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Diseases have been known to be mobile for a while
The plague of Athens of 430 BCE

It first began, it is said, in the parts of Ethiopia
above Egypt, and thence descended into Egypt
and Libya and into most of the [Persian] King’s
country. Suddenly falling upon Athens, it first
attacked the population in Piraeus [..] and af-
terwards appeared in the upper city, when the
deaths became much more frequent.

Thucydides (c. 460 BCE - c. 395 BCE)
History of the Peloponnesian War
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Pathogen spread has evolved with mobility

Pathogens use trade routes

In ancient times, trade routes were “simple”

p. 2 – Spatio-temporal spread of diseases











Pathogen spread has evolved with mobility

Pathogens use trade routes

With the acceleration and globalization of mobility, things are
changing

p. 7 – Spatio-temporal spread of diseases



Henri IV
(1553-1610)

King of Navarre (1572-1610)
King of France (1589-1610)

Jeanne d'Albret
(1528-1572)

Queen of Navarre (1555-1572)

Cosy turtle shell crib in Pau
(then capital of Béarn & Navarre)













Scale of modern mobility difficult to apprehend

Working definition
Mobility is the collection of processes through which individuals
change their current location

Takes many different forms

Evolves constantly

Numbers are .. colossal

p. 14 – Spatio-temporal spread of diseases



● ●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

2000 2005 2010 2015

Number of passengers transported (all countries)

Year

To
ta

l P
A

X
 (

th
ou

sa
nd

s)

2B

2.5B

3B

3.5B

4B



Why mobility is important in the context of health

All migrants/travellers carry with them their “health history”

▶ latent and/or active infections (TB, H1N1, polio)
▶ immunizations (schedules vary by country)
▶ health/nutrition practices (KJv)
▶ treatment methods (antivirals)

Pathogens ignore borders and politics

▶ e.g., antiviral treatment policies for Canada and USA

p. 16 – Spatio-temporal spread of diseases
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Why use metapopulations for disease models?

▶ Appropriate for the description of spatial spread of some
diseases

▶ Ease of simulation

▶ Aggregation of data by governments is most often done at the
jurisdictional level, very easy to reconcile with locations in
metapopulations

p. 17 – Metapopulation models



A few pointers

▶ JA & PvdD. Disease spread in metapopulations. Fields
Institute Communications 48:1-13 (2006)

▶ JA. Diseases in metapopulations. In Modeling and Dynamics
of Infectious Diseases, World Scientific (2009)

▶ JA. Spatio-temporal spread of infectious pathogens of
humans. Infectious Disease Modelling 2(2):218-228 (2017)
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https://julien-arino.github.io/assets/pdf/papers/2006_ArinoPvdD-FIC48.pdf
https://julien-arino.github.io/assets/pdf/papers/2009_Arino-metapopulations.pdf
https://doi.org/10.1016/j.idm.2017.05.001
https://doi.org/10.1016/j.idm.2017.05.001
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Metapopulations with explicit movement

Split continuous space into N discrete geographical locations
(ptatches)

Each location contains compartments (homogeneous groups of
individuals). E.g., preys, predators, etc.

Here, we consider a single compartment, the species of interest,
with no further compartmentalisation

Individuals may move between locations; mqp ≥ 0 rate of
movement of individuals from location p = 1, . . . ,N to location
q = 1, . . . ,N
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Explicit movement (focus on P1)
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Graph setting

Suppose
▶ |P| locations, vertices in a (directed) graph G
▶ Each location contains a certain number of compartments

belonging to a common set C of compartments
▶ Arcs of G represent the possibility for a given compartment to

move between two locations; any two locations are connected
by a maximum of |C| edges

Graph is a digraph: movement is not always symmetric
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G = (P,A) is multi-digraph, where
▶ P is the set of vertices (locations)
▶ A is the set of arcs, i.e., an ordered multiset of pairs of

elements of P

Any two vertices X,Y ∈ P are connected by at most |C| arcs from
X to Y and at most |C| arcs from Y to X

Because there are |C| compartments and movements are
compartment-specific, we also define, for all c ∈ C, Pc and Ac as
well as the compartment-specific digraphs Gc = (Pc,Ac)
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Connection matrix

For a given compartment c ∈ C, a connection matrix can be
associated to the digraph Gc

This is the adjacency matrix of Gc, but we emphasize the reason
why we use Gc by using the term connection

Choosing an ordering of elements of P, the (i, j) entry of the
|P| × |P|-matrix Nc = Nc(Gc) is one if Rc(Pi,Pj) and zero
otherwise, i.e., if Pi has no direct access to Pj

For convenience, the ordering of the locations is generally assumed
the same for all compartments
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Srong connectedness and irreducibility

Definition 1 (Reducible/irreducible matrix)
A matrix A is reducible if there exists a permutation matrix P
such that PTAP is block upper triangular. A matrix that is not
reducible is irreducible

Matrix A ∈ Fn×n is irreducible if for all i, j = 1, . . . , n, there exists k
such that ak

ij > 0, where ak
ij is the (i, j)-entry in Ak

Theorem 2
Strong connectedness ⇔ irreducibility of the connection matrix Cc
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Dynamics of the system:
▶ dynamics in each location resulting from the interactions of

the various compartments,
▶ operator describing the movements of individuals between the

locations.
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A very simple example to facilitate ingestion

Suppose an SIS model over a set P of locations. If need be,
choose an order on elements of P and index locations as 1, . . . , |P|

Let Sp and Ip be number of susceptible and infectious individuals in
location p ∈ P , respectively

Then, in location p ∈ P , dynamics governed by

S′
p = bp − βpSpIp + γpIp − dpSp +

∑
q∈P

mSpqSq (1a)

I′p = βpSpIp − γpIp − dpIp +
∑
q∈P

mIpqIq (1b)

(Don’t worry about why this is a metapopulation model this far)
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Notation

▶ Ncp(t) number of individuals of compartment c in location p
at time t

(Here and elsewhere: omit dependence on t unless it causes
confusion)

▶ Nc =
(
Nc1, . . . ,Nc|P|

)T distribution of individuals of
compartment c ∈ C among the different locations
[E.g., for (1), NS = (S1, . . . , S|P|)

T]

▶ Np =
(

Np
1, . . . ,N

p
|P|

)T
composition of the population in

location p ∈ P
[E.g., for (1), Np = (Sp, Ip)T]
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General form of the system
Interaction function f and movement operator M can be
time-dependent (not shown)
▶ Equation by equation; for all c ∈ C and p ∈ P

d
dtNcp = fcp(Np) + Mcp(Ns) (2)

with fcp : R|P| → R and Mcp : R|C| → R
▶ Compartment by compartment; for all c ∈ C

d
dtNc = fp(Np) + Mc(Nc) (3)

with fp : R|P| → R|C| and Mp
s : R|C| → R|C|

▶ Location by location; for all p = 1, . . . , |P|

d
dtNp = fp(Np) + Mp(Np) (4)

with fp : R|P| → R|C| and Mp
s : R|C| → R|C|
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Metapopulation models with linear movement

Use a linear autonomous movement operator

Then, for a given compartment c ∈ C and in a given location p ∈ P

N′
cp = fcp(Np) +

∑
q∈P
q ̸=p

mcpqNcq −

∑
q∈P
q̸=p

mcqp

Ncp

where mcpq rate of movement of individuals in compartment c ∈ C
from location q ∈ P to location p ∈ P
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A more compact notation

To make

N′
cp = fcp(Np) +

∑
q∈P
q ̸=p

mcpqNcq −

∑
q∈P
q̸=p

mcqp

Ncp

more compact, denote the rate of leaving location p as

mcpp = −
∑
q∈P
q̸=p

mcqp (5)

Then
N′

s = fcp(Np) +
∑
q∈P

mcpqNcq (6)
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Vector form of the system

For compartment c ∈ C,

N′
c = f(N) +McNc (7)

with

Mc =


−
∑

k∈P
mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑

k∈P
mck|P|

 (8)
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Definitions and notation for matrices

▶ M ∈ Rn×n a square matrix with entries denoted mij

▶ M ≥ 0 if mij ≥ 0 for all i, j (could be the zero matrix); M > 0
if M ≥ 0 and ∃i, j with mij > 0; M ≫ 0 if mij > 0
∀i, j = 1, . . . , n. Same notation for vectors

▶ σ(M) = {λ ∈ C;Mλ = λv, v ̸= 0} spectrum of M

▶ ρ(M) = maxλ∈σ(M){|λ|} spectral radius

▶ s(M) = maxλ∈σ(M){Re (λ)} spectral abscissa (or stability
modulus)

▶ M is an M-matrix if it is a Z-matrix (mij ≤ 0 for i ̸= j) and
M = sI− A, with A ≥ 0 and s ≥ ρ(A)
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The movement matrix
The matrix

Mc =


−
∑

k∈P
mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑

k∈P
mck|P|

 (8)

is the movement matrix

It plays an extremely important role in the analysis of
metapopulation systems, so we’ll spend some time discussing its
properties

Mc describes
▶ existence of connections
▶ when they exist, their “intensity”
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Properties of the movement matrix M

First, remark −Mc is a Laplacian matrix, i.e., the adjacency
matrix minus the degree matrix

Lemma 3
1. 0 ∈ σ(M) corresponding to left e.v. 1T [σ spectrum]
2. −M is a singular M-matrix
3. 0 = s(M) ∈ σ(M) [s spectral abscissa]
4. If M irreducible, then s(M) has multiplicity 1

For complete proof of Lemma 3 and Proposition 4 (next page), see
Arino, Bajeux & Kirkland, BMB 2019
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http://dx.doi.org/10.1007/s11538-019-00593-1


Proposition 4 (D a diagonal matrix)

1. s(M+ dI) = d, ∀d ∈ R
2. s(M+D) ∈ σ(M+D) associated to v > 0. If M irreducible,

s(M+ D) has multiplicity 1 and is associated to v ≫ 0
3. If diag(D) ≫ 0, then D −M invertible M-matrix and

(D −M)−1 > 0
4. M irreducible and diag(D) > 0 =⇒ D −M nonsingular

irreducible M-matrix and (D −M)−1 ≫ 0

p. 35 – Metapopulation models
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Behaviour of the mobility component – No demography

Assume no within-location dynamics, just movement. Then (7)
takes the form

N′
c = McNc (9)

Theorem 5
For a given compartment c ∈ C, suppose that the movement
matrix Mc is irreducible. Then for any Nc(0) > 0, (9) satisfies

lim
t→∞

Nc(t) = N⋆
c ≫ 0

Note that N⋆
c depends on 1lTNc(0)
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Reduction to total population per location – Demography

Let
Tp =

∑
c∈C

Ncp

be the total population in location p

It is often posssible to obtain, in each location p ∈ P , an equation
for the evolution of the total population that takes the form

T′
p = Dp(Tp) +

∑
c∈C

∑
q∈P

mcpqNcq (10)

where Dp(Tp) describes the demography in location p
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Nature of the demography

Most common types of demographic functions
▶ Dp(Tp) = bp − dpTp (asymptotically constant population)
▶ Dp(Tp) = bpTp − dpTp
▶ Dp(Tp) = dpTp − dpTp = 0 (constant population)
▶ Dp(Tp) = rpTp(1− Tp/Kp) (logistic demography)

In what follows, assume

Dp(Tp) = bp − dpTp (11)
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Vector / matrix form of the equation

Assuming demography is of the form (11), write (10) in vector
form

T′ = b − dT +
∑
c∈C

McNc (12)

where
▶ b = (b1, . . . , b|P|)

T ∈ R|P|

▶ T = (T1, . . . ,T|P|)
T ∈ R|P|

▶ N = (Nc1, . . . ,Nc|P|)
T ∈ R|P|

▶ d = diag
(
d1, . . . , d|P|

)
∈ R|P|×|P|

▶ Mc ∈ R|P|×|P|
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Movement similar for all compartments

Definition 6 (Movement similar for all compartments)
Movement is similar for all compartments if, in the
multi-digraph G, existence of a c ∈ C such that Rc(X,Y) implies
that Rc(X,Y) for all c ∈ C
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The nice case

Suppose movement rates equal for all compartments, i.e.,

Mc ≡ M

(stronger than Definition 6, which only requires zero/nonzero
patterns in all Mc, c ∈ C, to be the same)

Then

T′ = b − dT +M
∑
c∈C

Nc

= b − dT +MT (13)
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Equilibria

T′ = 0 ⇔ b − dT +MT = 0
⇔ (d −M)T = b
⇔ T⋆ = (d −M)−1b

given, of course, that d −M (or, equivalently, M− d) is
invertible..

Is it?
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Nonsingularity of M− d

Using the spectrum shift of Theorem 4(1)

s
(
M−min

p∈P
dp

)
= −min

p∈P
dp

This gives a constraint: for total population to behave well (in
general, we want this), we must assume all death rates are positive

Assume they are (in other words, assume d nonsingular). Then
M− d is nonsingular and T⋆ = (d −M)−1b unique
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Behaviour of the total population
Equal irreducible movement case

T⋆ = (d −M)−1b attracts solutions of

T′ = b − dT +MT =: f(T)

Indeed, we have
Df = M− d

Since we now assume that d is nonsingular, we have by
Theorem 4(1) that s(M−minp∈P dp) = −minp∈P dp < 0

M irreducible → T⋆ ≫ 0 (provided b > 0, of course)
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Behaviour of total population
Equal reducible movement case

Theorem 7
Assume M reducible. Let a be the number of minimal absorbing
sets in the corresponding connection graph G(M). Then
1. The spectral abscissa s(M) = 0 has multiplicity a
2. Associated to s(M) is a nonnegative eigenvector v s.t.

▶ vi > 0 if i is a vertex in a minimal absorbing set
▶ vi = 0 if i is a transient vertex

From Foster and Jacquez, Multiple zeros for eigenvalues and the
multiplicity of traps of a linear compartmental system,
Mathematical Biosciences (1975)
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The not-so-nice case

Recall that
T′ = b − dT +

∑
c∈C

McNc

Suppose movement rates similar for all compartments, i.e., the
zero/nonzero patterns in all matrices are the same but not the
entries
Let

M =

[
min

X∈{S,L,I,R}
mXpq

]
pq,p ̸=q

M =

[
max

X∈{S,L,I,R}
mXpq

]
pq,p=q

and

M =

[
max

X∈{S,L,I,R}
mXpq

]
pq,p ̸=q

M =

[
min

X∈{S,L,I,R}
mXpq

]
pq,p=q
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Cool, no? No!

Then we have

b − dT +MT ≤ T′ ≤ b − dT +MT

Me, roughly every 6 months: Oooh, coooool, a linear differential
inclusion!

Me, roughly 10 minutes after that previous statement: Quel con!

Indeed M and M are are not movement matrices (in particular,
their column sums are not all zero)

So no luck there..

However, we can still do stuff, but more on a case-by-case basis

p. 47 – Metapopulation models
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The toy SLIRS model in patches

S L I R
B(N) Φ εL γI

νR

dS dL (d + δ)I dR

S′ = B(N) + νR − Φ− dS (14a)
L′ = Φ− (ε+ d)L (14b)
I′ = εL − (γ + d + δ)I (14c)

R′ = γI − (ν + d)R (14d)

Φ force of infection. Depends on S, I, possibly N. In general

Φ = β(N)ϕ(S, I)

Mass action, Φ = βSI, proportional incidence, Φ = βSI/N
p. 48 – Metapopulation models



|P|-SLIRS model

S′
p = Bp (Np) + νpRp − Φp − dpSp+

∑
q∈PmSpqSq (15a)

L′
p = Φp − (εp + dp) Lp+

∑
q∈PmLpqLq (15b)

I′p = εpLp − (γp + dp)Ip+
∑

q∈PmIpqIq (15c)
R′

p = γpIp − (νp + dp)Rp+
∑

q∈PmRpqRq (15d)

with incidence

Φp = βp
SpIp
Nqp

p
, qp ∈ {0, 1} (15e)
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|S| |P|-SLIRS (multiple species)
p ∈ P and s ∈ S (a set of species)

S′
sp = Bsp(Nsp) + νspRsp − Φsp − dspSsp+

∑
q∈PmSspqSsq (16a)

L′
sp = Φsp − (εsp + dsp)Lsp+

∑
q∈PmLspqLsq (16b)

I′sp = εspLsp − (γsp + dsp)Isp+
∑

q∈PmIspqIsq (16c)
Rsp = γspIsp − (νsp + dsp)Rsp+

∑
q∈PmRspqRsq (16d)

with incidence

Φsp =
∑
k∈S

βskp
SspIkp
Nqp

p
, qp ∈ {0, 1} (16e)

▶ JA, Davis, Hartley, Jordan, Miller & PvdD. A multi-species epidemic model with spatial dynamics.
Mathematical Medicine and Biology 22(2):129-142 (2005)

▶ JA, Jordan & PvdD. Quarantine in a multi-species epidemic model with spatial dynamics. Mathematical
Biosciences 206(1):46-60 (2007)
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https://julien-arino.github.io/assets/pdf/papers/2005_ArinoDavisHartleyJordanMillerPvdD-MMB22.pdf
https://julien-arino.github.io/assets/pdf/papers/2007_ArinoJordanPvdD-MBS206.pdf


|P|2-SLIRS (residents-travellers)

S′
pq =Bpq

(
Nr

p
)
+ νpqRpq − Φpq − dpqSpq+

∑
k∈PmSpqkSpk (17a)

L′
pq =Φpq − (εpq + dpq)Lpq+

∑
k∈PmLpqkLpk (17b)

I′pq =εpqLpq − (γpq + dpq)Ipq+
∑

k∈PmIpqkIpk (17c)
R′

pq =γpqIpq − (νpq + dpq)Rpq+
∑

k∈PmRpqkRpk (17d)

with incidence

Φpq =
∑
k∈P

βpqk
SpqIkq
Nqq

p
, qq = {0, 1} (17e)

▶ Sattenspiel & Dietz. A structured epidemic model incorporating geographic mobility among regions (1995)
▶ JA & PvdD. A multi-city epidemic model. Mathematical Population Studies 10(3):175-193 (2003)
▶ JA & PvdD. The basic reproduction number in a multi-city compartmental epidemic model. In Positive

Systems (2003)
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https://doi.org/10.1016/0025-5564(94)00068-B
https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPvdD-MPS10_correct.pdf
https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPvdD-LNCIS294.pdf


Steps for an analysis

Basic steps
1. Well-posedness of the system
2. Existence of disease free equilibria (DFE)
3. Computation of a reproduction number R0, study local

asymptotic stability of DFE
4. If DFE unique, prove global asymptotic stability when R0 < 1

Additional steps
5. Existence of mixed equilibria, with some locations at DFE and

others with disease
6. Computation of some bounds on R0

7. EEP and its LAS & GAS properties
. . .
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Analysis – Toy system

For simplicity, consider |P|-SLIRS with Bp(Np) = Bp

S′
p = Bp − Φp − dpSp + νpRp +

∑
q∈PmSpqSq (18a)

L′
p = Φp − (εp + dp) Lp +

∑
q∈PmLpqLq (18b)

I′p = εpLp − (γp + dp)Ip +
∑

q∈PmIpqIq (18c)
R′

p = γpIp − (νp + dp)Rp +
∑

q∈PmRpqRq (18d)

with incidence

Φp = βp
SpIp
Nqp

p
, qp ∈ {0, 1} (18e)

System of 4|P| equations
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Don’t panic: size is not that bad..

System of 4|P| equations !!!

However, a lot of structure:
▶ |P| copies of individual units, each comprising 4 equations
▶ Dynamics of individual units well understood
▶ Coupling is linear

=⇒ Good case of large-scale system

(matrix analysis is your friend)
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Existence and uniqueness

▶ Existence and uniqueness of solutions classic, assured by good
choice of birth and force of infection functions

▶ In the cases treated later, the birth function is either constant
or a linear combination of state variables

▶ May exist problems at the origin, if the force of infection is
not defined there

▶ Assumption form now on: existence and uniqueness
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Other basic stuff

Skipped until I homogeneise notation

Not complicated but sometimes tedious

Easy if it has been proved for the constituting units
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Disease free equilibrium

The model is at equilibrium if the time derivatives are zero

Definition 8 (Metapopulation DFE)
In the case of system (18), location p ∈ P is at a disease-free
equilibrium (DFE) if Lp = Ip = 0, and the |P|-location model is at
a metapopulation DFE if Lp = Ip = 0 for all p ∈ P

Here, we want to find the DFE for the |P|-location model. Later,
the existence of mixed equilibria, with some locations at the DFE
and others at an endemic equilibrium, is considered

(For (16), replace Lp with Lsp and Ip with Isp, for (17), replace Lp
by Lpp and Ip by Ipp. To simplify notation, we could write L• and
I•)
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Assume (18) at metapopulation DFE. Then Φp = 0 and

0 = Bp − dpSp + νpRp +
∑

q∈PmSpqSq

0 = − (νp + dp)Rp +
∑

q∈PmRpqRq

Want to solve for Sp,Rp. Here, it is best (crucial in fact) to
remember some linear algebra. Write system in vector form:

0 = b − dS + νR +MSS
0 = − (ν + d)R +MRR

where S,R,b ∈ R|P|, d, ν,MS,MR |P| × |P|-matrices (d, ν
diagonal)
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R at DFE

Recall second equation:

0 = − (ν + d)R +MRR ⇔ (MR − ν − d)R = 0

So unique solution R = 0 if MR − ν − d invertible Is it?

We have been here before!

From spectrum shift, s(MR − ν − d) = −minp∈P(νp + dp) < 0

So, given L = I = 0, R = 0 is the unique equilibrium and

lim
t→∞

R(t) = 0

=⇒ DFE has L = I = R = 0
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S at the DFE
DFE has L = I = R = 0 and b − dS +MSS = 0, i.e.,

S = (d −MS)−1b

Recall: −MS singular M-matrix. From previous reasoning,
d −MS has instability modulus shifted right by minp∈P dp. So:
▶ d −MS invertible
▶ d −MS nonsingular M-matrix

Second point =⇒ (d −MS)−1 > 0 =⇒ (d −MS)−1b > 0
(would have ≫ 0 if MS irreducible)

So DFE makes sense with

(S,L, I,R) =
(
(d −MS)−1b, 0, 0, 0

)
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▶ Linear stability of the disease free equilibrium can be
investigated by using the next generation matrix

▶ In general, R0 depends on the demographic, disease and
mobility parameters
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Computing the basic reproduction number R0

Use next generation method with Ξ = {L1, . . . , L|P|, I1, . . . , I|P|},
Ξ′ = F − V

F =
(
Φ1, . . . ,Φ|P|, 0, . . . , 0

)T

V =



(ε1 + d1) L1 −
∑

q∈P
mL1qLq

...(
ε|P| + d|P|

)
L|P| −

∑
q∈P

mL|P|qLq

−ε1L1 + (γ1 + d1)I1 −
∑

q∈P
mI1qIq

...
−ε|P|L|P| + (γ|P| + d|P|)I|P| −

∑
q∈P

mI|P|qIq


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Differentiate w.r.t. Ξ:

DF =



∂Φ1
∂L1

· · · ∂Φ1
∂L|P|

∂Φ1
∂I1

· · · ∂Φ1
∂I|P|

... ... ... ...
∂Φ|P|

∂L1
· · ·

∂Φ|P|

∂L|P|

∂Φ|P|

∂I1
· · ·

∂Φ|P|

∂I|P|
0 · · · 0 0 · · · 0
... ... ... ...
0 · · · 0 0 · · · 0



p. 63 – Metapopulation models



Note that
∂Φp
∂Lk

=
∂Φp
∂Ik

= 0

whenever k ̸= p, so

DF =

(
diag

(
∂Φ1
∂L1

, . . . ,
∂Φ|P|
∂L|P|

)
diag

(
∂Φ1
∂I1 , . . . ,

∂Φ|P|
∂I|P|

)
0 0

)
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Evaluate DF at DFE

If Φp = βpSpIp, then

▶ ∂Φp
∂Lp

= 0

▶ ∂Φp
∂Ip

= βpSp

If Φp = βp
SpIp
Np

, then

▶ ∂Φp
∂Lp

= βp
SpIp
N2p

= 0 at

DFE
▶ ∂Φp

∂Ip
= βp

Sp
Np

at DFE

In both cases, ∂/∂L block is zero so

F = DF(DFE) =
(

0 diag
(
∂Φ1
∂I1 , . . . ,

∂Φ|P|
∂I|P|

)
0 0

)
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Compute DV and evaluate at DFE

V =

(
diagp(εp + dp)−ML 0

−diagp(εp) diagp(γp + dp)−MI

)
where diagp(zp) := diag(z1, . . . , z|P|)

Inverse of V easy (2× 2 block lower triangular):

V−1 =

((
diagp(εp + dp)−ML)−1 0

Ṽ−1
21

(
diagp(γp + dp)−MI)−1

)

where

Ṽ−1
21 =

(
diagp(εp + dp)−ML

)−1

diagp(εp)
(
diagp(γp + dp)−MI

)−1
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R0 as ρ(FV−1)

Next generation matrix

FV−1 =

(
0 F12
0 0

)(
Ṽ−1

11 0
Ṽ−1

21 Ṽ−1
22

)
=

(
F12Ṽ−1

21 F12Ṽ−1
22

0 0

)
where Ṽ−1

ij is block ij in V−1. So

R0 = ρ
(

F12Ṽ−1
21

)
i.e.,

R0 = ρ

(
diag

(
∂Φ1
∂I1

, . . . ,
∂Φ|P|

∂I|P|

)(
diagp(εp + dp)−ML

)−1

diagp(εp)
(
diagp(γp + dp)−MI

)−1
)
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Local asymptotic stability of the DFE
Theorem 9
Define R0 for the |P|-SLIRS as

R0 = ρ

(
diag

(
∂Φ1
∂I1

, . . . ,
∂Φ|P|

∂I|P|

)(
diagp(εp + dp)−ML

)−1

diagp(εp)
(
diagp(γp + dp)−MI

)−1
)

Then the DFE

(S,L, I,R) =
(
(d −MS)−1b, 0, 0, 0

)
is locally asymptotically stable if R0 < 1 and unstable if R0 > 1

From PvdD & Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models

of disease transmission, Bulletin of Mathematical Biology 180(1-2): 29-48 (2002)
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Some remarks about R0

The expression for R0 in Theorem 9 is exact

However, unless you consider a very small set of locations, you will
not get a closed form expression

Indeed, by Theorem 4(3) and more importantly (often M is
irreducible), Theorem 4(4), the two inverses in R0 are likely
crowded (≫ 0 in the irreducible case)

However, numerically, this works easy unless conditioning is bad
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Do not in R0 put all your .. interpretation?
An urban centre and satellite cities

Winnipeg as urban centre and 3 smaller satellite cities: Portage la
Prairie, Selkirk and Steinbach
▶ population density low to very low outside of Winnipeg
▶ MB road network well studied by MB Infrastructure Traffic

Engineering Branch

JA & S Portet. Epidemiological implications of mobility between a
large urban centre and smaller satellite cities. Journal of
Mathematical Biology 71(5):1243-1265 (2015)
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Known and estimated quantities

City Pop. (2014) Pop. (now) Dist. Avg. trips/day
Winnipeg (W) 663,617 749,607 - -

Portage la Prairie (1) 12,996 13,270 88 4,115
Selkirk (2) 9,834 10,504 34 7,983

Steinbach (3) 13,524 17,806 66 7,505
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Estimating movement rates

Assume myx movement rate from city x to city y. *Ceteris
paribus*, N′

x = −myxNx, so Nx(t) = Nx(0)e−myxt. Therefore, after
one day, Nx(1) = Nx(0)e−myx , i.e.,

myx = − ln

(
Nx(1)
Nx(0)

)
Now, Nx(1) = Nx(0)− Tyx, where Tyx number of individuals going
from x to y / day. So

myx = − ln

(
1− Tyx

Nx(0)

)
Computed for all pairs (W, i) and (i,W) of cities
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Sensitivity of R0 to variations of Rx
0 ∈ [0.5, 3]

with disease: Rx
0 = 1.5; without disease: Rx

0 = 0.5. Each box and
corresponding whiskers are 10,000 simulations
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Lower connectivity can drive R0

PLP and Steinbach have comparable populations but with
parameters used, only PLP can cause the general R0 to take
values larger than 1 when RW

0 < 1

This is due to the movement rate: if M = 0, then

R0 = max{RW
0 ,R1

0,R2
0,R3

0},

since FV−1 is then block diagonal

Movement rates to and from PLP are lower → situation closer to
uncoupled case and R1

0 has more impact on the general R0
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R0 does not tell the whole story!

Plots as functions of R1
0 in PLP and the reduction of movement

between Winnipeg and PLP. Left: general R0. Right: Attack rate
in Winnipeg
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The toy |P|-SLIRS

LAS results for R0 < 1 can sometimes be strengthened to GAS.
One class of models where this works often is when the population
is either constant or asymptotically constant and incidence is
standard

Theorem 10
Let R0 be defined as in Theorem 9 and use proportional incidence
Φp = βpSpIp/Np. If R0 < 1, then the DFE of system (18) is
globally asymptotically stable
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|S| |P|-SLIRS with multiple species

In the case in which movement is equal for all compartments and
there is no disease death, a comparison theorem argument can be
used as in Theorem 10 to show that if R0 < 1, then the DFE of
the |S| |P|-SLIRS (16) is globally asymptotically stable.

Theorem 11
For system (16) with |S| species and |P| locations, with movement
equal for all compartments, define R0 appropriately and use
proportional incidence. If R0 < 1, then the DFE is globally
asymptotically stable
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Metapopulation-specific problems – Two main types

▶ Inheritance problems – Which of the properties of the
constituting units are inherited by the metapopulation?

▶ Metapopulation-specific behaviours – Are there dynamic
behaviours observed in a metapopulation not observed in the
constituting units?
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Inherited dynamical properties (a.k.a. I am lazy)
Given

s′kp = fkp(Sp, Ip) (19a)
i′ℓp = gℓp(Sp, Ip) (19b)

with known properties, what is known of

s′kp = fkp(Sp, Ip) +
∑

q∈Pmkpqskq (20a)
i′ℓp = gℓp(Sp, Ip) +

∑
q∈Pmℓpqiℓq (20b)

▶ Existence and uniqueness ✓
▶ Invariance of R•

+ under the flow ✓
▶ Boundedness ✓
▶ Location of individual R0i and general R0 ?
▶ GAS ?

-
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An inheritance problem – Backward bifurcations

▶ Suppose a model that, isolated in a single patch, undergoes
so-called backward bifurcations

▶ This means the model admits subthreshold endemic equilibria
▶ What happens when you couple many such consistuting units?

YES, coupling together backward bifurcating units can lead to a
system-level backward bifurcation

JA, Ducrot & Zongo. A metapopulation model for malaria with
transmission-blocking partial immunity in hosts. Journal of
Mathematical Biology 64(3):423-448 (2012)
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Metapopulation-induced behaviours ?

“Converse” problem to inheritance problem. Given

s′kp = fkp(Sp, Ip) (9a)
i′ℓp = gℓp(Sp, Ip) (9b)

with known properties, does

s′kp = fkp(Sp, Ip) +
∑

q∈Pmkpqskq (10a)
i′ℓp = gℓp(Sp, Ip) +

∑
q∈Pmℓpqiℓq (10b)

exhibit some behaviours not observed in the uncoupled system?
E.g.: units have {R0 < 1 =⇒ DFE GAS, R0 > 1 =⇒ 1 GAS
EEP} behaviour, metapopulation has periodic solutions
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Mixed equilibria

Can there be situations where some locations are at the DFE and
others at an EEP?

This is the problem of mixed equilibria

This is a metapopulation-specific problem, not one of inheritance
of dynamical properties!
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Types of equilibria

Definition 12 (Location level EP)
Location p ∈ P at equilibrium is empty if X⋆

p = 0, at the
disease-free equilibrium if X⋆

p = (s⋆k1p, . . . , s⋆kup, 0, . . . , 0), where
k1, . . . , ku are some indices with 1 ≤ u ≤ |U| and s⋆k1p, . . . , s⋆kup are
positive, and at an endemic equilibrium if Xp ≫ 0

Definition 13 (Metapopulation level EP)
A population-free equilibrium has all locations empty. A
metapopulation disease-free equilibrium has all locations at the
disease-free equilibrium for the same compartments. A
metapopulation endemic equilibrium has all locations at an
endemic equilibrium
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Mixed equilibria

Definition 14
A mixed equilibrium is an equilibrium such that
▶ all locations are at a disease-free equilibrium but the system is

not at a metapopulation disease-free equilibrium
▶ or, there are at least two locations that have different types of

location-level equilibrium (empty, disease-free or endemic)

E.g.,
((S1, I1,R1), (S2, I2,R2)) = ((+, 0, 0), (+,+,+))

is mixed and so is

((S1, I1,R1), (S2, I2,R2)) = ((+, 0, 0), (+, 0,+))
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Theorem 15
Suppose that movement is similar for all compartments (MSAC)
and that the system is at equilibrium
▶ If patch p ∈ P is empty, then all patches in A(p) are empty
▶ If patch p ∈ P is at a disease free equilibrium, then the

subsystem consisting of all patches in {p,A(p)} is at a
metapopulation disease free equilibrium

▶ If patch p ∈ P is at an endemic equilibrium, then all patches
in D(p) are also at an endemic equilibrium

▶ If Gc is strongly connected for some compartment c ∈ C, then
there does not exist mixed equilibria

Note that MSAC =⇒ Ac = A and Dc = D for all c ∈ C
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▶ JA. Spatio-temporal spread of infectious pathogens of
humans. Infectious Disease Modelling 2(2):218-228 (2017)

▶ JA. Mathematical epidemiology in a data-rich world.
Infectious Disease Modelling 5:161-188 (2020)

▶ github repo modelling-with-data
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Not very difficult

As for the mathematical analysis: if you do things carefully and
think about things a bit, numerics are not hard. Well: not harder
than numerics in low-D

Exploit vector structure
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Set up parameters

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1e+06
countries = c("Canada", "China", "India", "Pakistan", "

Philippines")
T = matrix(data =

c(0, 1268, 900, 489, 200,
1274, 0, 678, 859, 150,
985, 703, 0, 148, 58,
515, 893, 144, 0, 9,
209, 174, 90, 2, 0),

nrow = 5, ncol = 5, byrow = TRUE)^^I
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Work out movement matrix

p = list()
# Use the approximation explained in Arino & Portet (JMB 2015)
p$M = mat.or.vec(nr = dim(T)[1], nc = dim(T)[2])
for (from in 1:5) {

for (to in 1:5) {
p$M[to, from] = -log(1 - T[from, to]/pop[from])

}
p$M[from, from] = 0

}
p$M = p$M - diag(colSums(p$M))
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p$P = dim(p$M)[1]
p$eta = rep(0.3, p$P)
p$epsilon = rep((1/1.5), p$P)
p$pi = rep(0.7, p$P)
p$gammaI = rep((1/5), p$P)
p$gammaA = rep((1/3), p$P)
# The desired values for R_0
R_0 = rep(1.5, p$P)
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Write down indices of the different state variable types

Save index of state variable types in state variables vector (we have
to use a vector and thus, for instance, the name “S” needs to be
defined)
p$idx_S = 1:p$P
p$idx_L = (p$P+1):(2*p$P)
p$idx_I = (2*p$P+1):(3*p$P)
p$idx_A = (3*p$P+1):(4*p$P)
p$idx_R = (4*p$P+1):(5*p$P)
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Set up IC and time

# Set initial conditions. For example, we start with 2
# infectious individuals in Canada.
L0 = mat.or.vec(p$P, 1)
I0 = mat.or.vec(p$P, 1)
A0 = mat.or.vec(p$P, 1)
R0 = mat.or.vec(p$P, 1)
I0[1] = 2
S0 = pop - (L0 + I0 + A0 + R0)
# Vector of initial conditions to be passed to ODE solver.
IC = c(S = S0, L = L0, I = I0, A = A0, R = R0)
# Time span of the simulation (5 years here)
tspan = seq(from = 0, to = 5 * 365.25, by = 0.1)
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Set up β to avoid blow up

Let us take R0 = 1.5 for patches in isolation. Solve R0 for β

β =
R0
S(0)

(1− πp
γIp

+
πpηp
γAp

)−1

for (i in 1:p$P) {
p$beta[i] =

R_0[i] / S0[i] * 1/((1 - p$pi[i])/p$gammaI[i] + p$pi[i] * p$
eta[i]/p$gammaA[i])

}
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Define the vector field

SLIAR_metapop_rhs <- function(t, x, p) {
with(as.list(p), {

S = x[idx_S]
L = x[idx_L]
I = x[idx_I]
A = x[idx_A]
R = x[idx_R]
N = S + L + I + A + R
Phi = beta * S * (I + eta * A) / N
dS = - Phi + MS \%*\% S
dL = Phi - epsilon * L + p$ML \%*\% L
dI = (1 - pi) * epsilon * L - gammaI * I + MI \%*\% I
dA = pi * epsilon * L - gammaA * A + MA \%*\% A
dR = gammaI * I + gammaA * A + MR \%*\% R
dx = list(c(dS, dL, dI, dA, dR))
return(dx)

})
}^^I
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And now call the solver

# Call the ODE solver
sol <- ode(y = IC,

times = tspan,
func = SLIAR_metapop_rhs,
parms = p,
method = "ode45")
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One little trick (case with demography)

Suppose demographic EP is N⋆ = (d −M)−1b
Want to maintain N(t) = N⋆ for all t to ignore convergence to
demographic EP. Think in terms of b:

N′ = 0 ⇐⇒ b − dN +MN = 0 ⇐⇒ b = (d −M)N

So take b = (d −M)N⋆

Then
N′ = (d −M)N⋆ − dN +MN

and thus if N(0) = N⋆, then N′(0) = 0 and thus N′ = 0 for all
t ≥ 0, i.e., N(t) = N⋆ for all t ≥ 0
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Word of warning about that trick, though..

b = (d −M)N⋆

d −M has nonnegative (typically positive) diagonal entries and
nonpositive off-diagonal entries
Easy to think of situations where the diagonal will be dominated
by the off-diagonal, so b could have negative entries
=⇒ use this for numerics, not for the mathematical analysis
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Spatio-temporal spread of diseases

Metapopulation models

Spatial propagation on a “road”

A diffusion-type spatial spread model





Spatial spread of an epidemic on a “road”

▶ SIS and SIR models

▶ Consider a road of length L

▶ S(x, t), I(x, t) and (when relevant) R(x, t) are the densities of
individuals in the different compartments at location x ∈ [0, L]
at time t

▶ For simplicity, denote

∂

∂tX(x, t) = Xt(x, t)
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The SIR model on the road

St(x, t) = −β(x, t)S(x, t)− dS(x, t) + dN(x) + λ1I(x, t) (21a)
It(x, t) = λ(x, t)S(x, t)− dI(x, t)− (γ1 + γ2)I(x, t) (21b)

Rt(x, t) = γ2I(x, t)− dR(x, t) (21c)

where the force of infection is

λ(x, t) = 1
N

∫ L

0
β(x, x′)I(x, x′)dx′ (21d)

and the total population along the road is

N =

∫ L

0
N(x′)dx′ (21e)
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Take the SIS model as an example (γ2 = 0, γ1 = γ). Solve (21b)
in terms of λ:

I(x, t) = exp

(
−
∫ t

0
λ(x, s)− (d + γ)tds

)
×
∫ t

0
λ(x, t′)N(x)e

∫ t′
0 λ(x,s)+(d+γ)t′dsdt′

+ I(x, 0) exp
(
−
∫ t

0
λ(x, s)− (d + γ)tds

) (22)
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Substitute (22) into (21d)

λ(x, t) =
∫ L

0
β(x, x′)n(x′)

∫ t

0
λ(x′, t′)e−

∫ t
t′ λ(x′,s)−(d+γ)(t−t′)dsdt′dx′

+

∫ L

0
β(x, x′)i(x′, 0)e−

∫ t
0 λ(x′,s)−(d+γ)tdsdx′

where n(x) = N(x)/N and i(x, t) = I(x, t)/N. Without demography
(d = 0):

λ(x, t) =
∫ L

0
β(x, x′)n(x′)

∫ t

0
λ(x′, t′)e−

∫ t
t′ λ(x′,s)−γ(t−t′)dsdt′dx′

+

∫ L

0
β(x, x′)i(x′, 0)e−

∫ t
0 λ(x′,s)−γtdsdx′

p. 104 – Spatial propagation on a “road”



Thus the problem is in the form

Bλ(x, t) = λ(x, t)

In both cases, B is a Hammerstein-type operator in x

▶ SIR case: B is a nonlinear Volterra operator in t ⇒existence
and uniqueness of solutions

▶ SIS case: B is not a nonlinear Volterra operator in t.
However, it resembles one and the authors establish existence
and uniqueness of solutions

p. 105 – Spatial propagation on a “road”



In both cases, there is a travelling wave front then convergence to
a steady state

In the SIS case

λ(x) = lim
t→∞

Bλ(x, t) = B∞λ(x) =
∫ L

0
β(x, x′)n(x′) λ(x′,∞)

λ(x′,∞) + γ

which does not depend on t

They then discuss conditions s.t. this limit ̸= 0, by looking for
values of z s.t. B∞λ(x) = zλ(x) has a positive solution

Show there exists a threshold zthreshold = R0 s.t. λ(x) ≡ 0 if
R0 < 1 and a positive solution if R0 > 1

p. 106 – Spatial propagation on a “road”



Spatio-temporal spread of diseases

Metapopulation models

Spatial propagation on a “road”

A diffusion-type spatial spread model





Spatial spread of rabies with immunity

∂S
∂t = (a − b)

(
1− N

K

)
S + a⋆R − βSI (23a)

∂L
∂t = βSI − σL −

(
b + (a − b)N

K

)
L (23b)

∂I
∂t = σL − αI − γI −

(
b + (a − b)N

K

)
I + DI

∂2I
∂x2 (23c)

∂R
∂t = γI + (a − a⋆)R +

(
b + (a − b)N

K

)
R (23d)

where N = S + L + I + R

p. 108 – A diffusion-type spatial spread model
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