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Once the model is written

Mathematical analysis: identify the type of mathematical techniques and
theories required for the analysis of the model.. and
characterize the behavior of the model

Numerical experiment: conduct numerical simulations of the model..

Model calibration: identify and estimate the values of parameters..

Sensitivity analysis: understand the effect of model inputs (parameters or
initial conditions) on model outputs.. which parameter is the
key driver of the model responses

Validation: model must represent accurately the real process, it must
reproduce known states of the real process.. if several models
are considered, model selection has to be used.
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Numerical experiments to simulate solutions of models

Approximation of solutions (Euler, Runge-Kutta, Euler-Maruyama,
Milstein method..)

Approximation of equations (Finite differences, finite elements
method..)

Computational methods
I Agent-Based Models
I Stochastic Simulation Algorithms (Gillespie, first reaction method,

tau-leap..)
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Gillespie’s algorithm

Stochastic simulation algorithm (SSA) for constructing an exact numerical
realization of the process X(t):

1 Initialize the time t = t0 and the system’s state x = x0.

2 With the system in state x at time t, evaluate all the aj(x) and their

sum a0(x) =
∑M

j=1 aj(x).

3 Generate 2 random numbers r1 and r2
4 Calculate the time to next event τ and the next event j using

τ =
− ln(r1)

a0(x)

and j = the smallest integer satisfying
∑j

j ′=1 aj ′(x) > r2a0(x).

5 Effect the next reaction by replacing t + τ → t and x + vj → x.

6 Record (x, t) as desired. Return to Step 2, or else end the simulation.

S. Portet (U of M) February 2024 5 / 67



A very simple chemical reaction: degradation

X
k−→ ∅

Deterministic approach: X (t) concentration of molecule X at time t

dX

dt
= −kX , X (0) = x0, ⇒ X (t) = x0 exp−kt .

Stochastic approach: X (t) number of molecule X at time t (random
variable), p(x , t|x0, t0) := Prob{X (t) = x , given X (t0) = x0}

dp(x , t|x0, t0)

dt
= k(x + 1)p(x + 1, t|x0, t0)− k(x)p(x , t|x0, t0).

The solution is (Binomial probability density function)

p(x , t|x0, 0) =
x0!

x!(x0 − x)!
exp−kxt(1− exp−kt)x0−x , (x = 0, . . . , x0)

E (X ) = x0 exp−kt , Var(X ) = x0 exp−kt(1− exp−kt)
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X
k−→ ∅

Simulations done with Gillespie’s algorithm

blue = realization, red = mean of realizations, black = ODE solution
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Individual vs Population

Langevin equation: (stochastic equation of motion for the time evolution
of y) motion of a particle in a viscous medium subject to friction and noise
(white Gaussian noise).
Fokker-Planck equation: equation of motion for the time dependent
probability distribution p(y , t).
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Parameters

To run numerical experiments, parameter values need to be
chosen/determined

known from the literature

measured experimentally

unknown.. ⇒ Model Calibration
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Model calibration/Estimation of parameters

Consider a model
dx

dt
= m(t, x , p)

t: independent variable

x : vector of state variables

p: vector of parameters

Parameters of the model

have (biological) interpretations

and their values are unknown

⇒ necessary to estimate (find appropriate values) the model parameters
from measurements in presence of errors in measurements

Method: Fitting the solutions of ODEs to data
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Model calibration/Estimation of parameters/Data fitting

Two general (optimal) methods of parameter estimation based on

Least Squares (LS)
I minimizing the objective function = sum of squared residuals of all

measurements

Maximum Likelihood (ML)
I maximize the likelihood function

If the measurement errors are independent, normally distributed with a
common variance, the LS and ML methods are equivalent (give the same
result)
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Optimization problems

When an analytic expression of the function Φ(p) to optimize is known

Theorem

A smooth function Φ(p) attains an local minimum (resp. maximum) at p̂
if

the gradient ∂Φ(p)
∂p vanishes at p̂

and the Hessian H(p) with (i , j)th element ∂2Φ(p)
∂pi∂pj

is positive definite

(resp. negative definite) at p̂, or

zTH(p)z > 0( resp. < 0)

where z is any real vector.

(If Φ(p) is non-smooth, the local extrema are at the discontinuity of Φ(p)

or where the gradient ∂Φ(p)
∂p is discontinuous or vanishes)
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Curve fitting: method of least-squares

Model: f (x , p) with parameters p
Criterion: measure the total error in fitting a curve to data

RSS(p) =
n∑

i=1

(yi − f (xi , p))2

sum of squares for error = sum of squared residuals

residual = difference between the actual value (data) and the
predicted value (curve)

Aim: minimization of the sum of squared residual

min
p

RSS(p)

Result: Least-squares best fit minimizes the sum of squares of vertical
distances between data points and fitting curve points.
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Method of least-squares for models linear in parameters
Aim: find parameter values for the model which best fits data

Observation: n data points (xi , yi ) with i = 1, · · · , n
Model: f (x , p) where p is a m−vector of parameters (m parameters)

Criterion: sum, RSS , of squared residuals

RSS(p) =
n∑

i=1

(yi − f (xi , p))2

Solution: p̂ such that

RSS(p̂) = min
p

RSS(p)

is obtained by setting the gradient equal to zero (m parameters)

∂RSS

∂pj
= 0, j = 1, · · · ,m

or

−2
n∑

i=1

(yi − f (xi , p))
∂f (xi , p)

∂pj
= 0, j = 1, · · · ,m
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US population (in millions) from 1790 to 2000
1790 3.929
1800 5.308
1810 7.240
1820 9.638

12.866
17.069
23.192
31.443
38.558
50.156
62.948

1900 76.212
92.228
106.021
123.202
132.164
151.325
179.323
203.302
226.542
248.709

2000 281.421

Observation: 22 data points (xi , yi ) =
(year,population) with i = 1, . . . , 22
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US population (in millions) from 1790 to 2000

Model: f (x , p) where p is a k−vector of parameters (k parameters)

Hypothesize the form of the function f

Quadratic function (x years)

f (x) = y = a + bx + cx2

k = 3 parameters to estimate a, b and c

Exponential function (x years)

f (x) = y = a expbx

Change of variable ln y = Y

ln y = Y = ln a + bx = A + bx

k = 2 parameters to estimate A and b

Both models are linear in parameters
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US population (in millions) from 1790 to 2000
Find the minimum of

RSS(A, b) =
n∑

i=1

(ln yi − (A + bxi ))2

Set the gradient of RSS to zero

n∑
i=1

(ln yi − (A + bxi ))
∂(A + bxi )

∂A
=

n∑
i=1

(ln yi − (A + bxi )) = 0

n∑
i=1

(ln yi − (A + bxi ))
∂(A + bxi )

∂b
=

n∑
i=1

(ln yi − (A + bxi ))xi = 0

Â and b̂ (estimate of A and b) satisfy[
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

] [
Â

b̂

]
=

[ ∑n
i=1 ln yi∑n

i=1 xi ln yi

]
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US population (in millions) from 1790 to 2000

Quadratic curve (x years)

f (x) = 0.0067x2 − 24.0358x + 21620.47

Exponential curve (x years)

f (x) = 1.2162× 10−15exp0.0202x
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Naive approach to compare models: R2

Measure of the goodness of fit

R2 = 1− RSS/n∑
(yi − ȳ)2/n

where

RSS = residual sum of squares

n = sample size

y = data

Select the model that maximizes R2

Best fit but neglect the model complexity (select the more parameter rich
model)

Only valid for linear models
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To compare models: Ajusted R2

Replacing the two variances with their unbiased estimates

Measure of the goodness of fit

R2
adj = 1− RSS/(n − p − 1)∑

(yi − ȳ)2/(n − 1)

where

RSS = residual sum of squares

n = sample size

y = data

p = number of parameters

Select the model that maximizes R2
adj

Only valid for linear models
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Estimation of parameters in mechanistic models

dx

dt
= m(x , p, t), x(t0) = x0(p), ỹ = h(x , p, t)

x(t) vector of state variables, x0 IC, h observable function and p vector of
unknown constant parameters
To find the vector of parameter values p that minimizes the distance
between measured observations and simulated observations:

Define a “distance” = Scalar objective function (cost function)

Fls(p) =
ne∑
e=1

neo∑
o=1

ne,oi∑
i=1

ωe,o
i (yoe (ti )− ỹ eo (ti , p))2

ne # of experiments, neo # of observable per experiments, ne,oi # of
samples per observable per experiments
yoe (ti ) measured data, ωe,o

i weights and ỹ eo (ti , p) simulated output
Optimization method to minimize Fls(p) to find p̂LSE

Fls(p̂LSE ) = min
p

Fls(p)
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Optimization methods

When an analytic expression of the function to optimize is unknown

Local optimization methods:
I gradient descent-based methods: Levenberg-Marquardt or

Gauss-Newton
I derivative-free local search methods: Nelder-Mead method
I only find a global optimum for appropriate starting points
I converge to local optima
I suboptimal solutions

Global optimization methods:
I simulated annealing
I genetic algorithm
I particle swarm

Pitt and Banga (2019) BMC Bioinformatics. 20:82. Sagar et al. (2018) BMC Systems Biology 12:87.
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Maximum Likelihood Estimator Approach

Experimental data y = (y1, . . . , yn) = random sample generated from
an unknown probability distribution function (pdf) depending on
parameters p = (p1, . . . , pk)

Model = family of probability distributions indexed by the model’s
parameters

f (y |p) = probability of observing data y given the parameter p

If the observations yi are statistically independent of one another, the pdf
of observing the data y = (y1, . . . , yn) given the parameter vector p is the
multiplication of the pdfs for individual observations

f ((y1, . . . , yn)|(p1, . . . , pk)) =f (y1|(p1, . . . , pk))f (y2|(p1, . . . , pk))

· · · f (yn|(p1, . . . , pk))

(function of y = the probability of data y for a given value of p)

Varying the parameter p across its range defines a model (a family of pdfs)
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Likelihood function

Problem: Find the pdf among the all pdfs of the family that is the most
“likely” to have produced the data (inverse problem)

The likelihood function L is the density function regarded as a function of
p

L(p|y) = f (y |p)

The likelihood of a particular value of a parameter is the probability
of obtaining the observed data y if the parameter had that value. It
measures how well the data supports that particular value.

The density function f gives the probability of observing y given the
parameter p and sums to 1 over all the possible values of y . (function
of y , data scale)

The likelihood function L is a function of p given the data and does
NOT sum to 1 over the possible values of p. (parameter scale)
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Maximum Likelihood Estimation (MLE)

Problem: Seek the value p̂MLE = (p̂1,MLE , . . . , p̂k,MLE ) of the parameter
vector p that maximizes the likelihood function L(p|y) ⇔ Maximize the
log-likelihood lnL(p|y) to find Maximum Likelihood Estimator p̂MLE

p̂MLE satisfy the following conditions:

Necessary condition of existence of a p̂MLE

∂ lnL(p|y)

∂pi
= 0, i = 1, . . . , k

Convexity condition: consider the Hessian matrix H(p),

Hi ,j(p) = ∂2 lnL(p|y)
∂pi∂pj

with i , j ∈ {1, . . . , k}.

zTH(p)z < 0

where z is any k × 1 real vector.
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Example: Normally distributed data
Data: Blood pressure of 1000 patients

Assumption: Data are normally distributed
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Example: Normally distributed data
Assume that experimental data y1, . . . , yn is drawn from a N (µ, σ2) with
µ and σ unknown (k = 2, p = (µ, σ)).
Let Y1, . . . ,Yn be n i.i.d.1 N (µ, σ2) random variables,

fYi
(yi |µ, σ) =

1√
2πσ

e−
(yi−µ)2

2σ2

the joint pdf is

f (y1, . . . , yn|µ, σ) =

(
1√
2πσ

)n

e−
∑n

i=1
(yi−µ)2

2σ2

For a fixed data set y1, . . . , yn, the likelihood function with

L(µ, σ|y1, . . . , yn) =
(

1√
2πσ

)n
e−

∑n
i=1

(yi−µ)2

2σ2 and the log-likelihood

function

lnL(µ, σ|y1, . . . , yn) = −n
(

ln(
√

2π) + ln(σ)
)
−

n∑
i=1

(yi − µ)2

2σ2

1independent and identically distributed
S. Portet (U of M) February 2024 30 / 67



To find µ̂MLE

∂ lnL(p|y)

∂µ
=

n∑
i=1

(yi − µ)

σ2
= 0⇒

n∑
i=1

yi = nµ̂MLE ⇒ µ̂MLE =
1

n

n∑
i=1

yi = ȳ

To find σ̂MLE

∂ lnL(p|y)

∂σ
= −n

σ
+

n∑
i=1

(yi − µ)2

σ3
= 0⇒ σ̂2

MLE =
1

n

n∑
i=1

(yi − µ)2

using µ = µ̂MLE we have σ̂2
MLE = 1

n

∑n
i=1(yi − µ̂MLE )2

Maximum Likelihood Estimates are µ̂MLE (= 85) the mean of data and
σ̂2
MLE (= 202) the variance of data and

lnL(µ̂MLE , σ̂MLE |y1, . . . , yn) = max
µ,σ

lnL(µ, σ|y1, . . . , yn)
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Estimation of parameters in mechanistic models (LS)
To find the vector of parameter values p that minimizes the distance
between measured observations and simulated observations:

yoe (ti ) measured data (ne # of experiments, neo # of observable per
experiments, ne,oi # of samples per observable per experiments)
dx
dt = m(x , p, t), x(t0) = x0(p), ỹ = h(x , p, t)
h observable function and p vector of unknown constant parameters
⇒ ỹ eo (ti , p) simulated output

“Distance” = Scalar objective function (cost function)

Fls(p) =
ne∑
e=1

neo∑
o=1

ne,oi∑
i=1

ωe,o
i (yoe (ti )− ỹ eo (ti , p))2

ωe,o
i weights

Optimization method to minimize Fls(p) to find p̂LSE

Fls(p̂LSE ) = min
p

Fls(p)
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Relationship between LSE and MLE

Assuming independent, normally distributed additive measurement
error (noise) with standard deviation σe,oi , the probability of observing the
data y given the parameters p and σe,oi is

f (y |θ) =
ne∏
e=1

neo∏
o=1

ne,oi∏
i=1

1√
2πσe,oi

exp

(
−1

2

(
yoe (ti )− ỹ eo (ti , p)

σe,oi

)2
)

= L(θ|y)

where yoe (ti ) are measured data, ỹ eo (ti , p) model output and θ includes the
mathematical model parameters p and the statistical model parameters
σe,oi . Maximizing the likelihood is equivalent to minimize the negative of
the log-likelihood function:

− lnL(θ|y) =
1

2

ne∑
e=1

neo∑
o=1

ne,oi∑
i=1

[
ln
(
2π(σe,oi )2

)
+

(
yoe (ti )− ỹ eo (ti , p)

σe,oi

)2
]
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Relationship between the negative log-likelihood and least-squares cost
function when σe,oi = σ and ωe,o

i = 1 (ordinary LS):

− lnL(θ|y) = nen
e
on

e,o
i

(
ln(
√

2π) + ln(σ)
)

+
1

2σ2
Fls

− lnL(θ|y) and Fls(p) have the same optimal parameters for the
mathematical model parameters p (p̂ = p̂MLE = p̂LSE ) and from
∂ lnL(θ|y)

∂σ = 0

σ̂2 =
1

neneon
e,o
i

Fls(p̂)

Hence, the minimum of the negative of the log-likelihood function is

− lnL(θ̂MLE |y) =
nen

e
on

e,o
i

2
ln(2π) +

nen
e
on

e,o
i

2

+
nen

e
on

e,o
i

2
ln

 Fls(p̂)

neneon
e,o
i︸ ︷︷ ︸

MLE of variance


where p̂ = p̂MLE = p̂LSE .
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Confidence intervals (CIs) for parameters
(Wilks’ theorem) The opposite of twice the logarithm of the
likelihood ratio statistic (Nparam : # of parameters)

−2 ln

(
L(θ)

L(θ̂MLE )

)
 χ2

Nparam

The two-sided 100(1− α)% confidence interval for θ consists of all θ
values associated with the log-likelihood function being at a distance
of less than χ2

Nparam,α
/2 of its peak value at the maximum likelihood

estimator (N = number of observations)

ln (L(θ)) ≥ ln
(
L(θ̂MLE )

)
−
χ2
Nparam,α

2

CI =

{
θ : ln

(
L(θ̂MLE )

)
− ln (L(θ)) ≤

χ2
Nparam,α

2

}
Under the previous assumption:

CI =

{
θ : ln

(
Fls(θ)

N

)
− ln

(
Fls(θ̂LSE )

N

)
≤
χ2
Nparam,α

N

}
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Example: Dynamics of in vitro assembly of proteins

• Filament length distributions over time
• Mean lengths over time
• Lengths in # of ULFs

Smoluchowski’s coagulation equation => 
• Fi concentration of filaments composed of i ULFs over time
• Filament length distributions over time
• Mean lengths over time
• Lengths in # of ULFs

Experimental data Model

Find k0 x ki,j to best represent the data

Effective association rates = k0 x ki,j

• ki,j = diffusion-controlled association rates 
• k0 = intrinsic bimolecular rate constant (single free parameter)

• In vitro assembly of filaments
• Imaging: EM, SFM, AFM, TIRF

• ULF = smallest structural stage
• Longitudinal annealing only

Work in collaboration with H. Herrmann, N. Mücke (DKFZ, Heidelberg)
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Example: Dynamics of in vitro assembly of proteins

Model depends on a single unknown parameter k0

1

k0

dFi
dt

=
1

2

i−1∑
j=1

(1 + δj ,i−j) kj ,i−j FjFi−j −
2N∑
j=1

(1 + δj ,i ) kj ,i FjFi

Observable function

ML(t) =
N∑
i=1

i

[
Fi (t)∑N
i=1 Fi (t)

]

Error

Φ(k0) =
M∑
j=1

(MLmodel(tj , p)−MLdata(tj))2
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Example: Dynamics of in vitro assembly of proteins
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Model selection: Akaike Information Criterion

In 1973, Akaike found a relationship between the maximum likelihood
(statistical analysis) and Kullback-Leibler divergence (to measure the
difference between two probability distributions (information theory))

Akaike Information Criterion

AIC = −2 ln
(
L(θ̂MLE |y)

)
+ 2K

where L is the likelihood function (proba of obtaining the observed data y
if the parameter had a given value), θ̂MLE is the maximum likelihood
estimate of θ and K is the number of estimated parameters

Best model = the one with minimum AIC value

Akaike (1973) In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado,

Budapest, pp 267–281
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When the measurement errors are independent and identically
normally distributed with the same variance

− lnL(θ̂MLE |y) =
N

2
ln(2π) +

N

2
ln

(
Fls(p̂MLE )

N

)
+

N

2

where p̂MLE = p̂LSE (N = nen
e
on

e,o
i )

When the data used to compare all the models are the same, AIC
can be computed as follows

AIC = N ln

(
Fls(p̂LSE )

N

)
+ 2K

where K is the number of estimated parameters (number of estimated
mathematical model parameters + 1), N is the number of observations

Compute AICi of each model i with i ∈ {1, . . . ,R}
Best model = the one with minimum AIC value
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AIC differences

As only the estimates of the expected relative K-L divergences between f
and gi (x |θ) are known with the information criteria, it is convenient to
scale them with respect to the minimum AIC value among all models.

AIC differences: estimate of information loss when using model i rather
than the estimated best model

∆i =AICi −min
i

AICi

mini AICi = AIC of the best model in the collection

Interpretation = the larger the ∆i , the less plausible is model i

Akaike (1974) IEEE Trans. Automatic Control. 19:716. Burnham and Anderson (2002) Model selection and multimodel

inference: a practical information-theoretic approach. Second Edition. Springer.
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Interpretation = the larger the ∆i , the less plausible is model i

Some guidelines for nested models:

∆i ∈ {1, 2} model i has substantial support and should be considered

∆i ∈ {4, . . . , 7} model i has less support

∆i > 10 model i has no support, can be omitted

Might be different for non-nested models or for a very large number of
models

Burnham and Anderson (2002) Model selection and multimodel inference: a practical information-theoretic approach. Second

Edition. Springer.
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Akaike weights

For an easier interpretation, rescaling of ∆i

Likelihood of model i given the data ∝ exp
(
−∆i

2

)
Akaike weight or “weight of evidence” of model i for being the best
model of the collection given the data

wi =
exp(−∆i/2)∑R
r=1 exp(−∆r/2)

wi = probability that model i is the best (approximating) model given the
experimental data and the collection of models considered

Interpretation

The smaller the weight wi , the less plausible is model i

Consider a single best model i if wi > 0.9
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Uses of Akaike weights

Evidence ratio of model i versus model j = Strength of evidence in
favour of model i over model j

wi

wj

Confidence set of models:
Sum the Akaike weights from largest to smallest until the sum is ≥ 0.95
⇒ the corresponding subset of models is the 95% confidence set on the
best model

Relative importance of a process:
Sum the Akaike weights over all models in which the process of interest
appears = measure of the relative importance of the process of interest
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Model selection with Akaike Information Criterion

Best model = the one with the lowest AIC

Best model within the collection of model considered given the
experimental data 6= “true model”

No meaning in the actual values of AIC

Ranking of candidate models

Selection of a model with the least number of parameters that
best-fits experimental data

Specific to a given set of data (cannot be used to compare models on
different data sets)

Valid to compare nested or non-nested models

Not a test!!

Portet (2020) Inf. Dis. Model. 5.
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Strategy as using data and mathematical modelling

Systematic modelling of possible scenarios based on biological
hypotheses and first principles to design a collection of models

Calibration of each model using the same data

Compute AIC and Akaike weights for each model ⇒ rank models and
identify the best model or the 95% confidence set of models

Partition the collection of models in subsets of models based on their
underlying hypotheses and using Akaike weights, evaluate the
importance of different processes

Portet et al. (2015) PLOS One. Jacquier et al. (2018) Scientific Report. Lee et al. (2021) AIMS Mathematics. Portet (2020)

Infectious Disease Modelling.
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Problems in parameter estimation

lack of prior knowledge about parameters

lack of identifiability

convergence to local optima (ill-conditioning and non-convexity)

overfitting (fitting the noise instead of signal)
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Still an accurate fit is the starting point for uncertainty analysis or model
selection..
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Identifiability

Can unknown model parameters uniquely be determined by parameter
estimation from measured data? ⇒ Identifiability

Two problems:

1 the larger the number of unknown parameters in a model, the larger
the amount of quantitative data necessary to determine meaningful
values for these parameters (Pratical identifiability)

2 even if appropriate experimental data are available, model parameters
may not be uniquely identifiable (Structural identifiability)
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Identifiability
Profiles of error as a function of parameters to be estimated
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Sensitivity analysis

“Sensitivity analysis is the study of how the variation in the output of a
model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation, and how the given model
depends upon the information fed into it.”

What are the effects of a parameter on the equilibrium value, an
aggregated parameter, eigenvalues?

⇒ Sensitivity analysis
Sensitivity analysis is an important tool in studies of the dependence of
systems on parameters and to identify the key drivers of the dynamics

Saltelli, A. et al. Sensitivity analysis. Wiley (2000). Saltelli, A. et al. Global sensitivity analysis: the primer. (2008)
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Uncertainty analysis: Latin Hypercube Sampling (LHS)

A method of sampling that allows an unbiased estimate of the average
model output, with the advantage that it requires fewer samples than
simple random sampling to achieve the same accuracy.

LHS ensures that the entire parameter space is represented, that is, that
the range of each parameter is fully stratified

Stratified sampling without replacement technique

Parameters of LHS

Specify a probability density function (pdf) for each parameter

N = sample size (N is at least k + 1 where k is the number of
parameters varied)

Choose the model output(s)

Marino et al. J. Theor. Biol. (2008) 254:178. Renardy et al. Cur. Op. Biom. Eng. (2019) 11:109.
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Latin Hypercube Sampling (LHS)

Divide the random
parameter distributions into
N equal probability intervals,
which are then sampled

Sampling performed
independently for each
parameter

Sampling is done by
randomly selecting values
from each pdf

Each interval for each
parameter is sampled exactly
once

Marino et al. J. Theor. Biol. (2008) 254:178.
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Sensitivity analysis
Local sensitivity analysis method: performing the analysis around a point

of interest in the model input space (nominal parameter set)
(derivative-based method)

Global sensitivity analysis methods: assuming probabilistic distributions
for models inputs

Correlation-based methods: evaluate effects of a
factor pi while the others are also allowed to vary.
Partial rank correlation coefficient (PRCC) provides a
measure of monotonicity after the removal of the linear
effects of all but one variable.
Variance-based methods: quantify the amount of
variance that each input factor pi contributes with on
the unconditional variance of the output V (y).
Extended Fourier amplitude sensitivity test (eFAST)
return measures of fractional variance accounted for by
individual parameters and groups of parameters.

Marino et al. (2008) J. Theor. Biol. 254, 178. http://malthus.micro.med.umich.edu/lab/usadata/
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Example of local sensitivity analysis: Discrete structured
models

x(t + 1) = Px(t)

λ1 dominant eigenvalue of P

Stable stage distribution V1 (right eigenvector associated to λ1)

PV1 = λ1V1.

For P, any initial population stage structure projected forward will approach the
stable stage distribution V1, where each stage class increases in size λ1 times each
time period.

Reproductive value of each stage W1 (left eigenvector associated to λ1)

W T
1 P = λ1W

T
1 ,

These reproductive values estimate the expected reproductive contribution of each
stage to population growth.

Total population p(t) =
∑n

i=1 xi (t)

p(t) = λt
1p0
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How sensitive the population growth rate is to variations
in fecundity, growth or survival rates?

x(t + 1) = Px(t)

Sensitivity of λ1 to changes in life cycle parameters

proportional sensitivity (or ”elasticity”) of λ1: proportional change in
λ1 caused by proportional change in one of the life cycle parameters.

Pij

λ1

∂λ1

∂Pij
=

Pij

λ1

(
W1iV1j

<W1,V1 >

)
Because these elasticities sum to 1, the relative contribution of the matrix
elements to λ1 can be compared.

Caswell (1982) Ecology 63(5) - 1223-1231.
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Chinook salmon in the Columbia river
4 developmental stages, x ∈ R4:

eggs

yearlings

2-year olds

3-year olds

x(t + 1) = Px(t), P =


0 4 20 60

0.05 0 0 0
0 0.3 0 0
0 0 0.6 0


The elasticities matrix is

0 0.059 0.087 0.155
0.301 0 0 0

0 0.242 0 0
0 0 0.155 0


S. Portet (U of M) February 2024 59 / 67



Derivative-based method - Forward sensitivity equations
dx

dt
= f (t, x , p)

x : vector of state variables

p: vector of parameters

Sensitivity of variables to parameter pi ,
∂x
∂pi

, satisfies

d

dt

∂x

∂pi
=
∂f

∂x

∂x

∂pi
+
∂f

∂pi

(forward sensitivity equations ⇐ differentiation of original system with
respect to pi and inversion of differentiation operators)

Sensitivity coefficients
∂x

∂pi
Ingalls et al (2003) J. Theor. Biol. 222, 23.
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Forward sensitivity equations

Sensitivity coefficients represent

derivatives of the model responses with respect to parameters

rates of change of variables with respect to an increase in a given
parameter pi

To allow comparisons, normalized sensitivity coefficients are used:

pi
x

∂x

∂pi

Possible approaches:

Local sensitivity analysis: values of normalized sensitivity coefficients
when parameters are set to their nominal values

Global sensitivity analysis: create input factor distributions through
sampling (e.g. Latin Hypercube Sampling)
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Variance-based methods
First-order index represents main effect contribution of each input factor
to the variance of the output

Si =
V [E (Y |Xi )]

V (Y )

Total effect index accounts for the total contribution to the output
variation due to factor X1 (if 3 factors), i.e its first-order effect plus all
higher-order effects due to interactions

ST1 = S1 + S12 + S13 + S123

STi give information on the nonadditive features of the model

STi = 1− V [E (Y |X∼i )]

V (Y )

A significant difference between STi and Si signals important interaction
involving that factor
The condition STi = 0 is necessary and sufficient for Xi to be a
non-influential factor
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Work flow – Mathematical modelling

Portet (2015) Insights E-Journal. 8(2).
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My $0.02 on combining mathematical modelling and
experimental data

To get more: Collection of models (with model selection):

test different scenarios
select model(s) that approximate the best data
considered (Still not the truth!!)
evaluate the relative importance of processes

To keep in mind: Conclusions drawn when combining mathematical
modelling and data are impacted by

mathematical translation of biological processes
data considered

⇒ change in sensitivity analysis outcomes, transient
(reactivity) and long term (prediction) dynamics...

Al-Darabsah, K.-L. Liao, and S. Portet, A simple in-host model for COVID-19 with treatments: model prediction and calibration.

Journal of Mathematical Biology, 86:20 (2023)
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Why use mathematical modelling?

Test a large number of different scenarios

Propose tentative hypotheses to be tested ⇒ propose new
experiments

Identify the major components of processes

Extrapolate the broad behavior of a system for which data cannot
easily be obtained

Theorize the processes (clarify hypotheses and characterize the chain
of events)
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“All models are wrong, but
some are useful.” G. E. P. Box

S. Portet (U of M) February 2024 67 / 67


	Numerical experiments
	Model calibration
	Least squares
	Maximum Likelihood
	Relationship between LSE and MLE
	Problems in parameter estimation

	Uncertainty analysis - Sensitivity analysis
	Conclusion

