The semivariogram captures the second-moment structure of the data.
\[\gamma(s,h) = \frac{1}{2} [var(Z(s) - Z(s+h))] \] \[= \frac{1}{2} [var(Z(s)) + var(Z(s+h)) - 2cov(Z(s),Z(s+h))].\]
If second-order stationarity holds: \(\gamma(h) = \frac{1}{2} (2\sigma^2 -2 C(h)) = C(0) - C(h)\).
If positive spatial correlation is present:
Empirical semivariogram:
\[\hat{\gamma}(h) = \frac{1}{2 |N(h)|} \sum_{N(h)} \left(Z(s_i) - Z(s_j) \right)^2 \]
Empirical covariance estimation:
\[\hat{C}(h) = \frac{1}{|N(h)|} \sum_{N(h)} (Z(s_i)-\bar{Z})(Z(s_j)-\bar{Z})\]
Semivariogram: \(\gamma(h)\) vs. \(h\)
Variogram: \(2\gamma(h)\) (but naming is not consistant)
Covariance function: \(C(h)\) vs. \(h\)
Under stationarity \(\gamma(h) = \gamma(s_i-s_j) = C(0) - C(s_i-s_j)\). Recall that \(C(0) = var(Z(s))\).
ESTIMATION (Matheron 1962, 1963): \[\gamma(s_i-s_j) = \frac{1}{2|N(s_i-s_j)|} \sum_{N(s_i-s_j)} ({Z(s_i) - Z(s_j)})^2\]
\[C(s_i-s_j) = \frac{1}{2|N(s_i-s_j)|} \sum_{N(s_i-s_j)} (Z(s_i) - \bar{Z})(Z(s_j)-\bar{Z})\] \[\textrm{ where } \bar{Z} = \frac{1}{n} \sum_{i=1}^n Z(s_i). \]