(a)n̊(a)da. (96)

We note that if a function is continuous at a point and

differentiable in both one sided neighbourhoods, then it is a

Lipschitz function and it is in fact differentiable almost everywhere

(in the sense that the function can be recovered from its

derivative). On the other hand, if a function has a jump at a point,

then its derivative at this point is of a Dirac delta type. Thus, we

can state that if (96) is satisfied, then the solution is continuous

and satisfies (71) almost everywhere.
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If we do not assume (96) then we can still claim that the solution

satisfies

Dn(a, t) = lim
h→0+

n(a+ h, t + h)− n(a, t)

h

= −µ(a)n(a, t), a > 0, t > 0.
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Furthermore, both the birth rate B and the solution p itself grow

at most at an exponential rate. Consider again (84)

B(t) =

t∫
0

K (t − a)B(a)da+ G (t),

with G given by (85),

S(a) = e
−

a∫
0

µ(σ)dσ
,

and K (a) = β(a)S(a), we see that K (t) ≤ ∥β∥∞ and

G (t) ≤ ∥β∥∞∥p̊∥1 so that
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B(t) ≤ max
0≤a≤ω

β(a)

t∫
0

B(s)ds + max
0≤a≤ω

β(a)

ω∫
0

n̊(s)ds

=: ∥β∥∞

t∫
0

B(s)ds + ∥β∥∞∥p̊∥1,

which, by Gronwall’s inequality, yields

B(t) ≤ ∥β∥∞∥p̊∥1et∥β∥∞ . (97)

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



This gives the estimate for p:

∥n(·, t)∥1 ≤
t∫

0

B(t − s)S(s)ds +

∞∫
t

S(s)

S(s − t)
n̊(s − t)ds

≤ ∥β∥∞∥p̊∥1

 t∫
0

e(t−s)∥β∥∞ds + 1

 ,

where we used S(s)/S(s − t) ≤ 1. Then, by integration

∥n(·, t)∥1 ≤ ∥p̊∥1+∥p̊∥1et∥β∥∞(1−e−t∥β∥∞) = ∥p̊∥1et∥β∥∞ . (98)
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Long-time behaviour of the solution. First, let us consider the

eigenvalue problem for (74)

λn(a) + n′(a) = −µn(a)

n(0) = β

∞∫
0

n(a)da. (99)

The first equation is a linear equation with the general solution

n(a) = Ce−(µ+λ)a

while the nonlocal initial condition yields

1 = β

∞∫
0

e−(µ+λ)ada

where we cancelled the constant C .
J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



This is an example of the Lotka renewal equation. In our case, we

solve it explicitly. Integration gives

1 =
β

µ+ λ
(100)

or

λ = β − µ = r

and

p(a) = Ce−βa.

So, the unique eigenvalue of (104) is (in this case) precisely the

net growth rate. This eigenvalue is simple and the corresponding

eigenvector is the stable age distribution. As we shall see, this is

not a coincidence.
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Long time behaviour–general case. By (97), we can apply the

Laplace transform to analyse (84). The Laplace transform of an

exponentially bounded integrable function f is defined by

f̂ (λ) = (Lf )(λ) =

∞∫
0

e−λt f (t)dt,

and f̂ is defined and analytic in a right half-plane (determined by

the rate of growth of f ) of the complex plane C. In the case of B,

(97) shows that B̂(λ) is analytic in ℜλ > ∥m∥∞. For our

applications it is also important to note that if the f is only

non-zero over a finite interval [a, b], then its Laplace transform is

defined and analytic everywhere in C. Such functions are called

entire.
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Moreover, we also use f̂ (λ) → 0 as |λ| → ∞ in any closed strip

contained in the domain of analyticity of f̂ .

We use the property of the Laplace transform that the convolution

is transformed into the algebraic product of transforms; that is, for

the convolution

(f ∗ g)(t) =
t∫

0

f (t − s)g(s)ds =

t∫
0

f (s)g(t − s)ds,

using the definition of the Laplace transform and changing the

order of integration, we obtain

[L(f ∗ g)](λ) = (Lf )(λ) · (Lg)(λ). (101)
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With this result, (84) yields

B̂(λ) = B̂(λ)K̂ (λ) + Ĝ (λ). (102)

Hence,

B̂(λ) =
Ĝ (λ)

1− K̂ (λ)
= Ĝ (λ) +

Ĝ (λ)K̂ (λ)

1− K̂ (λ)
(103)

As we noted above, Ĝ is an entire function so the only singularities

of B̂ are due to zeroes of 1− K̂ . Since K̂ is an entire function,

these zeroes are isolated of finite order (thus giving rise to poles of

B̂ and with no finite accumulation point).
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However, there may be infinitely many of them and this requires

some care with handling the inverse. We know that if f̂ is the

Laplace transform of a continuous function f , then

f (t) =
1

2πi

c+i∞∫
c−i∞

eλt f̂ (λ)dλ

where we integrate along a line in the domain of analyticity of f̂ .

Let us look closer at the equation

K̂ (λ) = 1, (104)

or, explicitly,
∞∫
0

β(a)e
−λa−

a∫
0

µ(σ)dσ
da = 1, λ ∈ C. (105)
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Theorem 6

Equation (104) has exactly one real root, λ = λ0, of algebraic

multiplicity 1. All other roots λj of (104) occur as complex

conjugates (real root is its own conjugate). Moreover, ℜλj < λ0

for any j, there could be only denumerable number of them and, in

each strip a < ℜλ < b, there is at most a finite number of them.
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Proof. We introduce the real function

ψ(λ) =

∞∫
0

e−λaK (a)da

for λ ∈ R. We note that this function is well defined on R since K

is non zero only on a finite interval. Also, because of this, it is

continuous and differentiable, see Remark 1 below. Then

lim
λ→−∞

ψ(λ) = ∞,

lim
λ→∞

ψ(λ) = 0.
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Moreover,

ψ′(λ) = −
β∫

α

ae−λaK (a)da < 0,

ψ′′(λ) =

β∫
α

a2e−λaK (a)da > 0,

so that ψ is strictly decreasing and concave up function. Since it is

continuous, it takes on every positive value exactly once. Thus, in

particular, there is exactly one real value λ∗ satisfying (104).
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Suppose λ = u + iv is a root of (104). Then

1 =

∞∫
0

e−va(cos(−ua) + i sin(−ua))K (a)da

and, taking the real and imaginary part,

∞∫
0

e−vaK (a) cos ua da = 1,

∞∫
0

e−vaK (a) sin ua da = 0.

We observe that these two equations are invariant under the

change v → −v so that λ̄ = u − iv also satisfies (104).

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



To prove the second part, we note that, since the variable a is

continuous, there must be a range of a, say, [α, β] over which

cos ua < 1. Thus,

∞∫
0

e−vaK (a)da >

∞∫
0

e−vaK (a) cos ua da = 1.

However
β∫

α

e−λ∗aK (a)da = 1,

and direct comparison of these two integrals yields λ∗ > v = ℜλ.
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The last part follows from the fact that since K̂ − 1 is an entire

function, in each bounded set there can be only finitely many zeros

of it, by the principle of isolated zeros. Thus, there could be no

more than denumerable amount of them in C. Finally, since

K̂ → 0 as |λ| → ∞ in any strip, we also see that there can be only

finitely many of them in any vertical strip. □
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Remark 1

In the proof above, the continuity of ψ is a consequence of the

boundeness of the support of definition of K. In general, if we

allow K to be nonzero on [0,∞), then the above statement is not

true. Consider K (a) = c(1 + a2)−1 with c < 2/π. Then

ψ(λ) = c

∞∫
0

e−λa

1 + a2
da

then ψ(λ) < 1 for λ ≥ 0 but ψ(λ) = ∞ for λ < 0 and ψ(λ) < 1

for all λ ≥ 0 and Eq. (104) has no real solution.
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Remark 2

In general, if ω = ∞, one has to prove that the range of ψ

contains 1. For instance, in the constant coefficient case, ψ is

given by (100)

ψ(λ) =
m

λ+ µ

and though it is discontinuous at λ = −µ, its range for

λ ∈ (−µ,∞) is R and the argument holds.
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Observe that the function ψ crosses the a axis at

R := ψ(0) =

∞∫
0

K (a)da (106)

which is precisely the net reproductive rate. R must exceed 1 for

λ∗ to be positive, R = 1 if and only if λ∗ = 0 and, finally, R < 1 if

and only if λ∗ < 0.

Next we shall show that the sign of λ∗ indeed determines the long

time behaviour of the population.
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Let us consider the second term in the last formula of (103)

Ĥ(λ) :=
Ĝ (λ)K̂ (λ)

1− K̂ (λ)
.

We noted that Ĝ (λ) and K̂ (λ) tend to zero as |λ| → ∞ in any

half plane ℜλ > δ, δ ∈ R. Furthermore, on any line

{σ + iy ; y ∈ R} which does not meet any root of (104), we have

infy∈R |1− K̂ (σ + iy)| > 0 and

∞∫
−∞

∣∣∣∣∣ Ĝ (σ + iy)K̂ (σ + iy)

1− K̂ (σ + iy)

∣∣∣∣∣ dy <∞. (107)

This follows from the fact that any finitely supported function,

multiplied by e−σt is an L2 function and thus its Laplace

transform, treated as the Fourier transform, is in L2 with respect to

y . Then the result follows from the Plancherel theorem.
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Inverting Ĥ(λ) we have

H(t) =
1

2πi

σ+i∞∫
σ−i∞

Ĝ (σ + iy)K̂ (σ + iy)

1− K̂ (σ + iy)
e(σ+iy)tdy

for any σ > λ∗. Hence

B(t) = G (t) + H(t).

To estimate H(t) we note that, by properties of Ĥ, we can shift

the line of integration to {σ1 + iy ; y ∈ R} where ℜλ1 < σ1 < λ∗

and λ1 is the eigenvalue with the largest real part less than λ∗.
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Then the Cauchy theorem gives

H(t) = H1(t) + H2(t)

where

H1(t) = resλ=λ∗
eλtĜ (λ)K̂ (λ)

1− K̂ (λ)
= lim

λ→λ∗
(λ−λ∗)

eλtĜ (λ)K̂ (λ)

1− K̂ (λ)
= B0e

λ∗t ,

with

B0 =

∞∫
0

e−λ∗aG (a)da

∞∫
0

ae−λ∗aK (a)da

and

H2(t) =
1

2πi

σ1+i∞∫
σ1−i∞

Ĝ (σ1 + iy)K̂ (σ1 + iy)

1− K̂ (σ1 + iy)
e(σ1+iy)tdy .
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The function H2 satisfies the estimate

|H2(t)| ≤
eσ1t

2π

σ1+i∞∫
σ1−i∞

∣∣∣∣∣ Ĝ (σ1 + iy)K̂ (σ1 + iy)

1− K̂ (σ1 + iy)

∣∣∣∣∣ dy = B1e
σ1t .

Here B1 is a constant. Thus, we arrived at the representation

B(t) = eλ∗tB0 + G (t) + eσ1tB1.

However, remembering that G (t) = 0 for t ≥ 0, we can write

B(t) = B0e
λ∗t

(
1 +

e−λ∗tG (t)

B0
+ e(σ1−λ∗)t B1

B0

)
= B0e

λ∗t (1 + Ω(t))

(108)

where Ω(t) → 0 as t → ∞, provided B0 ̸= 0.

Now, B0 = 0 if and only if G (t) = 0 for all t ≥ 0 but then, from

uniqueness, B(t) = 0 for all t.
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Let us interpret this condition. We have

0 = G (t) =

∞∫
0

β(a+ t)
S(a+ t)

S(a)
n̊(a)da

which, by positivity of n̊, is possible only if

β(a+ t)n̊(a) = 0

for a ∈ [0, ω] and t ≥ 0. This occurs only if the support of β is to

the left of the support of n̊ (as the support of β(·+ t) moves to

the left as t increases). In other words, this case occurs only if the

original population is too old to become fertile.
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In this case

n(a, t) =

 n̊(a− t) S(a)
S(a−t) , t < a,

0, a < t.
(109)

Otherwise, we can write

n(a, t) =

 n̊(a− t) S(a)
S(a−t) , t < a,

B0e
λ∗(t−a) (1 + Ω(t − a))S(a), a < t.

(110)
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Now, in the case ω < +∞ we see that for t ≥ ω we have

n(a, t) = B0e
λ∗(t−a) (1 + Ω(t − a))S(a)

and we identify the stable age distribution

n∞(a) = e
−λ∗a−

a∫
0

µ(s)ds
.

so that

lim
t→∞

e−λ∗tn(a, t) = e
−λ∗a−

a∫
0

µ(s)ds

on [0, ω] (provided the supports of n̊ and β meet).
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Finally, we noted in (106) that λ∗ > 0, λ∗ = 0 and λ∗ < 0 if and

only if, respectively, R > 1,R = 1 and R < 1. Thus, the

population is growing if R > 1, it is stable if R = 1 and it decays if

R < 1 (again if supports of n̊ and β meet), in accordance with the

interpretation of the parameter R.
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Travelling wave solutions. A wave is a recognizable signal which

is transferred from one part of the medium to another part at a

determined speed of propagation. Wave propagation is of

fundamental importance in

Fluid mechanics (water waves, aerodynamics);

Acoustics (sound waves in air and liquids);

Elasticity (stress waves, earthquakes);

Electromagnetic theory (optics, electromagnetism);

Biology (epizootic waves);

Chemistry (combustion and detonation waves).
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The simplest form of a mathematical wave is a function of the form

u(x , t) = f (x ± ct). (111)

We adopt the convention that c > 0. The general solution of

ut = ±cux

is given by (111).

At t = 0 we have u(x , 0) = f (x), which is the initial wave profile.

Then f (x − ct) represents the profile at time t, that is just the

initial profile translated to the right by ct spatial units. Thus c is

the speed of the wave; (111) with −c represents a wave travelling

to the right with speed c > 0 and with +c is a wave travelling to

the left with the same speed.
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Does a given PDE admit a wave solution? A travelling wave

solution to a PDE is a solution of the form u(x , t) = U(x ± ct),

with U being differentiable enough to be a solution to the PDE for

all times and in the whole space and satisfying

U(−∞) = u−∞, U(+∞) = u+∞. (112)

Mathematically, looking for travelling wave solutions is asking

whether a given PDE has solutions invariant under a Galilean

transformation; in such a case it can be reduced to an ODE.
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For instance, for a second order PDE,

F (u, ut , ux , uxx) = 0,

looking for solutions in the form U(z) = U(x − ct) = u(x , t) leads

to

F (U,−cUz ,Uz ,Uzz) = G (U,Uz ,Uzz) = 0.
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Viscous Burgers equation

ut + uux − νuxx = 0, ν > 0

with z = x − ct transforms to

−cUz + UUz − νUzz = 0.

Solving, we obtain travelling wave solutions

u(x , t) =
u−∞ + u∞eK(x−ct)

1 + eK(x−ct)

=
1

2
(u∞ + u−∞) +

1

2
(u∞ − u−∞) tanh

K

2
(x − ct),

where the speed of the wave is

c =
1

2
(u∞ + u−∞); K =

1

2ν
(u∞ − u−∞) > 0.
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Korteweg-deVries equation – solitons
I was observing the motion of a boat which was rapidly

drawn along a narrow channel by a pair of horses, when

the boat suddenly stopped – not so the mass of water in

the channel which it had put in motion; it accumulated

round the prow of the vessel in a state of violent agitation,

then suddenly leaving it behind, rolled forward with great

velocity, assuming the form of a large solitary elevation,

which continued its course along the channel apparently

without change of form or diminution of speed. I followed

it on horseback, and overtook it still rolling on at a rate

of some eight or nine miles an hour, preserving its original

figure some thirty feet long and a foot in height.
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ut + uux + kuxxx = 0.

where k > 0 is a constant.Travelling wave ansatz gives

−cUz + UUz + kUzzz = 0.

Solving, we obtain the solitary wave

u(x , t) = 3csech2
(√

c

4k
(x − ct)

)
= 3c

(
1− tanh2

(√
c

4k
(x − ct)

))
,

where c is given by tree times the amplitude of the wave.
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Dynamical systems approach

As an example, we consider the Fisher equation

ut − uxx = u(1− u) (113)

and, as before, we shall look for solutions of the form

u(x , t) = U(z), z = x − ct. (114)

Substituting (114) into (113) yields a second order ordinary

differential equation for U:

−cUz − Uzz = U(1− U). (115)
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This equation cannot be solved in a closed form for arbitrary c.

We use a phase plane analysis. Defining V = U ′, we obtain the

first order system

Uz = V ,

Vz = −cV − U(1− U). (116)

Remember: U is a wave profile if it solves (116) and

lim
z→−∞

U(z) = u−∞, lim
z→∞

U(z) = u+∞, (117)

for some u±∞. Then, since V = Uz ,

lim
z→−∞

V (z) = 0, lim
z→∞

V (z) = 0. (118)
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Crucial observation

Points (u−∞, 0) and (u∞, 0) satisfying (117) and (118) must be

equilibria of (116).

Hence,

The existence of a travelling wave solution to (113) is equivalent

to the existence of an orbit of (116) joining the equilibria. A wave

front corresponds to a heteroclinic orbit (joining different

equilibria), whereas a pulse corresponds to a homoclinic orbit.
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The equilibria of (116) are (0, 0) and (0, 1). The eigenvalues of the

Jacobi matrix at (0, 0) are

λ0,0± =
−c ±

√
c2 − 4

2
,

and at (1, 0),

λ1,0± =
−c ±

√
c2 + 4

2
.

• For any c , λ1,0± are real and of opposite sign and therefore (1, 0)

is a saddle.

• λ0,0± are both real and negative if c ≥ 2 and in this case (0, 0) is

a stable node, while for 0 < c < 2 it is a stable focus.
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First conclusion.

No travelling waves for 0 < c < 2.

Consider the triangle Ω, whose sides are defined by

Side I. U = 1, V < 0;

Side II. 0 < U < 1, V = 0;

Side III. V = −αU, 0 < U < 1, α ∈ R+.
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U

V X u

1

Side I

Side II

Side III

Figure: Invariant set for (116) with the heteroclinic orbit.
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The equilibrium (1, 0) is hyperbolic independently of c . Hence

there exist stable and unstable manifolds at this point. For the

eigenvalues

λ1,0± =
−c ±

√
c2 + 4

2
,

consider the corresponding eigenvectors v±, −λ1,0± 1

1 −c − λ1,0±

 v1±

v2±

 =

 0

0

 ,

that is,

v− =

(
1

λ0,1−
, 1

)
, v+ =

(
1

λ0,1+

, 1

)
.
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The trajectory emanating from (1, 0) is tangent to v+ at (1, 0).

We shall show that this trajectory is the heteroclinic trajectory

joining (1, 0) with (0, 0).

Consider the vector field f of (116) on each side of ∆. We have

Side I. U ′ = V < 0 and V ′ = −cU ′ < 0, thus the vector field

points invards;

Side II. U ′ = 0 and V ′ = −U(1− U) < 0, thus again the vector

field points inwards;

Side III. Consider the dot product of f and the normal (α, 1) to

Side III. We have

(α, 1) · (V ,−cV − U(1− U)) = αV−cV − U(1− U).
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On Side III, V = −αU, so

−α2U + αcU − U(1− U) = −U
(
α2 − cα+ 1− U

)
.

This product should be nonnegative, that is, we should have

α2 − cα+ 1− U ≤ 0. By assumption, 0 < U < 1, hence

α2 − cα+ 1− U < α2 − cα+ 1.
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We need α so that

α2 − cα+ 1 ≤ 0. (119)

It is sufficient that the quadratic polynomial on the left-hand side

has two real roots. Thus we require ∆ = c2 − 4 ≥ 0. So, for any

c ≥ 2 we can select α for which f does not point outward Ω.
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Thus, the trajectory emanating from (1, 0) stays inside ∆. Using

the Dulac citerion,

divf = −c < 0,

we find that there is no periodic orbit inside ∆. Using the

Poincaré–Bendixson theory, the trajectory must enter (0, 0).
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U

V

(0, 0)

(1, 0)

Travelling wave trajectory

Figure: Trajectories of (116) for c ≥ 2.
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z

U

c

Figure: Travelling wave solution of the Fisher equation (116).
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Explicit formula for a travelling wave for the Fisher equation

(W. Malfliet, W. Hereman, 1996)

ut = uxx + u(1− u). (120)

For u(x , t) = U(z) = U(k(x − ct)) we obtain

−kcUz = k2Uzz + U(1− U),

and we look for a solution in the form

U(z) =
N∑
i=0

ai tanh
i z ;

here, k , c ,N, ai , i = 0, . . . ,N, are to be determined.
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Crucial property:

d

dz
tanh z = 1− tanh2 z .

Uz(z) =
N∑
i=1

ai i(1− tanh2 z) tanhi−1 z =
N+1∑
i=0

âi tanh
i z ,

for some coefficients â0, â1, â2. Similarly,

Uzz(z) =
N+2∑
i=0

ãi tanh
i z

and

U2(z) =
2N∑
i=0

āi tanh
i z .
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We must have

− ck
N+1∑
i=0

âiZ
i = k2

N+2∑
i=0

ãiZ
i +

N∑
i=0

aiZ
i −

2N∑
i=0

āiZ
i , (121)

where Z = tanh z .

Finding N - balancing the highest powers.

2N = N + 2 ⇒ N = 2.

Hence, we postulate

U(z) =
2∑

i=0

ai tanh
i z .
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Beyond the ’tanh’ expansion.

The success of the method of expanding the solution in a series of

functions {fi (z)}i∈N0 = {tanhi z}i∈N0 hinges upon the following

facts:

1. The equation we solve

F (u, ut , ux , utt , utx , uxx , . . .) = 0, (122)

does not depend on the independent variables and has polynomial

nonlinearities.
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2. In the postulated expansion of the solution in z = k(x − ct) to

F (U,−ckUz , kUz , (ck)
2Uzz ,−ck2Uzz , k

2Uzz , . . . ) = 0,

given by

U(z) =
m∑
i=1

ai fi , (123)

where ai = a1, a2, · · · , am, m, are constants to be determined, the

family F := {fi}i∈N0 satisfies

A1. F is linearly independent set.

A2. For any fi , fj ∈ F, the product fi fj ∈ F.

A3. For any fj ∈ F, d
dz fj ∈ LinF.

Here LinF denotes the set of all (finite) linear combinations of

elements of F.
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Example 1. (Rodrigo & Mimura (2001)) For a given function

differentiable function f (z), consider

F = {1, f , f 2, · · · }, (124)

so that the expansion is given by

U(z) =
N∑
i=0

ai f
i (z). (125)

Assumptions A1 and A2 are satisfied. For A3, take i ≥ 1 so that

f iz = if i−1fz .

Hence, for f iz ∈ LinF, f must solve the differential equation

fz = P(f ), (126)

where P is a polynomial in f .
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f

P(f )

(0, 0)

(1, 0)

Figure: The graph of P.
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For U given by (125) to have limits u±∞ as z → ±∞, the solution

f to (126) must have the same property:

lim
z→±∞

f (z) = f±∞.

Hence P must have at least two real roots and we can consider the

solution f lying between two successive ones.

The most often used choice is a quadratic P, say,

fz = γ(f − β)(f − α), (127)

with α < f < β. Using ϕ = f−α
β−α and ζ = γ

β−αz , we obtain

ϕζ = ϕ(ϕ− 1), (128)
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with the solution

ϕ(ζ) =
1

1 + Ceζ
(129)

and we can consider the solution with C = 1 (as C introduces just

a translation in ζ (and hence z , and x).

Then we observe that we can take γ
β−α = 1 (so z = ζ) as this

coefficient plays the role of k (depending on the sign, it can

reverse the direction of the wave.)
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Finally, we observe that the transformation ϕ = 1
2(ψ + 1) converts

(128) into

ψζ = −1

2
(1− ψ2) (130)

whose solution is

ψ(ζ) = tanh

(
−ζ
2
+ C ′

)
.

Hence, setting for convenience C = 1 and C ′ = 0, we obtain

ϕ(ζ) =
1

2
− 1

2
tanh

(
ζ

2

)
. (131)

Hence, any expansion in f solving (127) can be reduced to the

expansion in tanh or ϕ. As we shall see, the latter is simpler.
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Consider again the transformed Fisher equation

−kcUz = k2Uzz + U(1− U),

with k > 0, c > 0.

Simplifying observation: if we look for

U(z) = b0 + b1ϕ(z) + b2ϕ
2(z)

and we know that

lim
z→∞

U(z) = 0, lim
z→−∞

U(z) = 1

and compare with (128), we obtain

0 = b0,

1 = b1 + b2,
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so that

U(z) = b1ϕ(z) + (1− b1)ϕ
2(z)

and we obtain

ϕ4 :6k2 = 1− b1, (132a)

ϕ3 :− 2b1(1− b1) + k2(12b1 − 10) + 2kc(1− b1) = 0, (132b)

ϕ2 :− b21 + k2(4− 5b1) + kc(3b1 − 2) + 1− b1 = 0, (132c)

ϕ :k2b1 − kcb1 + b1 = 0. (132d)

From (132d) we immediately obtain a solution b1 = 0, which gives

b2 = 1, c = ±5/
√
6, with

k = ±1/
√
6. (133)
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Note. (132d) has solutions for b1 ̸= 0. However, adding together

all equations to eliminate terms with kc , we find the equation

−2b1 + b21 + 8k2b1 − 6k2 + 1 = 0

from which, upon (132a), we obtain b1 = 1, which is impossible as

k ̸= 0.

U(z) = a0 + a1 tanh z + a2 tanh
2 z = b0 + b1ϕ (2z) + b2ϕ

2 (2z)

= ϕ2 (2z) =
1

4
(1− tanh z)2 =

1

4
− 1

2
tanh z +

1

4
tanh2 z .
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Travelling wave in SIR system. Consider (37). Let S0 be the

original number of susceptible foxes and

S =
S

S0
, I =

I

S0
, R =

R

S0
, t = rtS0, x = x

√
rS0
D
, m =

a

rS0
.

We have S(x , t) ∈ (0, 1], I (x , t) ∈ [0, 1], R(x , t) ∈ [0, 1) and (37)

takes the form

S t = −I S

I t = I S −mI +
∂2I

∂x2

Rt = mI ,

, (134)

where t > 0, S0 > 0, m =
a

rS0
> 0.
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We can drop the last equation for R and the bars in (134). Finally,

we will consider

St = −IS ,

It = IS −mI +
∂2I

∂x2
,

(135)

where t > 0, S(x , t) ∈ (0, 1], I (x , t) ∈ [0, 1], S0 > 0, m =
a

rS0
> 0.

As before, a travelling wave is the solution of (135) of the form

S(x , t) = S(x − ct) =: S(z), I (x , t) = I (x − ct) =: I (z),

where c > 0, z ∈ R, with boundary conditions

S ′(−∞) = 0, I (−∞) = 0, S(+∞) = 1, I (+∞) = 0. (136)
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Observe

St(z) = −cS ′(z), It(z) = −cI ′(z), Ix = I ′(z), Izz = I ′′(z).

Hence, (135) can be written as

cS ′ = IS ,

I ′′ + cI ′ + IS −mI = 0,
(137)

so

cS ′ = IS

I ′′ + cI ′ + cS ′ −mc

(
S ′

S

)
= 0.
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Finally,

cS ′ = IS

I ′ + cI + cS −mc lnS = C , C ∈ R
(138)

where we used S > 0.

Using the the boundary conditions (136), we see that the second

equation of (138) as z → +∞ takes the form

c −mc ln 1 = C ,

hence C = c .
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Using now (136) at −∞, the second equation of (138) takes the

form

cS(−∞)−mc lnS(−∞) = c ,

thus, dividing by c, we get

m =
S(−∞)− 1

lnS(−∞)
.

Denote S(−∞) =: b ∈ (0, 1) and introduce additional

assumptions: the death rate of infected foxes is smaller than the

infection rate, a < rS0. In other words, there will be more

infections than deaths. Thus

m =
a

rS0
=

b − 1

ln b
< 1.
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Finally, we transformed (138) into

S ′ =
1

c
IS ,

I ′ = −cI − cS +mc lnS + c ,

(139)

where c > 0, S(z) ∈ (0, 1], I (z) ∈ [0, 1], m =
b − 1

ln b
∈ (0, 1),

b ∈ (0, 1).

We see that (139) has two equilibria: (b, 0) i (1, 0).

Let f be the vector field of (139):

f (S , I ) = (f1(S , I ), f2(S , I )) =

(
1

c
IS ,−cI − cS +mc lnS + c

)
.

Then, the Jacobi matrix of f is of the form

Jf (S , I ) =

 I

c

S

c

−c + mc
S −c

 .
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• The equilibrium (b, 0) of (139) is a saddle. Indeed,

Jf (b, 0) =

 0
b

c

−c + mc
b −c

 ,
and the eigenvalues of Jf (b, 0) are the roots of

det

 0− λ
b

c

−c + mc
b −c − λ

 = 0,

that is,

λ2 + cλ+ b −m = 0.
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The discriminant is ∆ = c2 − 4(b −m). Since b ∈ (0, 1) and

b −m = b − b − 1

ln b
=

b ln b − b + 1

ln b
=: h(b),

thus, graphing h, we get b −m < 0.

b

h

1

Figure: Graph of h
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Thus, ∆ > 0 and Viete’s formulae give

λ1 λ2 =
b −m

1
= b −m < 0.

Hence, there is a saddle at (b, 0).

In a similar way we show that (1, 0) is an asymptotically stable

focus if 0 < c < 2
√
1−m and an asymptotically stable node if

c ≥ 2
√
1−m.
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Consider the triangle ∆ defined by

Side I. I = 0, S ∈ (b, 1);

Side II. I ∈ (0, α(1− b)), S = b, α ∈ R+;

Side III. I = α(1− S), S ∈ (b, 1), α ∈ R+.

S

I

b

X u

1Side I

Side II

Side III

Figure: An invariant set for (139) with the heteroclinic orbit
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First, we show that there is no periodic orbit in ∆. Define

ρ(S , I ) = 1
IS and evaluate

div(ρf ) =
∂(ρf1)

∂S
+
∂(ρf2)

∂I

= 0 +
c

I 2
− mc lnS

I 2S
− c

I 2S

=
c

I 2

(
1− m lnS + 1

S

)
.

Since for S > b, by m =
b − 1

ln b
∈ (0, 1), we have m lnS + 1 > S ,

1− m lnS+1
S < 0, and, by c > 0,

div(ρf ) < 0.
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Thus, by Dulac’s criterion, there is no periodic orbit in ∆.

Thus, there is a heteroclinic orbit joining (b, 0) i (1, 0) which is not

oscillatory at (1, 0) if and only if c ≥ 2
√
1−m.

Thus, model (135) has travelling wave solutions (S(z), I (z)) if and

only if c ≥ 2
√
1−m, where S(z) is a wave front, and I (z) jest a

soliton.

z

S(z)

c

Figure: Front wave solution S .
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z

I

c

Figure: Soliton solution I .
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Similarity method. This method can be applied to equations of

arbitrary order. Here, we focus on second order partial differential

equation in two independent variables

G (t, x , u, ux , ut , uxx , uxt , utt) = 0. (140)

To shorten notation, we introduce

p = ux , q = ut , r = uxx , s = uxt , v = utt

and a family of stretching transformations, Tϵ, by

x̄ = ϵax , t̄ = ϵbt, ū = ϵcu, (141)

where a, b, c are reals and ϵ ∈ I = (1− δ, 1 + δ).
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Tϵ induces a transformation of the derivatives as follows

p̄ =
∂ū

∂x̄
= ϵc

∂u

∂x

dx

dx̄
= ϵc−ap, (142)

and similarly for other derivatives,

q̄ = ϵc−bq, r̄ = ϵc−2ar , s̄ = ϵc−a−bs, v̄ = ϵc−2bv . (143)

We say that PDE (140) is invariant under the one parameter

family Tϵ of stretching transformations if there exists a smooth

function f (ϵ) such that

G (t̄, x̄ , ū, p̄, q̄, r̄ , s̄, v̄) = f (ϵ)G (t, x , u, p, q, r , s, v) (144)

for all ϵ ∈ I , with f (1) = 1.
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We have

Theorem 7

If the equation (140) is invariant under the family Tϵ defined by

(141), then the transformation

u = tc/by(z), z =
x

ta/b
(145)

reduces (140) to a second order ordinary differential equation in

y(z).
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Proof. By invariance, we know that (144) holds for all ϵ in some

open interval containing 1 thus we can differentiate (144) and set

ϵ = 1 after differentiation getting

axGx + btGt + cuGu + (c − a)pGp + (c − b)qGq + (c − 2a)rGr

+ (c − a− b)sGs + (c − 2b)vGv = f ′(1)G ,

where we used formulae like

dx̄

dϵ

∣∣∣∣
ϵ=1

= aϵa−1x
∣∣
ϵ=1

= ax ,

etc. The above equation is a first order equation so that we can

integrate it using t as the parameter along characteristics.
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The characteristic system will be then

dG

dt
=

f ′(1)G

bt
,

dx

dt
=

ax

bt
,

du

dt
=

cu

bt
,

dp

dt
=

(c − a)p

bt
,

dq

dt
=

(c − b)q

bt
,

dr

dt
=

(c − 2a)r

bt
,

ds

dt
=

(c − a− b)s

bt
,

dv

dt
=

(c − 2b)v

bt
.

Thus, we obtain characteristics defined by

xt−a/b = z , ut−c/b = ξ1,

pt−(c−a)/b = ξ2, qt−(c−b)/b = ξ3,

rt−(c−2a)/b = ξ4, st−(c−a−b)/b = ξ5, vt−(c−2b)/b = ξ6

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



and hence

G = t f
′(1)bΨ(z , ξ1, ξ2, ξ3, ξ4, ξ5, ξ6), (146)

where Ψ is an arbitrary function.

Now, we have y = ut−c/b = ξ1, p = ux = tc/by ′zz
′x = y ′z t

(c−a)/b,

hence ξ2 = y ′z . Further,

q = ut =
c

b
t−1+c/by − a

b
tc/b−a/b−1xy ′z ,

thus

ξ3 = qt1−c/b =
c

b
y − a

b
zy ′z .
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Similar calculations lead to

Ψ

(
z , y , y ′z ,

c

b
y − a

b
zy ′z , y

′′
zz ,

c − a

b
y ′z −

a

b
y ′′zzz ,

c

b

(c
b
− 1
)
y − a

b

(
2
c

b
− 1− a

b

)
zy ′z +

a2

b2
z2y ′′zz

)
= 0,

which is a second order ordinary differential equation in z .
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The diffusion equation. Consider the diffusion equation

ut − Duxx . (147)

To find a stretching transformation under which this equation is

invariant, with the simplified notation for derivatives, we have

q̄ − Dr̄ = ϵc−bq − Dϵc−2ar .

Thus, we must have

b = 2a

with c and a at this moment arbitrary. Thus, (147) is invariant

under the stretching transformation

x̄ = ϵax , t̄ = ϵ2at, ū = ϵcu. (148)
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Hence, the similarity transformation is given by

u = tc/2ay(z), z =
x√
t
. (149)

We have z ′x = 1√
t
, z ′t = −1

2xt
−3/2 = −1

2zt
−1, hence

ut = − c

2a
t−1+c/2ay + tc/2ay ′zz

′
t = −t−1+c/2a

( c

2a
y − z

2
y ′z

)
and

ux = tc/2a−1/2y ′z , uxx = tc/2a−1y ′′zz .

Substituting the above relations into the diffusion equation yields

Dy ′′zz +
z

2
y ′z −

c

2a
y = 0. (150)

Constants c and a are in general arbitrary.
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Though the diffusion equation has been reduced to an ordinary

differential equation, the similarity approach by no means solves all

diffusion problems, which involve initial and boundary conditions

that, in general, cannot be translated into side conditions for

(150). For instance, consider the initial value problem for the

diffusion equation

ut = Duxx , t > 0,−∞ < x <∞,

u(0, x) = u0(x).
(151)
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We convert the equation into an ODE for y defined as

u(t, x) = tc/2ay(x/
√
t),

but then putting t = 0 in the preceding formula in general does

not make any sense as, at best, we would have something like

y(∞) = lim
t→0+

t−c/2au(t, x), x > 0,

y(−∞) = lim
t→0+

t−c/2au(t, x), x < 0,
(152)

with the right hand side equal to 0 if c/2a < 0, ∞ if c/2a > 0 or

u0(x) if c = 0. In the first two cases all the information coming

from the initial condition is lost and the last one imposes a strict

condition on u0: u0 must be constant on each semi-axis.
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Note that such a condition is also invariant under the

transformation z = x/
√
t: z ≶ 0 if and only if x ≶ 0.

In general, the similarity method provides a full solution to the

initial-boundary value problems only if the side conditions are also

invariant under the same transformation or, in other words, can be

expressed in terms of the similarity variable.
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Hence, consider the initial value problem

ut = Duxx , t > 0,−∞ < x <∞,

u(0, x) = H(x),

where H is the Heaviside function: H(x) = 1 for x ≥ 0 and

H(x) = 0 for x < 0. According to the discussion above, this initial

condition yields to the similarity method provided c = 0; in this

case a is irrelevant and we put it equal to 1.
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Thus, the initial value problem (153) is transformed into

y ′′ +
z

2D
y ′ = 0,

y(−∞) = 0, y(∞) = 1.

Denoting y ′ = h, we reduce the equation to the first order equation

h′ +
z

2D
h = 0,

yielding y ′ = h = c1 exp(−z2/4D), which gives

y(z) = c1

z∫
0

e−
η2

4D dη + c2. (153)
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The constants c1 and c2 can be obtained from the initial conditions

1 = lim
z→+∞

y(z) = c1

∞∫
0

e−
η2

4D dη + c2 =
√
4Dc1

∞∫
0

e−s2ds + c2

= c1

√
4Dπ

2
+ c2,

0 = lim
z→−∞

y(z) = c1

−∞∫
0

e−
η2

4D dη + c2 =
√
4Dc1

−∞∫
0

e−s2ds + c2

= −c1

√
4Dπ

2
+ c2,

where we used
∞∫
0

e−s2ds =
√
π/2, so that

c2 =
1

2
, c1 =

1√
4πD

.
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Hence

u(t, x) = y

(
x√
t

)
=

1

2
+

1√
4πD

x√
t∫

0

e−
η2

4D dη (154)

The fundamental role in the theory of the diffusion equation is

played by the derivative of u with respect to x :

S(t, x) =
∂u

∂x
(t, x) =

1√
4πDt

e−
x2

4Dt (155)

that is called source function or fundamental solution of the

diffusion equation.
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Figure: The graph of S with D = 1.
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Figure: Snapshots of S .

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



One can check that S(t, x) has the following properties:

lim
t→0+

S(t, x) = 0, x ̸= 0, (156)

lim
t→0+

S(t, x) = ∞, x = 0, (157)

lim
x→±∞

S(t, x) = 0, x > 0, (158)∫ ∞

−∞
S(t, x)dx = 1. t > 0 (159)

Mathematically, properties (156), (157) and (159) state

lim
t→0+

S(t, x) = δ(x),

where δ(x) is Dirac’s delta concentrated at x = 0. It is a measure,

or functional over the space of continuous functions defined by∫ ∞

−∞
ϕ(x)δ(x)dx = ϕ(0).
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Stretching the idea of the principle of superposition, we define

u(t, x) =

∞∫
−∞

S(t, x − ξ)u0(ξ)dξ =
1√
4πDt

∞∫
−∞

e−
(x−ξ)2

4Dt u0(ξ)dξ.

(160)

We can prove that u(t, x) satisfies, at least formally,

lim
t→0+

u(t, x) =

∫ ∞

−∞
δ(x − ξ)u0(ξ)dξ = u0(ξ), (161)

and thus u(t, x) is a unique solution to

ut = uxx , t > 0,−∞ < x <∞,

u(0, x) = u0(x), −∞ < x <∞.
(162)
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Figure: Irregular initial condition u0(x).
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Figure: Smoothing property of the diffusion operator.
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Figure: Comparison of the solution of the solution of the diffusion

equation with the wave solution to ut + ux = 0 with the same initial

condition.
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Using (161) and since S(t, x) satisfies the diffusion equation, we

obtain, again formally,

ut = Duxx ,

u(x , 0) = δ(x),

which is the equation for the fundamental solution.
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The reason for the importance of the fundamental solution is that

it describes diffusion of a unit quantity of the medium concentrated

at the origin and thus (160) expresses the superposition principle,

that is, the solution determined by a continuously distributed

sources is the sum of solutions originating from each source.

We emphasize that the above results hold if u0 is sufficiently

regular (e.g., bounded and continuous) and the proofs of them are

not trivial.

We use this formula to derive the solution to inhomogeneous

diffusion problems

ut = Duxx + f (t, x),

u(0, x) = u0(x).
(163)

We achieve this in analogy with the inhomogeneous ordinary

differential equations.
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Nonhomogeneous ordinary differential equations. Consider

u′ = Au + f , u(0) = u0. (164)

Let u(t) = etAu0 be the solution to

du

dt
= Au, u(0) = u0.

By the variation of constants formula, the solution to (164) is

u(t) = etAu0 + etA
t∫

0

e−sAf (s)ds. (165)

The first terms solves the homogeneous equation with given u0 and

the second the inhomogeneous equation with zero initial condition.
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In analogy, it is convenient to introduce the so-called solution

operator S(t) which acts on initial states producing the solutions

to the differential equations, that is, for any given u0, the function

u(t) = S(t)u0 is the solution to the problem (164). In the ODE

case,

u(t) = S(t)u0 = etAu0, (166)

and in the case of the diffusion equation,

u(t, x) = [S(t)u0](x) =

∞∫
−∞

S(t, x − ξ)u0(ξ)dξ. (167)
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For the diffusion problem (163) we proceed as follows. We know

that [S(t)u0](x) solves the initial value problem with correct initial

condition. Then, we expect the function

v(t, x) =

t∫
0

S(t − s)f (s, x)ds

to be the solution to the problem

vt = Dvxx + f (t, x), v(0, x) = 0. (168)

In this case the explicit expression of v is as follows:

v(t, x) =

t∫
0

 1√
4πD(t − s)

∞∫
−∞

e
− (x−y)2

4D(t−s) f (s, y)dy

 ds. (169)
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It follows that our construction is correct. To prove this we shall

use the formula for differentiation of integrals:

d

dt

t∫
0

g(t, s)ds = g(t, t) +

t∫
0

gt(t, s)ds, (170)

which is valid if g and gt are continuous.

In our case the integrand

G (t − s, x) =
1√

4πD(t − s)

∞∫
−∞

e
− (x−y)2

4D(t−s) f (s, y)dy

unfortunately is not as regular as required in the above formula so

that the proof we provide is purely formal.
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Let us observe that in order to use Eq. (170) we have to calculate

G at t = s. This is possible as in (161), and we obtain

G (x , 0) = lim
t→s

G (x , t − s) = f (x , t).

Also, for any fixed s, G (x , t − s) is the shift of the solution of the

homogeneous equation with the initial value given by f (x , s),

therefore it is itself a solution of the same diffusion equation.

Therefore

Gt(x , t − s) = DGxx(x , t − s).

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



Using these two facts we have formally

vt(x , t) = G (x , 0) +

t∫
0

Gt(x , t − s)ds

= f (x , t) + D

t∫
0

Gxx(x , t − s)ds

= f (x , t) + D
∂2

∂x2

t∫
0

G (x , t − s)ds

= Dvxx(x , t) + f (x , t)

and v is indeed a solution to the nonhomogeneous diffusion

equation.
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Next we have

v(x , 0) = lim
t→0+

v(x , t) = lim
t→0+

t∫
0

G (x , t − s)ds = 0,

where we used the fact that the integrals of a bounded function

over intervals with length tending to 0 also tend to zero.

Thus the variation of constants formula (169) for the diffusion

equation has been formally justified.
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Thus, the full solution is given by

u(t, x) =
1√
4πDt

∞∫
−∞

e−
(x−ξ)2

4Dt u0(ξ)dξ

+

t∫
0

 1√
4πD(t − s)

∞∫
−∞

e
− (x−y)2

4D(t−s) f (s, y)dy

 ds.

(171)
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Example. Solve the following initial value problem

ut = uxx + xt, for t > 0,−∞ < x <∞+,

u(0, x) = 0, for −∞ < x <∞.

We see that f (x , t) = xt, thus according to the formula (169) we

obtain the solution in the form

u(t, x) =

t∫
0

 1√
4π(t − s)

∞∫
−∞

e−(x−y)2/4(t−s)ys dy

 ds.
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Using the substitution y = 2p
√
t − s + x we obtain

u(t, x) =
1√
π

t∫
0

s

∞∫
−∞

e−p2
(
2p

√
t − s + x

)
dp

 ds

=
1√
π

 t∫
0

2s
√
t − s

∞∫
−∞

e−p2pdp + sx

∞∫
−∞

e−p2dp

 ds =
xt2

2
,

where we used that
∞∫

−∞
e−p2pdp = 0 (as e−p2p is an odd function)

and
∞∫

−∞
e−p2dp =

√
π.
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Miscellaneous examples.

Drift–diffusion equation. Consider the drift–diffusion equation

ut = Au + Bux + Cuxx .

Define v by

u(t, x) = eax+btv(t, x),

where a and b are coefficients to be determined. Differentiating,

we obtain

ut(t, x) = beax+btv(t, x) + eax+btvt(t, x),

ux(t, x) = aeax+btv(t, x) + eax+btvx(t, x),

uxx(t, x) = a2eax+btv(t, x) + 2aeax+btvx(t, x) + eax+btvxx(t, x).

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



Inserting the above expressions into the equation, collecting terms

and dividing by eax+bt , we arrive at

vt = (A+ Ba+ Ca2 − b)v + (B + 2Ca)vx + Cvxx .

From the above equation we see that taking

a = − B

2C
, b = A− B2

4C

will make the coefficients multiplying v and vx equal to zero, so

that v will be the solution to

vt = Cvxx .
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Boundary conditions. Consider

ut = uxx , for t > 0, x > 0,

u(0, x) = ϕ(x), for x > 0,

u(t, 0) = h(t), for t > 0.

(172)

Firstly, we convert this problem to the one with zero boundary

data. Define

U(t, x) = u(t, x)− h(t). (173)

Then

Ut = Uxx − ht(t), for t > 0, x > 0,

U(0, x) = ϕ(x)− h(0), for x > 0,

U(t, 0) = 0, for t > 0.

(174)
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Next, let us observe that if Ũ solves the initial value problem

Ũt = Ũxx , for t > 0,−∞ < x <∞,

Ũ(0, x) = ϕ̃(x), for −∞ < x <∞,
(175)

where ϕ̃ is an odd function of x , then Ũ is also an odd function of

x . In fact, v(x , t) = −Ũ(y , t), where y = −x , satisfies

vt − vxx = −(Ũt − Ũyy ) = 0,

and

v(0, x) = −Ũ(0, y) = −ϕ(y) = −ϕ(−x) = ϕ(x)

as also ϕ is odd.
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Thus, by the uniqueness, v(t, x) = Ũ(t, x), and hence

Ũ(t, x) = v(t, x) = −Ũ(t,−x).

By continuity,

Ũ(t, 0) = 0, t > 0.
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Example. Solve

ut = uxx , for t > 0, x > 0,

u(0, x) = ϕ(x), for x > 0,

u(t, 0) = 0, for t > 0.

(176)

Define

ϕ̃(x) =

 ϕ(x) for x > 0

−ϕ(−x) for x < 0

and solve

Ut = Uxx , for t > 0, x ∈ R,

U(x , 0) = ϕ̃(x), for x ∈ R.
(177)
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We have

U(t, x) =
1√
4πDt

∞∫
−∞

e−
(x−ξ)2

4Dt ϕ̃(ξ)dξ

=
1√
4πDt

−
0∫

−∞

e−
(x−ξ)2

4Dt ϕ(−ξ)dξ +
∞∫
0

e−
(x−ξ)2

4Dt ϕ(ξ)dξ


=

1√
4πDt

∞∫
0

(
e−

(x−ξ)2

4Dt − e−
(x+ξ)2

4Dt

)
ϕ(ξ)dξ,

and

u(t, x) = U(t, x), x > 0.
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Note that if instead of the Dirichlet problem (172) we are required

to solve the Neumann problem

ut = uxx , for t > 0, x > 0,

u(x , 0) = ϕ(x), for x > 0,

ux(0, t) = h(t), for t > 0.

can be solved in a similar way with U(x , t) = u(x , t)− xh(t) and

an even extension of the data.
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Nonlinear problems. Consider

ut = Duxx + µu(1− u), t > 0,−∞ < x <∞,

u(0, x) = ů(x), −∞ < x <∞.
(178)

Using (171),

u(t, x) = [S(t)ů](x) +

t∫
0

[S(t − s)u(1− u)](s, x)ds

=
1√
4πt

∞∫
−∞

e−
(x−y)2

4Dt ů(y)dy

+

t∫
0

 1√
4πD(t − s)

∞∫
−∞

e
− (x−y)2

4D(t−s) u(s, y)(1− u(s, y))dy

 ds.
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The resulting equation is solved by successive Picard’s iterations

u0(t) = S(t)ů,

un+1(t) = S(t)ů +

t∫
0

S(t − s)un(1− un)ds.
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Critical domain size. Consider a population on a one-dimensional

domain [0, l ] evolving according to the Fisher equation

ut = Duxx + µu(1− u). (179)

We impose either the so-called ”island” boundary condition

u(t, 0) = 0, u(t, l) = 0, (180)

or ”box” boundary condition

ux(t, 0) = 0, ux(t, l) = 0. (181)
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How large should an island or box be to support a population? We

reformulate this question by asking for what values of l there exist

nontrivial stationary solutions u(x) ̸= 0, that is, we will seek

non-zero solutions to

uxx = − µ

D
u(1− u). (182)

As in the case of travelling waves, we perform a phase-plane

analysis of the equivalent system

ux = v ,

vx = − µ

D
u(1− u),

(183)

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaA short introduction to partial differential equations with applications in life sciences



supplemented with the Dirichlet conditions

u(0) = 0, u(l) = 0

in the case of an island, or Neumann conditions

v(0) = 0, v(l) = 0.

The equilibria of (183) are

P1 = (0, 0), P2 = (1, 0).
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The Jacobi matrix of (183) is

J(u, v) =

 0 1

2 µ
D u − µ

D 0


with the linearizations

J(P1) =

 0 1

− µ
D 0

 , J(P2) =

 0 1

µ
D 0

 .

The eigenvalues at P1 are λ1,2 = ±i
√

µ
D and so P1 a (linear)

centre, while at P2 we get λ1,2 = ±
√

µ
D and hence P2 is a saddle.
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P1 is not hyperbolic, so we cannot draw any conclusion about its

stability from linearization. However, we can find a first integral

(Hamiltonian) of the system. Multiplying the second equation by v

and using the first equation, we find

1

2
(v2)x = vvx = − µ

D
(vu − vu2) = − µ

D
(uxu − uxu

2)

= − µ

D

(
1

2
(u)2x −

1

3
(u)3x

)
.

Integrating,

V (u, v) =
1

2
v2 +

µ

D

u2

2
− µ

D

u3

3
+ C =

1

2
v2 + F (u) + C ,

where C is a constant.

Any trajectory must lay on a level curve of V .
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We are interested only in trajectories with u ≥ 0.

For any α ∈ (0, 1], we have

V (α, 0) = F (α)

and hence (α, 0) is a zero of

Vα(u, v) =
1

2
v2 + F (u)− F (α).

Consider the equation

v = ±
√

2(F (α)− F (u)), (184)

which is satisfied at least by v = 0, u = α. Now, define

ϕ(u) = F (α)− F (u).
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We have ϕ(α) = 0 and

ϕ′(u) =
µ

D
u(u − 1),

hence ϕ is decreasing from F (α) to zero on [0, 1] and is

monotonically increasing from −∞ at u = −∞ to F (α) at u = 0.

Hence, for each α, there a unique point uα < 0 such that

ϕ(uα) = 0.

This shows that (184) represent two branches of a solution which

would be a periodic trajectory if it was smooth. Consider

dv

du
= ± ϕ′(u)√

2ϕ(u)
.
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We see that the branches join smoothly at any α and xα (that is,

where ϕ = 0) unless also ϕ′ = 0 there. This happens only at α = 1

which consistent with the fact that (α, 0) is an equilibrium and the

level curve of V1 consists of a homoclinic trajectory and the

equilibrium.
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Figure: The homoclinic orbit from (1, 0) (solid line) and a periodic orbit

for α = 0.5 (dashed line).
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From the analysis, by symmetry, for any 0 < α < 1, there is a

solution u such that u(0) = 0, u
(
lα
2

)
= α, and u(lα) = 0. Since

trajectories do not intersect, lα is a uniquely determined by α and

there is a positive solution u, and thus a nonzero population, as

long as α > 0. Thus, the minimum size above which an island is

able to support a population is given by

lmin = inf
α∈(0,1)

lα.

We determine the relation between α and lα. Having in mind that

v = ux , we write

ux = ±
√
2(F (α)− F (u)),

depending on which branch of the trajectory we are.
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Integrating along the upper branch, we obtain∫ α

u(x)

dz√
µ
D

(
α2 − z2 −

(
2α3

3 − 2z3

3

)) =
lα
2
− x ,

so, by symmetry,

lα = 2

∫ α

0

dz√
µ
D

(
α2 − z2 − 2

3 (α
3 − z3)

) . (185)

Now,

α2 − z2 − 2

3

(
α3 − z3

)
= (α2 − z2)

(
1− 2

3

(
α2 + αz + z2

)
α+ z

)
.
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We evaluate

∂

∂z

(
α2 + αz + z2

)
α+ z

=
2αz + z2

(α+ z)2
> 0, z > 0.

Hence,

α ≤
(
α2 + αz + z2

)
α+ z

≤ 3α

2

and therefore

2√
1− α

∫ α

0

dz√
µ
D (α2 − z2)

≤ 2

∫ α

0

dz√
µ
D

(
α2 − z2 − 2

3 (α
3 − z3)

)
≤ 2√

1− 3
2α

∫ α

0

dz√
µ
D (α2 − z2)

.
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Since ∫ α

0

dz√
α2 − z2

= sin−1 1− sin−1 0 =
π

2
,

we have

lim
α→0+

lα = lim
α→0+

2

∫ α

0

dz√
µ
D

(
α2 − z2 − 2

3 (α
3 − z3)

) =

√
D

µ
π.

By (185), lα is double the area under the trajectory

v = v(u), 0 ≤ u ≤ α. Since the trajectories do not intersect, lα is a

strictly growing function of α and hence

lmin = inf
α∈(0,1)

lα = lim
α→0+

lα =

√
D

µ
π

gives the smallest size above which an island able to support the

population.
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