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Question

What do you need to cross Canada by bike ?

a bike
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Maps
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Mathematical model

A model is a map

A model is a simplification of the reality (a map is not the territory it
describes)

A model is an idealization of a real-world problem

It is a common fallacy to confuse scientists’ models of reality with
reality itself. A model is a map. A map is not the territory it
describes. (Richard Casement)
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Modelling approaches: Phenomenological vs Mechanistic

Phenomenological approach: “A phenomenologically motivated approach generally
constitutes a sketch or a summary of observations, and although it could be of high
predictive utility, it is not directly connected to the underlying generative mechanism
presumed to have produced available observations.” ⇒ Descriptive models

Mechanistic approach: “.. a mechanistically motivated approach is meant to constitute
an explanation for observations, aimed at incorporating basic knowledge, and can
typically be cast as a generalization or revision of a phenomenological approach.” ⇒
Explanatory models

N. Rodrigue, H. Philippe (2010) Trends in Genetics, 26: 248-252.
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Phenomenological approach:

Data: Limited number of data points representing values of a
function for a limited number of values of the independent variable
(e.g. time, space, . . . )

Hypothesize the form of the function

Interpolation: estimate values of data for intermediate values of the
independent variable
⇒ Curve fitting (find the curve that has the best fit to data points)
The best fit minimizes the difference between the actual value (data)
and the predicted value (curve)
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Example: Spatial profile of protein concentration in a cell
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Phenomenological approach:

No model is formulated, but trend or main feature in data can be
extracted

Descriptive aspect only

Predictive aspect

Extrapolation (to find data points outside of the range of known data
points)
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To write a mechanistic model

1 Identify the problem ⇒ Define the question to be answered

2 Define model variables and parameters ⇐ Experimental data

3 Identify the important processes governing the problem ⇒ Make
assumptions

4 Identify the basic principles that govern the quantities studied
(physical laws, interactions..)

5 Express mathematically these principles ⇒ Choice of the formalism

6 Verify that units are consistent

7 Verify that model is well-posed (existence of solutions, positivity of
solutions..)

Idealization of real-world problems (never a completely accurate
representation)
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How does a population grow?
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How does a population grow? - Modelling change

Future value = Present value + Change

or

Change= Future value - Present value

⇒ Dynamical systems
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How does a population grow?

N(t) population observed at time t

∆t time interval

r rate of growth per unit time

N(t + ∆t) =N(t) + r∆tN(t)

N(t + ∆t)− N(t) =r∆tN(t)

N(t + ∆t)− N(t)

∆t
=rN(t)

Assume that ∆t → 0

lim
∆t→0

N(t + ∆t)− N(t)

∆t
=rN(t)

dN

dt
=rN
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How to represent time?

Time can be described as a

discrete variable (time interval, generation..) ⇒ Difference
equations

N(t + ∆t) = N(t) + r∆tN(t) = (1 + r∆t)N(t)

continuous variable (instantaneous) ⇒ Differential equations

dN

dt
= rN

dN
dt = instantaneous rate of change of the state variable N with

respect to time t
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Choice of formalism

How to represent a problem

Static vs Dynamic

Stochastic vs Deterministic

Continuous vs Discrete

Homogeneous vs Detailed

Formalism

Differential equations (ODE, PDE, DDE, SDE), difference equations,
integral equations, integro-differential equations, Markov chains, game
theory, graph theory, agent-based model, cellular automata, L-systems . . .
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Malthus’ population growth model

Consider a population with N(t) individuals at time t. Suppose that

individuals are born with rate constant b,

individuals die with rate constant d .

Then the evolution of N(t) over time is governed by an ODE, Malthus’
equation:

dN

dt
= bN − dN = (b − d)N (1)

The solution is
N(t) = N(0)e(b−d)t

b > d , lim
t→∞

N(t) =∞, the population grows,

b < d , lim
t→∞

N(t) = 0, the population extincts.
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Logistic equation: a refinement of Malthus’ model

Assumptions

Additionally to birth and death, suppose that

individuals are subject to intraspecific competition with other
members of their species:

I competition for food, competition for nesting space..

intraspecific competition occurs with rate constant κ

Model: logistic equation

dN

dt
= (b − d)N − κN2

by setting r = b − d > 0, K = (b − d)/κ,

dN

dt
= r

(
1− N

K

)
N (2)

r : intrinsic rate of growth; K : environmental carrying capacity
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Per capita growth rate depends on the population density
N ′/N is the per capita instantaneous rate of growth:

N ′

N
= r︸︷︷︸

Growth

(
1− N

K

)
︸ ︷︷ ︸

Regulation by crowding

= r

(
1− N

K

)
= f (N)

N < K : population below carrying capacity, no regulation

N = K : population at carrying capacity

N > K : population over carrying capacity, crowding effects, population diminishes

Environment is capable of sus-
taining no more than a fixed
number K of cells
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Solution of the logistic equation
Logistic equation is separable (or a Bernoulli equation with n = 2)

dN

dt
= rN − r

K
N2 = f (N), N0 = N(0)

Explicit solution

N(t) =
KN0

N0 + (K − N0)e−rt
t ≥ 0; lim

t→∞
N(t) = K
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Other examples of non-constant per capita rate of growth

Allee effect

dN

dt
= r

(
1− N

K

)(
N

K0
− 1

)
N = f (N)N

Gompertz equation

dN

dt
= re−αtN = f (t)N
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Mass Action law

The rate of an elementary reaction (defined by reduction of reactant or
formation of product) is proportional to the concentration of each
individual species involved in the elementary reaction.
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Chemical reactions
Bimolecular reactions

A + B
k+−−⇀↽−−
k−

C

reversible reactions.

Dimerization

A + A
k+−−⇀↽−−
k−

C

Autocatalysis process whereby a chemical is involved in its own
production.

A + X
k+−−⇀↽−−
k−

X + X
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Michaelis-Menten dynamics

Enzyme dynamics

C + X0
k1−−⇀↽−−
k−1

X1

X1
k2−→ P + X0

Michaelis-Menten law

−dC

dt
=

dP

dt
dP

dt
=

KmaxC

kn + C

with Kmax = k2r (r = X0(0) + X1(0)), kn = k−1+k2

k1
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Saturating rates

Hyperbolic saturation: as the amount increases the rate increases but
by slowing down (Michaelis-Menten dynamics)

Sigmoidal saturation: from a slow to rapid rate, “switch-like” rise
toward to the limiting value (Cooperativity)
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Signalling pathways

dR

dt
= k0

2k3RJ4

Φ +
√

Φ2 − 4(k4 − k3R)k3RJ4

+ k1S − (k2 + k ′2X )R

dX

dt
= k5R − k6X

with Φ = k4−k3R+k4J3 +k3RJ4.

S signal, R response

X , E and EP other components of the network

Translation in mathematics ⇒ model

2
2Tyson et al. (2003) Curr. Op. Cell Biol. 15:221-231.
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Mathematical analysis shows that:
Depending on the concentration of the mediator, the pathway exhibits 4
types of regime/behaviour: stable steady-state, steady oscillation,
excitability, bistability
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Example for Michaelis-Menten growth rate

Assumption

The growth rate of the bacterial population is a saturating function of
nutrient availability.

b(t) concentration of bacteria at time t (mass/volume)

n(t) concentration of nutrient at time t (mass/volume)

db

dt
=α

kmaxn

kn + n
b · · ·

dn

dt
=− kmaxn

kn + n
b · · ·

Parameters:

kmax maximun rate of growth

kn half-saturation constant

Michaelis-Menten growth rate, K (n) = kmaxn
kn+n
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Consumer-Resource models

N1 resource

N2 consumer

dN1

dt
= f (N1)︸ ︷︷ ︸

resource-renewal

− g(N1,N2)︸ ︷︷ ︸
consumption of resource by consumers

dN2

dt
= α︸︷︷︸

conversion factor

g(N1,N2)− h(N2)︸ ︷︷ ︸
change of consumers in absence of resource
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Possible forms

Resource-renewal term
f (N1) = π Inflow of resources at a constant rate
f (N1) = −π Outflow of resources at a constant rate
f (N1) = rN1 Constant per capita growth of resource

f (N1) = rN1(1− N1
K ) Per capita growth of resources declines linearly

with resource level (Logistic)
f (N1) = rN1e

−βN1 Per capita growth of resources declines exponen-
tially with resource level

Resource consumption term
g(N1,N2) = acN1N2 Linear rate of resource consumption

g(N1,N2) = acN1
b+N1

N2 Saturating rate of resource consumption

g(N1,N2) =
acNk

1

b+Nk
1
N2 Saturating rate of resource consumption

Change of consumers in absence of resource
h(N2) = dN2 Constant per capita death rate of consumers
h(N2) = (dN2)N2 Per capita death rate of consumers increases lin-

early with consumer population size
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Other types of interactions

dN1

dt
=r1N1

1 −N1

K1︸ ︷︷ ︸
Intra-population

+ b12
N2

K1︸ ︷︷ ︸
Inter-population


dN2

dt
=r2N2

1 −N2

K2︸ ︷︷ ︸
Intra-population

+ b21
N1

K2︸ ︷︷ ︸
Inter-population


bij strength of interaction exerted by an individual of species j on an
individual of species i

b12 b21 Interactions

- - Competitive
+ + Mutualistic
+ - Parasitic
- + Parasitic
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Compartmental models

Definition

Systems in which there are flows of material between units called
compartments

Compartments

A compartment is an amount of some material : the material of a
compartment is at all times homogeneous; any material entering it is
instantaneously mixed with the material of the compartment.

Dynamic models that depends on local mass balance conditions
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The i th compartment of a differential compartmental model

xi mass of compartment i

Ii flows into the compartment i from the environment (inflows)

Foi outflows from compartment i to the environment (out of the
system)

Fji transfers from compartment i to compartment j

Fij transfers from compartment j to compartment i
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The i th compartment of a differential compartmental model

dxi
dt

=
∑
j 6=i

(−Fj ,i + Fi ,j) + Ii − Fo,i

xi nonnegative state variable

all flows are nonnegative (Fi ,j ≥ 0, Ii ≥ 0, Fo,i ≥ 0, ∀i , j)
sign in the equation translates the directions of flow

if xi = 0, then Fo,i = 0 and Fj ,i = 0 ∀j
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An example of model of n compartments

n state variables xi for i ∈ {1, · · · , n}

dxi
dt

= −Fi−1,i + Fi ,i−1 − Fi+1,i + Fi ,i+1 + Ii − Foi
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If F is C k , then
Fj ,i (x) = fj ,i (x) · xi

for some function fj ,i (x) which is at least C k−1.

System
dxi
dt

=
∑
j 6=i

(−Fj ,i + Fi ,j) + Ii − Fo,i

can then be rewritten as

dxi
dt

= −

fo,i +
∑
j 6=i

fj ,i

 xi + Ii +
∑
j 6=i

fi ,jxj

fi ,j constants or functions only of time ⇒ Linear system

fi ,j functions of x (not constant function) ⇒ Nonlinear system

S. Portet (U of M) February 2024 42 / 85



Compartmental models

dx

dt
= input rate− output rate

Applications

pharmacokinetics

physiology

immunology

epidemiology

ecology

..
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Structured populations

In some species, the amount of reproduction varies greatly with the age of
individuals.

Type I: high survivorship throughout life until old age sets in, and then survivorship

declines dramatically to 0. Humans are type I organisms. Type III: In contrast, very low

survivorship early in life, and few individuals live to old age.

Age structure or developmental stage of population matters
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Structured population models

used when the population can be organized or divided into various
subclasses following traits such as age, life-stage or size. The variable that
describes this trait is called the structuring variable.

The dynamic interactions among the stages, ages or sizes determine how
the population structure changes over the time.
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Structured population dynamics: discrete models

Population categorized into a finite number of classes i = 1, 2, · · · ,m
xi (t) number or density of individuals in the i th class at time
t = 0,∆t, 2∆t, . . .

If only birth and death processes (no migration):

x(t + ∆t) = Px(t)

where P = T + F is the projection matrix

T = [tij ] transition matrix, 0 ≤ tij ≤ 1 and
∑m

i=1 tij ≤ 1 for all j

tij fraction of j−class individual expected to survive and move to class i per unit of
time

tii fraction of individuals in class i that survive and remain in class i after one unit
of time

No individual can shrink or grow more than one class in one unit of time

F = [fij ] fertility matrix, fij ≥ 0

fij the expected number of (surviving) i−class offspring per j−class individual per
unit of time

S. Portet (U of M) February 2024 47 / 85



A particular case : Leslie model
(the time interval coincides with the structure interval)

x1(t + 1) =b1x1(t) + b2x2(t) + b3x3(t) + . . . bmxm(t)

x2(t + 1) =s1x1(t)

.

.

.

xm(t + 1) =sm−1xm−1(t)

X (t + 1) =


x1(t + 1)
x2(t + 1)

...
xm(t + 1)

 =


b1 b2 . . . bm−1 bm
s1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . sm−1 0




x1(t)
x2(t)

...
xm(t)

 = LX (t)

S. Portet (U of M) February 2024 48 / 85



McKendrick–von Foerster equation
Model with age-structure

∂N

∂t
+
∂N

∂a
+ µ(a)N(t, a) = 0

with boundary condition (birth function)

N(t, 0) =

∫ ∞
0

b(a)N(t, a)da

and initial condition (initial age distribution)

N(0, a) = f (a)

where

N(t, a) population density at time t and age a

b(a) birth rate of individuals of age a

µ(a) death rate of individuals of age a

f (a) initial age distribution of population
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What is the dynamics of length distributions?

Coagulation-fragmentation problems

describe the dynamics of cluster growth and the time evolution of a system
of clusters under the combined effect of coagulation and fragmentation

A population of clusters which are free to move in space and may merge
after collisions or spontaneously breakup.
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A tool: coagulation-fragmentation equation

Reactions
Coagulation

(i) + (j)→ (i + j)

Fragmentation
(i)→ (i − k) + (k)

Quantity of interest: size profile

Size: continuous or discrete variables?

Number of clusters: finite or infinite?

Collision frequency expression (or rate constants)? (from
physical assumptions on the dynamics of interactions)
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Continuous coagulation-fragmentation equation

C(x , t) concentration of clusters of size x (x ∈ (0,∞)) at time t ≥ 0

k(x , y) (non-negative function) coagulation kernel

f (x , y) (non-negative function) fragmentation kernel

∂C(x , t)

∂t
=

1

2

∫ x

0

k(x − y , y)C(x − y , t)C(y , t)dy︸ ︷︷ ︸
formation of cluster of size x due to coagulation of smaller clusters

−1

2
C(x , t)

∫ x

0

f (x − y , y)dy︸ ︷︷ ︸
loss of cluster of size x due to breakup

−C(x , t)

∫ ∞
0

k(x , y)C(y , t)dy︸ ︷︷ ︸
loss of cluster of size x due to coalescence

+

∫ ∞
x

f (x , y)C(x + y , t)dy ,︸ ︷︷ ︸
formation of cluster of size x due to fragmentation of larger clusters

C(x , 0) =C0(x) ≥ 0.

Z. A. Melzak. Trans. Amer. Math. Soc. (1957) 85:547.
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Assembly dynamics of actin filaments

Hu, J. et al. J. Stats. Phys. (2007) 128:111.
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Assembly dynamics of in vitro actin filaments

Assumptions

size of filaments in numbers of subunits ⇒ discrete version

pool of monomers (closed system) ⇒ finite system

no distinction between barbed and pointed filament ends

Reactions
Mn: filament of length n

Hu, J. et al. J. Stats. Phys. (2007) 128:111.
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Assembly dynamics of in vitro actin filaments

Variables
Cn: concentration of filaments of length n

Equations

dC1

dt
=− 2(k+

1 C 2
1 − k−1 C2)−

N∑
n=3

(k+
n−1C1Cn−1 − k−n−1Cn)

...

dCn

dt
=(k+

n−1C1Cn−1 − k−n−1Cn)− (k+
n C1Cn − k−n Cn+1)

...

dCN

dt
=(k+

N−1C1CN−1 − k−N−1CN)

Mass conservation:
∑N

n=1 nCn = C0

Hu, J. et al. J. Stats. Phys. (2007) 128:111.
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Assembly dynamics of in vitro actin filaments
Characterisation of time scale for establishing an equilibrium distribution

distribution quickly evolves to a quasi-attractor for which the
distribution has a maximum at an intermediate length

Hu, J. et al. J. Stats. Phys. (2007) 128:111.
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Example: Dynamics of in vitro assembly of intermediate
filaments

• Filament length distributions over time
• Mean lengths over time
• Lengths in # of ULFs

Smoluchowski’s coagulation equation => 
• Fi concentration of filaments composed of i ULFs over time
• Filament length distributions over time
• Mean lengths over time
• Lengths in # of ULFs

Experimental data Model

Find k0 x ki,j to best represent the data

Effective association rates = k0 x ki,j

• ki,j = diffusion-controlled association rates 
• k0 = intrinsic bimolecular rate constant (single free parameter)

• In vitro assembly of filaments
• Imaging: EM, SFM, AFM, TIRF

• ULF = smallest structural stage
• Longitudinal annealing only

Work in collaboration with H. Herrmann, N. Mücke (DKFZ, Heidelberg)

S. Portet (U of M) February 2024 57 / 85



Example: Dynamics of in vitro assembly of intermediate
filaments
Model depends on a single unknown parameter k0

1

k0

dFi
dt

=
1

2

i−1∑
j=1

(1 + δj ,i−j) kj ,i−j FjFi−j −
2N∑
j=1

(1 + δj ,i ) kj ,i FjFi

Observable function

ML(t) =
N∑
i=1

i

[
Fi (t)∑N
i=1 Fi (t)

]

Error

Φ(k0) =
M∑
j=1

(MLmodel(tj , p)−MLdata(tj))2
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Dynamics of in vitro assembly of intermediate filaments
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Spatial models

If the population/amount is not homogeneous in space ⇒
Space-dependent processes + Movement/Motion

Discrete in space: compartmental models, metapopulations,
network models, cellular automata, lattice gas models, Potts model...

Continuous in space: integro-differential equations, partial
differential equations...
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Different types of motions

Diffusion: random motion of objects in a fluid

Advection: objects are carried along by a current in the fluid

Taxis: motion in response to a stimulus (environment sensing →
respond to environment)

I Chemotaxis: response to a chemical gradient
I Phototaxis: response to a light source
I Geotaxis: response to a gravitational field
I Galvanotaxis: response to an electrical field (human skin cells migrate

toward the negative pole in direct current electric fields of physiological
strength (wound healing))

I Haptotaxis: response to an adhesive gradient
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Macroscopic theory – Conservation law

C (x , t) concentration of particles at location x at time t

J(x , t) (flux rate) rate at which C moves across the boundary at
position x from left to right at time t (amount/area/time)

f (x , t,C ) source function

The conservation law is

∂C

∂t
+
∂J

∂x
= f (x , t,C )

(evolution equation for C )

(in n−dimension)
∂C

∂t
+∇ · J = f (x, t,C )
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Diffusive flux – Fick’s law
“C moves from regions of high concentration to regions of low
concentration”, at a rate proprotional to the gradient concentration

J(x , t) = −D ∂C
∂x

D is the diffusion coefficient.

Under Fick’s law, C evolves as follows

∂C

∂t
+

∂

∂x

(
−D ∂C

∂x

)
= f (x , t,C )

∂C

∂t
= D

∂2C

∂x2
+ f (x , t,C )

(in n−dimension)

∂C

∂t
= ∇ · (D∇C ) + f (x, t,C ) = D∇2C + f (x, t,C ) = D∆C + f (x, t,C )
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Advective flux

There is a uniform macroscopic flow of the solvent, with a speed u along
the x−axis, which carries solutes along with it.

J(x , t) = uC (x , t)

So C evolves as follows

∂C

∂t
+
∂uC

∂x
= f (x , t,C )

∂C

∂t
= −u∂C

∂x
+ f (x , t,C )

(in n−dimension)
∂C

∂t
= −∇ · (uC ) + f (x, t,C )
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Attraction-Repulsion
Φ represents a source of attraction/repulsion for solutes/particles/cells.
An attractive/repulsive force would pull/push particles towards/forwards
the sites of greatest attraction/repulsion:

direction and magnitude of motion is determined by the gradient of Φ,

α a scalar to characterize the sensitivity of solutes/particles/cells to
the attraction(α > 0)/repulsion(α < 0)

J(x , t) = αC (x , t)
∂Φ

∂x
So C evolves as follows

∂C

∂t
= − ∂

∂x

[
αC (x , t)

∂Φ

∂x

]
+ f (x , t,C )

(in n−dimension)

∂C

∂t
= −∇ · (αC∇Φ) + f (x, t,C )
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Boundary conditions

Boundary conditions reflect certain physical conditions of the experiment.

One-dimensional case:

Dirichlet boundary condition: C(L,t)=f(t)

Neumann boundary condition: J(L, t) = g(t)

Robin condition: J(L, t) = h(t)− aC (L, t)

(L is a boundary point)
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Diffusion equation

∂C

∂t
=D

∂2C

∂x2
, −∞ < x <∞, t > 0,

C (x , 0) =C0δ(x),

lim
x→±∞

C (x , t) =0,

where C0 is the total amount of material, and δ(x) is the Dirac delta
function.
The solution is

C (x , t) =
C0√
4πDt

exp−
x2

4Dt .

(normal density function with mean 0 and variance 2Dt)
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Drift-diffusion equation

∂C

∂t
=− u

∂C

∂x
+ D

∂2C

∂x2
, −∞ < x <∞, t > 0,

C (x , 0) =C0δ(x − x0),

lim
x→±∞

C (x , t) =0,

The solution is

C (x , t) =
C0√
4πDt

exp−
(x−x0−ut)2

4Dt .

(normal density function with mean x0 + ut and variance 2Dt)
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Example: Chemotaxis
Keller-Segel model describes directed motion of cells stimulated by the
chemical which they produce themselves.

∂u

∂t
=−∇ (−µ∇u + χu∇v)

∂v

∂t
=∇ (D∇v) + fu − kv

Keller, E., Segel, L. (1970) J. Theor. Biol. 26:399-415.
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“The dynamics of real systems are often influenced by inter-
nal and external factors which are not completely understood and,
therefore, cannot be described precisely. In order to understand
such systems, deterministic models (which explain broad overall
behavior and growth patterns) are modified to incorporate com-
plex variations in the mechanisms underlying the system. These
variations, defined in terms of probabilities which evolve over time
alongside the populations, result in new structures referred to as
stochastic models.”

Mubayi et al. Handbook of Statistics
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Stochastic effects (variations)

from differences among individuals (demographic stochasticity)

from fluctuations in the environment (due to forces/mechanisms not
described in the model), (environmental stochasticity)
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Different types of stochastic processes

Mubayi et al. Handbook of Statistics
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Stochastic differential equations

A SDE can be defined as a stochastic process Xt = X (t) satisfying

dXt = f (Xt , t)dt + g(Xt , t)dWt

or

Xt = Xt0 +

∫ t

t0

f (Xs , s)ds +

∫ t

t0

g(Xs , s)dWs

where

Wt = W (t) is the Wiener process (a Gaussian process with zero
mean E (W (t)) = 0 and variance proportional to the elapsed time
Var(W (t)) = t)

f (·) the deterministic component

g(·) the stochastic component
I when g(. . . ) does not depend on Xt ⇒ additive noise
I when g(. . . ) depends on Xt ⇒ multiplicative noise
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SDE - Example

Stochastic logistic equation with multiplicative noise

dxt = rxt(1− xt
k

)dt + cxtdwt

Since a Wiener process is nondifferentiable, Ito’s formula is often used to
find the explicit solution of simple SDEs with a Wiener process.

When no explicit solution is available different characteristics of the
process can be approximated by simulation, such as sample paths,
moments, qualitative behavior..
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Stochastic approach: Master Equation

Assume a system composed of N different types of molecules, and there
exist M reactions.

X(t) = [X1(t),X2(t), . . . ,XN(t)]T random variable

Xi (t) (i ∈ {1, . . . ,N}) the number of molecules of type i at time t

x = [x1, . . . , xN ]T state of system (x ∈ NN)

p(x, t) = Prob[X(t) = x] probability of the state x at time t

dp(x, t)

dt
=

M∑
j=1

[aj(x− vj)p(x− vj , t)− aj(x)p(x, t)]

aj(x) propensity function of j th reaction at the state x

vj j
th column of the stoichiometric matrix v (the reaction j will lead

the system from the state xi to the state xi + vj)
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Propensity functions

aj(x)∆t is the probability that reaction j will occur in (t, t + ∆t)
when the system is at state x

aj(x) = rate of reaction j X number of reactant combinations
available in the state x to allow reaction j

S. Portet (U of M) February 2024 78 / 85



Chemical Master Equation → Forward Chapman
Kolmogorov Equation

P(t) = [p(x1, t), p(x2, t), . . . ]T vector whose the i th entry is the
probability of the i th state xi at time t

dP

dt
= QP(t)

The solution is (if the number of states is finite)

P(t) = exp(Qt)P(0)
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A very simple chemical reaction: degradation

X
k−→ ∅

X (t) = # of molecule X at time t = a discrete random variable

Possible states: {0, 1, 2, . . . , x0} ⇒ p(X = x , t|x0, t0)?

Assumptions:

At most 1 event occurs in [t, t + ∆t]

(Markov property) the state of the system at t + ∆t only depends on
the state at time t

Each one of the x molecules can degrade independently of the others
with a probability k∆t + O(∆t)2 in [t, t + ∆t]

Probability to have one degradation in [t, t + ∆t] is k∆tx where x is
the number of molecule at t

Probability of no event in [t, t + ∆t] is 1− k∆tx where x is the
number of molecule at t
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A very simple chemical reaction: degradation

X
k−→ ∅

Deterministic approach: X (t) concentration of molecule X at time t

dX

dt
= −kX , X (0) = x0, ⇒ X (t) = x0 exp−kt .

Stochastic approach: X (t) number of molecule X at time t (random
variable), p(x , t|x0, t0) := Prob{X (t) = x , given X (t0) = x0}

dp(x , t|x0, t0)

dt
= k(x + 1)p(x + 1, t|x0, t0)− k(x)p(x , t|x0, t0).

The solution is (Binomial probability density function)

p(x , t|x0, 0) =
x0!

x!(x0 − x)!
exp−kxt(1− exp−kt)x0−x , (x = 0, . . . , x0)

E (X ) = x0 exp−kt , Var(X ) = x0 exp−kt(1− exp−kt)
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X
k−→ ∅

Simulations done with Gillespie’s algorithm

blue = realization, red = mean of realizations, black = ODE solution
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Individual vs Population

Langevin equation: (stochastic equation of motion for the time evolution
of y) motion of a particle in a viscous medium subject to friction and noise
(white Gaussian noise).
Fokker-Planck equation: equation of motion for the time dependent
probability distribution p(y , t).

S. Portet (U of M) February 2024 83 / 85



Deterministic vs Stochastic

Deterministic model output is fully determined by the parameter
values and the initial conditions

I deterministic models capture the mean behavior of a system

Stochastic models possess some inherent randomness. The same set
of parameter values and initial conditions will lead to an ensemble of
different outputs

I stochastic models capture the ways that a system’s behavior may
deviate (variability) from the mean

I small populations
I when addressing questions related to variations in population
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Once the model is written

Mathematical analysis: identify the type of mathematical techniques and
theories required for the analysis of the model.. and
characterize the behavior of the model

Numerical experiment: conduct numerical simulations of the model..

Model calibration: identify and estimate the values of parameters..

Sensitivity analysis: understand the effect of model inputs (parameters or
initial conditions) on model outputs.. which parameter is the
key driver of the model responses

Validation: model must represent accurately the real process, it must
reproduce known states of the real process.. if several models
are considered, model selection has to be used.

S. Portet (U of M) February 2024 85 / 85


	Introduction
	Phenomenological approach
	Mechanistic approach

	Model formulation
	Single population models
	Interacting populations
	Compartmental models
	Structured populations
	Spatial models
	Stochastic approaches


