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SIR is a little too simple for many diseases:
▶ No incubation period
▶ A lot of infectious diseases (in particular respiratory) have

mild and less mild forms depending on the patient

=⇒ model with SIR but also L(atent) and (A)symptomatic
individuals, in which I are now symptomatic individuals
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Basic reproduction number & Final size

We find the basic reproduction number

R0 = β

(
p
α
+

δ(1 − p)
η

)
S0 =

βρ

α
S0 (1)

where
ρ = α

(
p
α
+

δ(1 − p)
η

)

The final size relation takes the form

S0(ln S0 − ln S∞) = R0(S0 − S∞) +
R0I0
ρ

(2)
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A method for computing R0 in epidemic models

▶ This method is not universal! It works in a relatively large class
of models, but not everywhere

▶ If it doesn’t work, the next generation matrix method does
work, but should be considered only for obtaining the reproduction
number, not to deduce LAS

▶ Here, I change the notation in the paper, for convenience
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Standard form of the system

Suppose system can be written in the form

S ′ = b(S, I,R)− DSβ(S, I,R)hI (3a)
I ′ = ΠDSβ(S, I,R)hI − VI (3b)

R ′ = f(S, I,R) + WI (3c)

where S ∈ Rm, I ∈ Rn and R ∈ Rk are susceptible, infected and
removed compartments, respectively

IC are ≥ 0 with at least one of the components of I(0) positive
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S ′ = b(S, I,R)− DSβ(S, I,R)hI (3a)

▶ b : Rm
+ × Rn

+ × Rk
+ → Rm continuous function encoding

recruitment and death of uninfected individuals
▶ D ∈ Rm×m diagonal with diagonal entries σi > 0 the relative

susceptibilities of susceptible compartments, with convention
that σ1 = 1

▶ Scalar valued function β : Rm
+ × Rn

+ × Rk
+ → R+ represents

infectivity, with, e.g., β(S, I,R) = β for mass action
▶ h ∈ Rn row vector of relative horizontal transmissions
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I ′ = ΠDSβ(S, I,R)hI − VI (3b)

▶ Π ∈ Rn×m has (i, j) entry the fraction of individuals in jth
susceptible compartment that enter ith infected compartment
upon infection

▶ D ∈ Rm×m diagonal with diagonal entries σi > 0 the relative
susceptibilities of susceptible compartments, with convention
that σ1 = 1

▶ Scalar valued function β : Rm
+ × Rn

+ × Rk
+ → R+ represents

infectivity, with, e.g., β(S, I,R) = β for mass action
▶ h ∈ Rn row vector of relative horizontal transmissions
▶ V ∈ Rn×n describes transitions between infected states and

removals from these states due to recovery or death
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R ′ = f(S, I,R) + WI (3c)

▶ f : Rm
+ × Rn

+ × Rk
+ → Rk continuous function encoding flows

into and out of removed compartments because of
immunisation or similar processes

▶ W ∈ Rk×n has (i, j) entry the rate at which individuals in the
jth infected compartment move into the ith removed
compartment
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Suppose E0 is a locally stable disease-free equilibrium (DFE) of the
system without disease, i.e., an EP of

S ′ = b(S, 0,R)

R ′ = f(S, 0,R)

Theorem 1
Let

R0 = β(S0, 0,R0)hV−1ΠDS0 (4)

▶ If R0 < 1, the DFE E0 is a locally asymptotically stable EP of
(3)

▶ If R0 > 1, the DFE E0 of (3) is unstable

If no demography (epidemic model), then just R0, of course
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Final size relations

Assume no demography, then system should be writeable as

S ′ = −DSβ(S, I,R)hI (5a)
I ′ = ΠDSβ(S, I,R)hI − VI (5b)

R ′ = WI (5c)

For w(t) ∈ Rn
+ continuous, define

w∞ = lim
t→∞

w(t) and ŵ =

∫ ∞

0
w(t) dt
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Define the row vector

Rm ∋ Γ = (Γ1, . . . , Γm) = β(S0, 0,R0)hV−1ΠD

then
R0 = ΓS(0)

p. 13 – Extensions of the KMK model



Suppose incidence is mass action, i.e., β(S, I,R) = β and m > 1

Then for i = 1, . . . ,m, express Si(∞) as a function of S1(∞) using

Si(∞) = Si(0)
(

S1(∞)

S1(0)

)σi/σ1

then substitute into

1
σi

ln

(
Si(0)
Si(∞)

)
= ΓD−1 (S(0)− S(∞)) + βhV−1I(0)

=
1
σ1

ln

(
S1(0)
S1(∞)

)
which is a final size relation for the general system when Si(0) > 0
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If incidence is mass action and m = 1 (only one susceptible
compartment), reduces to the KMK form

ln

(
S0
S∞

)
=

R0
S0

(S0 − S∞) + βhV−1I0 (6)
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In the case of more general incidence functions, the final size
relations are inequalities of the form, for i = 1, . . . ,m,

ln

(
Si(0)
Si(∞)

)
≥ σiΓD−1 (S(0)− S(∞)) + σiβ(K)hV−1I(0)

where K is the initial total population
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The SLIAR model

▶ Paper we have already seen: Arino, Brauer, PvdD, Watmough
& Wu. Simple models for containment of a pandemic, Journal of
the Royal Society Interface (2006)

▶ However, suppose additionally that L are also infectious

p. 17 – Extensions of the KMK model
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Here, S = S, I = (L, I,A)T and R = R, so m = 1, n = 3 and

h = [ε 1 δ], D = 1, Π =

1
0
0

 and V =

 κ 0 0
−pκ α 0

−(1 − p)κ 0 η


Incidence is mass action so β(E0) = β and thus

R0 = βhV−1ΠDS0

= β [ε 1 δ]

 1/κ 0 0
p/α 1/α 0

(1 − p)/η 0 1/η

1
0
0

S0

= βS0

(
ε

κ
+

p
α
+

δ(1 − p)
η

)
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For final size, since m = 1, we can use (6):

ln

(
S0
S∞

)
=

R0
S0

(S0 − S∞) + βhV−1I0

Suppose I0 = (0, I0, 0), then

ln

(
S0
S∞

)
= R0

S0 − S∞
S0

+
β

α
I0

If I0 = (L0, I0,A0), then

ln

(
S0
S∞

)
= R0

S0 − S∞
S0

+β

(
ε

κ
+

p
α
+

δ(1 − p)
η

)
L0+

βδ

η
A0+

β

α
I0
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A model with vaccination

SU
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IU
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R

βSU(IU + σIIV)
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fVα
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A model with vaccination

Fraction γ of S0 are vaccinated before the epidemic; vaccination
reduces probability and duration of infection, infectiousness and
reduces mortality

SU
′ = −βSU[IU + σIIV] (7a)

SV
′ = −σSβSV[IU + σIIV] (7b)

LU
′ = βSU[IU + σIIV]− κULU (7c)

LV
′ = σSβSV[IU + σIIV]− κVLV (7d)

IU ′ = κULU − αUIU (7e)
IV ′ = κVLV − αVIV (7f)
R ′ = fUαUII + fVαVIV (7g)

with SU(0) = (1 − γ)S0 and SV(0) = γS0
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Here, m = 2, n = 4,

h = [0 0 1 σI], D =

(
1 0
0 σS

)
, Π =


1 0
0 1
0 0
0 0


and

V =


κU 0 0 0
0 κV 0 0

−κU 0 αU 0
0 −κV 0 αV
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So
Γ =

[
β

αU

σIσSβ

αV

]
, Rc = S0β

(
1 − γ

αU
+

σIσSγ

αV

)
and the final size relation is

ln

(
(1 − γ)SU(0)

SU(∞)

)
=

β

αU
[(1 − γ)SU(0)− SU(∞)]

+
σIβ

αV
[γSV(0)− SV(∞)] +

β

αU
I0

SV(∞) = γSU(0)
(

SU(∞)

(1 − γ)S0

)σS
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Adapting treatment to counter emergence of resistance

This work was undertaken at the request of the Public Health
Agency of Canada during the pandemic preparadness phase prior
to the 2009 p-H1N1 pandemic

Problem: we have antivirals to use against influenza, either
prophylactically or curatively. Using these antivirals may promote
the emergence of antiviral-resistant strains. How do we minimise
this risk?
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Extends the SLIAR model to take into account non-exponentially
distributed stage durations (see lecture on Stochastic
epidemiological models)
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The original model (well, almost the first one)

S L1 L2

I1

A1

I2

A2

RI

RA

D

ΦS εL1

(1−
π)εL2

πε
L 2

γI1

γA1

(1
−
δ)
γI 2

γA2

δγI2
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Reinterpreting terms

Here D stands for detected, U is undetected

p. 32 – Extensions of the KMK model



Working out when the first COVID-19 case occurred

▶ Details of emergence and precise timeline before amplification
started unknown

▶ Amplification in Wuhan
▶ Cluster of pneumonia cases mostly related to the Huanan

Seafood Market
▶ 27 December 2019: first report to local government
▶ 31 December 2019: publication
▶ 8 January 2020: identification of SARS-CoV-2 as causative

agent
▶ ∼ 23 January 2020: lockdown Wuhan and Hubei province +

face mask mandates

▶ By 2020-01-29, virus in all provinces of mainland CHN
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Evidence of earlier spread

▶ Report to Wuhan authorities on 27 December 2019

▶ First export detections in Thailand and Japan on 13 and 16
January 2020 (with actual importations on 8 and 6 January)

=⇒ amplification must have been occuring for a while longer

▶ France: sample taken from 42-year-old male (last foreign travel
to Algeria in August 2019) who presented to ICU on 27 December
2019

▶ Retrospective studies in United Kingdom and Italy also showed
undetected COVID-19 cases in prepandemic period
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Untangling the first case issue

▶ Robert, Rossman & Jaric. Dating first cases of COVID-19.
PLoS Pathogens (2021)
Find likely timing of first case of COVID-19 in China as November
17 (95% CI October 4)

▶ Pekar, Worobey, Moshiri, Scheffler & Wertheim. Timing the
SARS-CoV-2 index case in Hubei province. Science (2021)
Period between mid-October and mid-November 2019 is plausible
interval when the first case of SARS-CoV-2 emerged in Hubei
province

Important when trying to understand global spread, so let me
illustrate with the model I used, taking into account model
evolution since
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Back-calculating the start of spread (example of China)

Cumulative confirmed case counts in China as reported to WHO
was c = 547 cases on tc = 2020-01-22

Let u be a point in parameter space. Solve ODE numerically over
[0, t], with S(0) the population of China, L1(0) = 1 and other state
variables 0. This gives a solution x(t, t0 = 0, u)

Extracting L2(t, t0 = 0, u) from this solution, obtain cumulative
number of new detections as

C(t) =
∫ t

t0=0
pε2L2(s, t0, u) ds

Let t⋆ be s.t. C(t⋆) = 547; then ti = 2020-01-22 − t⋆
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Note on demography

▶ We have already discussed some different possible forms for
demography

▶ In the models with demography here, unless otherwise required,
we use demography such that for the total population

N ′ = b − dN

p. 38 – The SLIRS models and friends



Simplifying the SIRS model

S

I

b
dS

dI

βSI γI

▶ We have already seen the epidemic KMK SIR
model and the endemic SIRS model

▶ By making some simplifications of the endemic
SIRS model, we obtain the SIS model: assume the
time spent in the R compartment goes to zero, i.e.,
ν → ∞

The main characteristics of the model are the same as the SIRS
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S

I

b
dS

dI

βSI γI

S ′ = b + γI − dS − βSI (8a)
I ′ = βSI − (d + γ)I (8b)

with initial conditions S(0) = S0 ≥ 0 and I(0) =
I0 ≥ 0

Clearly, the DFE is similar as for the SIRS

E0 := (S⋆, I⋆) = (N⋆, 0)

with N⋆ = b/d. Also easy to check (exercise!) that

R0 =
β

d + γ

p. 40 – The SLIRS models and friends
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Incubation periods

▶ SIS and SIR: progression from S to I is instantaneous

▶ Several incubation periods:

Disease Incubation period
Yersinia Pestis 2-6 days
Ebola haemorrhagic fever (HF) 2-21 days
Marburg HF 5-10 days
Lassa fever 1-3 weeks
Tse-tse weeks–months
HIV/AIDS months–years

p. 41 – The SLIRS models and friends



Hypotheses

▶ There is demography
▶ New individuals are born at a constant rate b
▶ There is no vertical transmssion: all “newborns” are

susceptible
▶ The disease is non lethal, it causes no additional mortality
▶ New infections occur at the rate f(S, I,N)

▶ There is a period of incubation for the disease
▶ There is a period of time after recovery during which the

disease confers immunity to reinfection (immune period)
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SLIRS

S

L

I

R

b
dS

dL

dI

dR

f(S, I,N)

εL

γI

ν
R

The model is as follows:

S ′ = b + νR − dS − f(S, I,N) (9a)
L ′ = f(S, I,N)− (d + ε)L (9b)
I ′ = εL − (d + γ)I (9c)

R ′ = γI − (d + ν)R (9d)

Meaning of the parameters:
▶ 1/ε average duration of the incubation

period
▶ 1/γ average duration of infectious period
▶ 1/ν average duration of immune period

p. 43 – The SLIRS models and friends
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The basic reproduction number R0

Used frequently in epidemiology (not only math epi)

Definition 2 (R0)
The basic reproduction number R0 is the average number of
secondary cases generated by the introduction of an infectious
individual in a wholly susceptible population

▶ If R0 < 1, then on average, each infectious individual infects
less than one other person, so the epidemic has chances of
dying out

▶ If R0 > 1, then on average, each infectious individual infects
more than one other person and the disease can become
established in the population (or there will be a major
epidemic)

p. 45 – The SLIRS models and friends



Computation of R0

Mathematically, R0 is a bifurcation parameter aggregating some of
the model parameters and such that the disease free equilibrium
(DFE) loses its local asymptotic stability when R0 = 1 is crossed
from left to right

▶ As a consequence, R0 is found by considering the spectrum of
the Jacobian matrix of the system evaluated at the DFE

▶ The matrix quickly becomes hard to deal with (size and
absence of “pattern”) and the form obtained is not unique,
which is annoying when trying to interpret R0

p. 46 – The SLIRS models and friends



The next generation operator
Diekmann and Heesterbeek, characterized in the ODE context by
van den Driessche and Watmough
Consider only individuals harbouring the pathogen, in a vector I,
and form the vectors
▶ F of infection fluxes
▶ V of other fluxes (with − sign)

so that
I ′ = F − V

Then compute the Fréchet derivatives DF and DV with respect to
the infected variables I and evaluate F = DF(DFE) and
V = DV(DFE). Then

R0 = ρ(FV−1)

where ρ is the spectral radius
p. 47 – The SLIRS models and friends



Short summary of van den Driessche and Watmough

Theorem 3 (van den Driessche and Watmough)
Suppose that the DFE exists. Let then R0 be defined by

R0 = ρ(FV−1)

with matrices F and V as indicated before. Then,
▶ if R0 < 1, the DFE is LAS,
▶ if R0 > 1, the DFE is unstable.
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Example of the SLIRS model (9)

Variation of the infected variables in (9) are described by

L ′ = f(S, I,N)− (ε+ d)L
I ′ = εL − (d + γ)I

Write

I ′ =

(
L
I

)′
=

(
f(S, I,N)

0

)
−
(

(ε+ d)L
(d + γ)I − εL

)
=: F − V (10)
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Denote

f ⋆L :=
∂

∂Lf
∣∣∣∣
(S,I,R)=E0

f ⋆I :=
∂

∂I f
∣∣∣∣
(S,I,R)=E0

the values of the partials of the incidence function at the DFE E0

Compute the Jacobian matrices of vectors F and V at the DFE E0

F =

(
f ⋆L f ⋆I
0 0

)
and V =

(
ε+ d 0
−ε d + γ

)
(11)
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Thus
V−1 =

1
(d + ε)(d + γ)

(
d + γ 0
ε d + ε

)

Also, in the case N is constant, ∂f/∂L = 0 and thus

FV−1 =
f ⋆I

(d + ε)(d + γ)

(
ε d + ε
0 0

)

As a consequence,

R0 = ε
f ⋆I

(d + ε)(d + γ)
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Theorem 4
Let

R0 =
εf ⋆I

(d + ε)(d + γ)
(12)

Then
▶ if R0 < 1, the DFE is LAS
▶ if R0 > 1, the DFE is unstable

It is important here to stress that the result we obtain concerns the
local asymptotic stability. We see later that even when R0 < 1,
there can be several locally asymptotically stable equilibria
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Application

The DFE is
(S̄, L̄, Ī, R̄) = (N, 0, 0, 0)

▶ Mass action incidence (frequency-dependent contacts):

f ⋆I = βS̄ ⇒ R0 =
ϵβN

(ϵ+ d)(γ + d)

▶ Standard incidence (proportion-dependent contacts):

f ⋆I =
βS̄
N ⇒ R0 =

ϵβ

(ϵ+ d)(γ + d)
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Links between SLIRS-type models

S ′ = b + νR − dS − f(S, I,N)

L ′ = f(S, I,N)− (d + ε)L
I ′ = εL − (d + γ)I

R ′ = γI − (d + ν)R

SLIR SLIRS where ν = 0
SLIS Limit of SLIRS when ν → ∞
SLI SLIR where γ = 0

SIRS Limit of SLIRS when ε → ∞
SIR SIRS where ν = 0
SIS Limit of SIRS when ν → ∞

Limit SLIS when ε → ∞
SI SIS where ν = 0

p. 54 – The SLIRS models and friends



Values of R0

(S̄, Ī, N̄) values of S, I and N at DFE. Denote f̄I = ∂f/∂I(S̄, Ī, N̄).

SLIRS ε̄fI
(d+ε)(d+γ)

SLIR ε̄fI
(d+ε)(d+γ)

SLIS ε̄fI
(d+ε)(d+γ)

SLI ε̄fI
(d+ε)(d+γ)

SIRS ε̄fI
d+γ

SIR f̄I
d+γ

SIS f̄I
d+γ

SI f̄I
d+γ

p. 55 – The SLIRS models and friends
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SLIRS with vaccination

S I R

V

b

dS dI dR

dV

βSI/N

ϕS

φV σ
β
SI
/N

γI
νR
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The usual situation
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What can happen with vaccination – Backward bifurcation

p. 59 – The SLIRS models and friends
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Vector-borne diseases
Two Ross-Macdonald-type models
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See, e.g., Simoy & Aparicio, Ross-Macdonald models: Which one
should we use?, Acta Tropica (2020)

Ross introduced the model in 1911. Later “tweaked” by
Macdonald to include mosquito latency period

Here, I show a version in the paper cited, with some notation
changed

p. 60 – Vector-borne diseases

https://doi.org/10.1016/j.actatropica.2020.105452
https://doi.org/10.1016/j.actatropica.2020.105452


SH IH RH

SV IV

βHIV SH
H γHIH

βVSV
IH
H

bH

bV

dHSH dHIH dHRH

dVSV dVIV

p. 61 – Vector-borne diseases



Reproduction number

R0 =
βHβV

(γH + γV)dV

V⋆

H⋆
(13)

where H⋆ and V⋆ are the total host and vector populations,
respectively

p. 62 – Vector-borne diseases



SH LH IH RH

SV LV IV

βHIV SH
H εHLH γHIH

βVSV
IH
H

εVLV

bH

bV

dHSH dHLH dHIH dHRH

dVSV dVLV dVIV
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Reproduction number

R0 =
βHβV

(γH + γV)dV

εV
dV + εV

εH
dH + εH

V⋆

H⋆
(14)

where H⋆ and V⋆ are the total host and vector populations,
respectively

Here
fX =

εX
dX + εX

are the fractions of latent individuals (of type X = {V,H}) who
survive the latency period

p. 64 – Vector-borne diseases
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Recall this guy?

SH IH RH

SV IV

βHIV SH
H γHIH

βVSV
IH
H

bH

bV

dHSH dHIH dHRH

dVSV dVIV

p. 65 – Vector-borne diseases



Let us add a few arrows

SH IH RH

SV IV

ΦH γHIH

ΦV

ρHIH

νHRH

bH

bV

dHSH dHIH dHRH

dVSV dVIV

p. 66 – Vector-borne diseases



Arino, Ducrot & Zongo, A metapopulation model for malaria with
transmission-blocking partial immunity in hosts, Journal of
Mathematical Biology (2012)

Incidence functions take the form

ΦH = bH(H,V)σVH
IV
V

and
ΦV = bV(H,V)

(
σHV

IH
H + σ̂HV

RH
H

)
where bH and bV are numbers per unit time of mosquito bites a
human has and the number of humans a mosquito bites,
respectively
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Parameters of the incidence function

▶ σHV probability of transmission of the parasite (in gametocyte
form) from an infectious human to a susceptible mosquito

▶ σ̂HV probability of transmission of the parasite (in gametocyte
form) from a semi-immune human to a susceptible mosquito

▶ σVH probability of transmission of the parasite (in sporozoite
form) from an infectious mosquito to a susceptible human

Additional parameter that can be factored in (all per unit time)
▶ aH maximum number of mosquito bites a human can receive
▶ aV number of times one mosquito would “want to” bite

humans
▶ a average number of bites given to humans by each mosquito
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People to read for malaria models (IMOBO)

See also the work of

▶ Gideon Ngwa at the University of Buea

▶ Nakul Chitnis at the Swiss Tropical and Public Health Institute

Many others...
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More complex models may be needed for malaria

Timing of processes is critical in malaria

Plasmodium life cycle in the mosquito is commensurate with
mosquito lifetime

Need models that are able to account for that, because ODEs are
not really good at this (see beginning of Stochastic systems
lecture)

Mathematics becomes more complicated
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Extensions of the KMK model

The SLIRS models and friends

Vector-borne diseases

A few other models



A few other models
A model of Capasso for ETP
A model for zoonotic transmission of waterborne disease
A few models of schistosomiasis



A minimal model of V. Capasso

H E

cHH

g(E)

γHH
dEE

Human population Environment
1/γH mean infectious period, 1/dE mean lifetime of the agent in
the environment, cH growth rate of the agent due to the human
population, g(E) “force of infection” (I would say “incidence”) of
the agent on human population
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Incidence function

g(E) = Nβph(E) (15)

where
▶ N total human population
▶ β fraction of susceptible individuals in N
▶ p fraction exposed to contaminated environment per unit time

(“probability per unit time to have a “snack” of contaminated
food”)

▶ h(E) probability for an exposed susceptible to get the infection
Typically, we would assume p and β independent of E and H and h
to be saturating
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To ensure (15) satisfies these conditions, we can assume
▶ 0 < g(e1) < g(e2) for 0 < e1 < e2
▶ g(0) = 0
▶ g′′(z) < 0 for all z > 0
▶ 0 < g′+(0) < ∞ (right derivative)
▶ limz→∞

g(z)
z < dEγH

cH

Of course, we also assume dE, cH, γH > 0
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The model

E ′ = cHH − dEE (16a)
H ′ = g(E)− γHH (16b)

H E

cHH

g(E)

γHH
dEE

Human population Environment

Pay attention to the flows..! E ′ does not have a −g(E) and H ′

does not have −cHH. Why?
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Let
R0 =

g′+(0)cH
dEγH

(17)

Theorem 5
▶ If 0 < R0 < 1, then (16) admits only the trivial equilibrium in

the positive orthant, which is GAS
▶ If R0 > 1, then two EP exist: (0, 0), which is unstable, and

z⋆ = (E⋆,H⋆) with E⋆,H⋆ > 0, GAS in R2
+ \ {0, 0}
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Adding a periodic component
Assume p in (15) takes the form

p(t) = p(t + ω) > 0, t ∈ R (18)

i.e., p has period ω. So we now consider the incidence

g(t,E) = p(t)h(E) (19)

with h having the properties prescribed earlier. Letting

pmin := min
0≤t≤ω

p(t), pmax := max
0≤t≤ω

p(t) (20)

then we require that

lim
z→∞

g(z)
z <

dEγH
cHpmax

(21)
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Let
Rmin

0 =
cHpminh′+(0)

dEγH
, Rmax

0 =
cHpmaxh′+(0)

dEγH
(22)

Theorem 6
▶ If 0 < Rmax

0 < 1, then (16) with incidence (19) always goes to
extinction

▶ If Rmin
0 > 1, then a unique nontrivial periodic endemic state

exists for (16) with incidence (19)

p. 77 – A few other models



Simulating (in R) – Incidence function

h = function(E, params) {
# Use Michaelis Menten (Holling type II) growth
OUT = params$g_max * E / (params$g_half+E)
return(OUT)

}
g = function(E, params) {

OUT = params$N * params$beta * params$p * h(E,params)
return(OUT)

}
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The right hand side

rhs_Capasso_ODE = function(t, x, params) {
with(as.list(c(x, params)), {

dE = c_H*H-d_E*E
dH = g(E, params)-gamma_H*H
list(c(dE, dH))

})
}
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Setting parameters

# Put parameters in a list
params = list()
params$N = 1000 # Total population
params$gamma_H = 1/10 # Infectious period
params$d_E = 1/5 # Lifetime agent
params$c_H = 0.1 # Flow from humans
# Human characteristics and behaviour
params$beta = 0.2 # Fraction susceptible
params$p = 0.1 # Probability of having "snack"
# Growth function
params$g_max = 10
params$g_half = 100
# Final time
params$t_f = 150
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Running and plotting (base)

IC <- c(E = 10, H = 0)
tspan = seq(from = 0, to = params$t_f, by = 0.1)

sol_ODE = ode(y = IC,
func = rhs_Capasso_ODE,
times = tspan,
parms = params)

plot(sol_ODE[,"time"], sol_ODE[,"H"],
type = "l", lwd = 2,
xlab = "Time (days)", ylab = "Value")

lines(sol_ODE[,"time"], sol_ODE[,"E"],
lwd = 2, lty = 3)

legend("bottomright", legend = c("H(t)", "E(t)"),
lwd = c(2,2), lty = c(1,3), inset = 0.01)
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Let
R0 =

g′+(0)cH
dEγH

(17)

Theorem 7
▶ If 0 < R0 < 1, then (16) admits only the trivial equilibrium in

the positive orthant, which is GAS
▶ If R0 > 1, then two EP exist: (0, 0), which is unstable, and

z⋆ = (E⋆,H⋆) with E⋆,H⋆ > 0, GAS in R2
+ \ {0, 0}
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Computing R0

With the chosen g, we have

g′(E) = Nβpghalfgmax
(ghalf + E)2

whence
g′+(0) =

Nβpgmax
ghalf

and thus
R0 =

Nβpgmax
ghalf

cH
dEγH

(23)

R0 = function(params) {
with(as.list(params), {

R0 = N*beta*p*g_max*c_H / (g_half*d_E*gamma_H)
return(R0)

})
}
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Showing things dynamically using Shiny

Shiny is an R library (made by RStudio) to easily make interactive
displays

See some documentation here

Some examples here and here

Create a subdirectory with the name of your app and a file called
app.R in there
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Structure of a Shiny app

Need to use library shiny

Define two elements
▶ ui, which sets up the user interface
▶ server, which handles the computations, generation of

figures, etc.

I explain different elements as we progress. See the code in the
CODE folder and Capasso_simpleETP_shiny subdirectory
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The ui part

Here, we use fluidPage to create the UI. There are other
functions: fillPage, fixedPage, flowLayout, navbarPage,
sidebarLayout, splitLayout and verticalLayout

# Define UI
ui <- fluidPage(
)

We now fill this function

p. 87 – A few other models



A title and some sliders

# Application title
titlePanel("Simple ETP model of Capasso"),
# Sidebar with slider inputs for some parameters
sidebarLayout(

sidebarPanel(
sliderInput("inv_gamma_H",

"Average infectious period (days):",
min = 0,
max = 30,
value = 10),

sliderInput("c_H",
"Flow from humans:",
min = 0,
max = 2,
value = 0.1),

Plus other sliders for all other parameters
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Note the little trick...
sliderInput("inv_gamma_H",
"Average infectious period (days):",
min = 0,
max = 30,
value = 10),

I want to give a user friendly version of the parameter value, using
the number of days rather than the inverse, whereas the model
uses the latter. So I prefix the variable name by inv_ and then
process as follows in the server part
params <- list()
for (param_name in names(input)) {

if (grepl("inv_", param_name)) {
new_param_name = gsubs("inv_", "", param_name)
params[[new_param_name]] = 1/input[[param_name]]

} else {
params[[param_name]] = input[[param_name]]

}
}
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The simulation functions can be outside of ui or server, this
makes the code neater

These functions are the same as before (right hand side, g, h, R0),
so they are not shown here
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The server part
# Define server logic required to draw the result
server <- function(input, output) {

##
## Expression that generates the plot
##
output$a_odePlot <- renderPlot({

params <- list()
params$N = 1000 # We could let this vary, we don't here..
for (param_name in names(input)) {
if (grepl("inv_", param_name)) {
new_param_name = gsub("inv_", "", param_name)
params[[new_param_name]] = 1/input[[param_name]]

} else {
params[[param_name]] = input[[param_name]]

}
}
# Initial conditions and time span
IC <- c(E = 10, H = 0)
tspan <- seq(from = 0, to = params$tf, by = 0.1)
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The server part (continued)

# Compute solution
sol_ODE = ode(y = IC,

func = rhs_Capasso_ODE,
times = tspan,
parms = params)

# Make the plot
y_max = max(max(sol_ODE[,"H"]),sol_ODE[,"E"])
plot(sol_ODE[,"time"], sol_ODE[,"H"],

type = "l", lwd = 2,
xlab = "Time (days)", ylab = "Value",
ylim = c(0, y_max),
main = sprintf("R_0=%1.2f", round(R0(params),2)))

lines(sol_ODE[,"time"], sol_ODE[,"E"],
lwd = 2, lty = 3)

legend("topleft", legend = c("H(t)", "E(t)"),
lwd = c(2,2), lty = c(1,3), inset = 0.01)

})
}
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Finally, run the code

# Run the application
shinyApp(ui = ui, server = server)
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Adding a periodic component
Assume p in (15) takes the form

p(t) = p(t + ω) > 0, t ∈ R (24)

i.e., p has period ω. So we now consider the incidence

g(t,E) = p(t)h(E) (19)

with h having the properties prescribed earlier. Letting

pmin := min
0≤t≤ω

p(t), pmax := max
0≤t≤ω

p(t) (25)

then we require that

lim
z→∞

g(z)
z <

dEγH
cHpmax

(26)
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Let
Rmin

0 =
cHpminh′+(0)

dEγH
, Rmax

0 =
cHpmaxh′+(0)

dEγH
(22)

Theorem 8
▶ If 0 < Rmax

0 < 1, then (16) with incidence (19) always goes to
extinction

▶ If Rmin
0 > 1, then a unique nontrivial periodic endemic state

exists for (16) with incidence (19)
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How to add periodicity in numerics?
p_t = function(t, params) {

angle = 2*pi/params$p_period
OUT = cos(angle*t) # Make the base cos wave
OUT = OUT/2*(params$p_max-params$p_min) # Scale
OUT = OUT-min(OUT)+params$p_min # Shift up
return(OUT)

}
g = function(E, params, t) {

OUT = params$N * params$beta * p_t(t, params) * h(E,params)
return(OUT)

}
R0 = function(params) {

with(as.list(params), {
R0 = list()
R0$min = N*beta*p_min*g_max*c_H / (g_half*d_E*gamma_H)
R0$max = N*beta*p_max*g_max*c_H / (g_half*d_E*gamma_H)
return(R0)

})
}
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A few other models
A model of Capasso for ETP
A model for zoonotic transmission of waterborne disease
A few models of schistosomiasis



Zoonotic transmission of waterborne disease

Waters, Hamilton, Sidhu, Sidhu & Dunbar, Zoonotic transmission
of waterborne disease: a mathematical model, Bull Math Biol
(2016)

Used for instance to model Giardia transmission from possums to
humans
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Susceptible humans Infectious humans

Susceptible animals Infectious animals

Live oo/cysts in water

P2P transmission

conversion of oo/cysts to infection

recovery

A2A transmission

recovery

Death of oo/cysts in water

pick up rate

deposit rate
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SH IH

SA IA

W

βH

ρ

γHIH

βA

γAIA

µW

η

αI A
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The full model

SA
′ = −βASAIA + γAIA (27a)

IA ′ = βASAIA − γAIA (27b)
W ′ = αIA − ηW(SH + IH)− µW (27c)
SH

′ = −ρηWSH − βHSHIH + γHIH (27d)
IH ′ = ρηWSH + βHSHIH − γHIH (27e)

Considered with NA = SA + IA and NH = SH + IH constant
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Simplified model

Because NA and NH are constant, (27) can be simplified:

IA ′ = βANAIA − γAIA − βAI2A (28a)
W ′ = αIA − ηWNH − µW (28b)
IH ′ = ρηW(NH − IH) + βHNHIH − γHIH − βHI2H (28c)

Three EP: DFE (0, 0, 0); endemic disease in humans because of
H2H transmission; endemic in both H and A because of W
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Three EP: DFE (0, 0, 0); endemic disease in humans because of
H2H transmission; endemic in both H and A because of W

Let
R0A =

βA
γA

NA and R0H =
βH
γH

NH (29)

▶ DFE LAS if R0A < 1 and R0H < 1, unstable if R0A > 1 or
R0H > 1

▶ If R0H > 1 and R0A < 1, (28) goes to EP with endemicity
only in humans

▶ Endemic EP with both A and H requires R0A > 1 and
R0H < 1

Note that proof is not global
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A few other models
A model of Capasso for ETP
A model for zoonotic transmission of waterborne disease
A few models of schistosomiasis



A model of Woolhouse

Woolhouse. On the application of mathematical models of
schistosome transmission dynamics. I. Natural transmission. Acta
Tropica 49:241-270 (1991)
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The model
Population of H individuals using a body of water containing N
snails
iH mean number of schistosomes per person and iS the proportion
of patent infections in snails (prevalence)

iH ′ = αNiS − γiH (30a)
iS ′ = βHiH(1 − iS)− µ2iS (30b)

▶ α number of schistosomes produced per person per infected
snail per unit time

▶ 1/γ average life expectancy of a schistosome
▶ 1/µ2 average life expectancy of an infected snail
▶ β transmission parameter
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Let the basic reproductive rate for schistosomes be

R0 =
αNβH
γµ2

(31)

(30) has two EP
▶ (i⋆H, i⋆S) = (0, 0), LAS when R0 < 1 and unstable when R0 > 1

▶ (i⋆H, i⋆S) =
(
αN
γ

− µ2
βH , 1 − 1

R0

)
, which only “exists” when

R0 > 1 (and is LAS then)
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Extending the model

Interval between infection of a snail and onset of patency (release
of cercariae) is prepatent or latent period

iH ′ = αNiS − γiH (32a)
ℓS

′ = βHiH(1 − ℓS − iS)− σℓS − µ1ℓS (32b)
iS ′ = σℓS − µ2iS (32c)

▶ 1/σ average duration of prepatent period
▶ f = σ/(σ + µ1) fraction of infected snails surviving prepatent

period
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The basic reproductive rate for schistosomes is now

R0 = fαNβH
γµ2

(33)

(32) has endemic EP

(i⋆H, i⋆S) =
(

αNσ

γ(σ + µ2)
− µ2(σ + µ1)

βH(σ + µ2)
,

σ

σ + µ2

(
1 − 1

R0

))
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Also has models
▶ where snails lose infectiousness (assumed to happen

sometimes)
▶ with larval population dynamics
▶ single variable models
▶ human immigration and emigration
▶ reservoir hosts

Really worth a read
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