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See in particular the work of Horst Thieme

If one considers time of sojourn in compartments from a more
detailed perspective, one obtains integro-differential models

We use here continuous random variables. See chapters 12 and 13
in Thieme’s book for arbitrary distributions
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Time to events

We suppose that a system can be in two states, S0 and S2
▶ At time t = 0, the system is in state S0
▶ An event happens at some time t = τ , which triggers the

switch from state S0 to state S1

Let us call T the random variable
“time spent in state S0 before switching into state S1”
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The states can be anything:
▶ S0: working, S1: broken
▶ S0: infected, S1: recovered
▶ S0: alive, S1: dead
▶ . . .

We take a collection of objects or individuals that are in state S0
and want some law for the distribution of the times spent in S0,
i.e., a law for T

For example, we make light bulbs and would like to tell our
customers that on average, our light bulbs last 200 years...

We conduct an infinite number of experiments, and observe the
time that it takes, in every experiment, to switch from S0 to S1
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A distribution of probability is a model

From the sequence of experiments, we deduce a model, which in
this context is called a probability distribution

We assume that T is a continuous random variable
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Probability density function
Since T is continuous, it has a continuous probability density
function f
▶ f ≥ 0
▶ ∫ +∞

−∞ f(s)ds = 1
▶ P(a ≤ T ≤ b) =

∫ b
a f(t)dt

t

f(t)

a b
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Cumulative distribution function
The cumulative distribution function (c.d.f.) is a function F(t) that
characterizes the distribution of T, and defined by

F(s) = P(T ≤ s) =
∫ s

−∞
f(x)dx

t

f(t)

s
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Survival function

Another characterization of the distribution of the random variable
T is through the survival (or sojourn) function

The survival function of state S0 is given by

S(t) = 1− F(t) = P(T > t) (1)

This gives a description of the sojourn time of a system in a
particular state (the time spent in the state)

S is a nonincreasing function (since S = 1− F with F a c.d.f.), and
S(0) = 1 (since T is a nonnegative random variable)
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The average sojourn time τ in state S0 is given by

τ = E(T) =
∫ ∞

0
tf(t)dt

Since limt→∞ tS(t) = 0, it follows that

τ =

∫ ∞

0
S(t)dt

Expected future lifetime:

1
S(t0)

∫ ∞

0
t f(t + t0) dt

S(t)− S(a) = P {survive during (a, t) having survived until a}

= exp

(
−
∫ t

a
h(u)du

)
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Hazard rate

The hazard rate (or failure rate) is

h(t) = lim
∆t→0

S(t)− S(t +∆t)
∆t

= lim
∆t→0

PT < t +∆t|T ≥ t
∆t

=
f(t)
S(t)

It gives probability of failure between t and ∆t, given survival to t.

We have
h(t) = − d

dt lnS(t)
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Competing risks

Suppose now that the system starts in state A at time t = 0 and
that depending on which of the two events E1 or E2 takes place
first, it switches to state B1 or B2, respectively

Consider the random variables TA, time spent in state A (or
sojourn time in A), TAB1 , time before switch to B1 and TAB2 , time
before switch to B2

If we consider state A, we cannot observe the variables TAB1 or
TAB2 . What is observable is the sojourn time in A

T∗
A = min (TAB1 ,TAB2)

(where ∗ indicates that a quantity is observable)
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Failure rate by type of event

We have two (or more) types of events whose individual failure
rates have to be accounted for

hj(t) = lim
∆t→0

P(T < t +∆t, S = Sj|T ≥ t)
∆t

where P(T < t +∆t, S = Sj|T ≥ t) is the probability of failure due
to cause Sj (j = 1, 2 ici), i.e., S is a discrete r.v. representing the
event that is taking place

p. 13 – Sojourn times in compartments



By the law of total probability, since only one of the event can take
place, if there are n risks, then

h(t) =
n∑

i=1
hj(t)

or, identically,

S(t) = exp

(
−
∫ t

0

∑
n
j=1hj(s) ds

)
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As a consequence, suppose a process is subject to two competing
exponential risks with respective distributions with parameters θ1
and θ2

Then the mean sojourn time in the initial state before being
affected by one of the two risks is

1
θ1 + θ2
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The exponential distribution

The random variable T has an exponential distribution if its
probability density function takes the form

f(t) =
{

0 if t < 0,
θe−θt if t ≥ 0,

(2)

with θ > 0. Then the survival function for state S0 is of the form
S(t) = e−θt, for t ≥ 0, and the average sojourn time in state S0 is

τ =

∫ ∞

0
e−θtdt = 1

θ
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Particularities of the exponential distribution

The standard deviation of an exponential distribution is also 1/θ.
When estimating θ, it is impossible to distinguish the mean and
the standard deviation

The exponential distribution is memoryless: its conditional
probability obeys

P(T > s + t | T > s) = P(T > t), ∀s, t ≥ 0

The exponential and geometric distributions are the only
memoryless probability distributions

The exponential distribution has a constant hazard function
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The Dirac delta distribution

If for some constant ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

meaning that T has a Dirac delta distribution δω(t), then the
average sojourn time is

τ =

∫ ω

0
dt = ω

with standard deviation σ = 0
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The Gamma distribution

R.v. X is Gamma distributed (X ∼ Γ(k, θ)) with shape
parameter k and scale parameter θ (or rate β = 1/θ) (all
positive) if its probability density function takes the form

f(x; k, θ) = xk−1e− x
θ

Γ(k)θk (3)

where x > 0 and Γ is the Euler Gamma function, defined for all
z ∈ C s.t. Re (z) > 0 by

Γ : z 7→
∫ +∞

0
tz−1 e−t dt
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Properties of the Gamma distribution

Mean kθ, variance kθ2

Survival function

S(t) = 1− 1
Γ(k)γ

(
k, t

θ

)
= 1− 1

Γ(k)γ (k, βt)

where
γ(a, x) =

∫ x

0
ta−1e−tdt

is an incomplete Gamma function
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A model for a cohort with one cause of death

Consider a cohort of individuals born at the same time, e.g., the
same year

▶ At time t = 0, there are initially N0 > 0 individuals
▶ All causes of death are compounded together
▶ The time until death, for a given individual, is a random

variable T, with continuous probability density distribution f(t)
and survival function P(t)

N(t) the cohort population at time t ≥ 0

N(t) = N0P(t) (4)

N0P(t) proportion of initial population still alive at time t
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Case where T is exponentially distributed
Suppose that T has an exponential distribution with mean 1/d (or
parameter d), f(t) = de−dt. Then the survival function is
P(t) = e−dt, and (4) takes the form

N(t) = N0e−dt (5)

Now note that
d
dtN(t) = −dN0e−dt

= −dN(t)

with N(0) = N0.

⇒ The ODE N′ = −dN makes the assumption that the life
expectancy at birth is exponentially distributed
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Survival function, S(t) = P(T > t), for an exponential distribution
with mean 80 years
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Case where T has a Dirac delta distribution

Suppose that T has a Dirac delta distribution at t = ω, giving the
survival function

P(t) =
{

1, 0 ≤ t ≤ ω

0, t > ω

Then (4) takes the form

N(t) =
{

N0, 0 ≤ t ≤ ω

0, t > ω
(6)

All individuals survive until time ω, then they all die at time ω

Here, N′ = 0 everywhere except at t = ω, where it is undefined
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Survival function, S(t) = P(T > t), for a Dirac distribution with
mean 80 years
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Survival for the exponential distribution
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Issues with the exponential distribution

▶ Survival drops quickly

▶ Survival continues way beyond the mean

Acceptable if what matters is the average duration of sojourn in a
compartment (e.g., long term dynamics)

More iffy if one is interested in short-term dynamics

▶ Exponential distribution with parameter θ has same mean and
standard deviation 1/θ, i.e., a single parameter controls mean and
dispersion about the mean
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Exponential distributions are bad but also cool

X1 and X2 2 i.i.d. (independent and identically distributed) r.v.
with parametres θ1 and θ2. Then the probability density function
of the r.v. Z = X1 + X2 is given by the convolution

fZ(z) =
∫ ∞

−∞
fX1(x1)fX2(z− x1) dx1

=

∫ z

0
θ1e−θ1x1θ2e−θ2(z−x1) dx1

= θ1θ2e−θ2z
∫ z

0
e(θ2−θ1)x1 dx1

=


θ1θ2

θ2 − θ1

(
e−θ1z − e−θ2z) if θ1 6= θ2

θ2ze−θz if θ1 = θ2 =: θ
(7)
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The tool we use

Theorem 1
Let Xi be independent exponentially distributed random variables
with parameter ξ and Y =

∑n
i=1 Xi

Then the random variable Y⇝ E(n, ξ), an Erlang distribution with
shape parameter n and scale parameter ξ

(Erlang distribution: Gamma distribution with integer shape
parameter)
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Consequences for compartmental models
If n compartments are traversed successively by individuals, with
each compartment having an outflow rate of 1/ξ (or a mean
sojourn time of ξ), then the time of sojourn from entry into the
first compartment to exit from the last is Erlang distributed with
mean E(Y) = nξ and variance Var(Y) = nξ2

X

X1 X2 Xk XN−1 XN

µX

εX1 εX2
εXN−2 εXN−1 εXN

Average sojourn time N/ε

Average sojourn time 1/µ

I have a Shiny app for this :)
p. 30 – Sojourn times in compartments
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Example: EVD incubation periods

Consider the incubation period for Ebola Virus Disease. During the
2014 EVD crisis in Western Africa, the WHO Ebola Response
Team estimated incubation periods in a 2015 paper

Table S2 in the Supplementary Information in that paper gives the
best fit for the distribution of incubation periods for EVD as a
Gamma distribution with mean 10.3 days and standard deviation
8.2, i.e., nε = 10.3 and ε

√
n = 8.2

From this, ε = 8.22/10.3 ' 6.53 and n = 10.32/8.22 ' 1.57.
However, that is a Gamma distribution
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Switching to a compartmental model approach

To use multiple compartments to better fit residence times, we
need to find the closest possible Erlang distribution to this Gamma
distribution

=⇒ compute RSS errors between data points generated from the
given Gamma distribution and an Erlang

> error_Gamma <- function(theta,shape,t,d) {
+ test_points <- dgamma(t, shape = shape, scale = theta)
+ ls_error <- sum((d-test_points)^2)
+ return(ls_error)
+ }
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> optimize_gamma <- function(t,d) {
+ max_shape <- 10
+ error_vector <- mat.or.vec(max_shape,1)
+ scale_vector <- mat.or.vec(max_shape,1)
+ for (i in 1:max_shape) {
+ result_optim <- try(optim(par = 3,
+ fn = error_Gamma,
+ lower = 0,
+ method = "L-BFGS-B",
+ shape = i,
+ t = t,
+ d = d),
+ TRUE)
+ if (!inherits(result_optim,"try-error")) {
+ error_vector[i] <- result_optim$value
+ scale_vector[i] <- result_optim$par
+ } else {
+ error_vector[i] <- NaN
+ scale_vector[i] <- NaN
+ }
+ }
+ result_optim <- data.frame(seq(1,max_shape),
+ scale_vector,
+ error_vector)
+ colnames(result_optim) <- c("shape","scale","error")
+ result_optim <- result_optim[complete.cases(result_optim),]
+ return(result_optim)
+ }
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> time_points <- seq(0,60)
> data_points <- dgamma(time_points, shape = 1.57,
+ scale = 6.53)
> # Run the minimization
> optim_fits <- optimize_gamma(time_points,data_points)
> # Which is the best Erlang to fit the data
> idx_best <- which.min(optim_fits$error)
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Now plot the result as well as the original curve (code chunk not
shown)
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An SIS model
Hypotheses

▶ Individuals typically recover from the disease

▶ The disease does not confer immunity

▶ There is no birth or death (from the disease or natural)
⇒ Constant total population N ≡ N(t) = S(t) + I(t)

▶ Infection is of standard incidence type
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Recovery

▶ Traditional models suppose that recovery occurs with rate
constant γ

▶ Here, of the individuals that become infective at time t0, a
fraction P(t− t0) remain infective at time t ≥ t0

▶ ⇒ For t ≥ 0, P(t) is a survival function. As such, it verifies
P(0) = 1 and P is nonnegative and nonincreasing
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Model for infectious individuals

Since N is constant, S(t) = N− I(t) and we need only consider the
following equation (where S is used for clarity)

I(t) = I0(t) +
∫ t

0
β

S(u)I(u)
N P(t− u)du (8)

▶ I0(t) number of individuals who were infective at time t = 0
and still are at time t
▶ I0(t) is nonnegative, nonincreasing, and such that

limt→∞ I0(t) = 0
▶ P(t− u) proportion of individuals who became infective at

time u and who still are at time t
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Expression under the integral

Integral equation for the number of infective individuals:

I(t) = I0(t) +
∫ t

0
β
(N− I(u))I(u)

N P(t− u)du (8)

The term
β
(N− I(u))I(u)

N P(t− u)

▶ β(N− I(u))I(u)/N is the rate at which new infectives are
created, at time u

▶ multiplying by P(t− u) gives the proportion of those who
became infectives at time u and who still are at time t

Summing over [0, t] gives the number of infective individuals at
time t
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Case of an exponentially distributed time to recovery

Suppose P(t) such that sojourn time in the infective state has
exponential distribution with mean 1/γ, i.e., P(t) = e−γt

Initial condition function I0(t) takes the form

I0(t) = I0(0)e−γt

with I0(0) the number of infective individuals at time t = 0.
Obtained by considering the cohort of initially infectious
individuals, giving a model such as (4)

Equation (8) becomes

I(t) = I0(0)e−γt +

∫ t

0
β
(N− I(u))I(u)

N e−γ(t−u)du (9)
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Taking the time derivative of (9) yields

I′(t) = −γI0(0)e−γt − γ

∫ t

0
β
(N− I(u))I(u)

N e−γ(t−u)du

+ β
(N− I(t))I(t)

N

= −γ
(

I0(0)e−γt +

∫ t

0
β
(N− I(u))I(u)

N e−γ(t−u)du
)

+ β
(N− I(t))I(t)

N
= β

(N− I(t))I(t)
N − γI(t)

This is the classical logistic type ordinary differential equation
(ODE) for I in an SIS model without vital dynamics (no birth or
death)
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Case of a step function survival function

Consider case where the time spent infected has survival function

P(t) =
{

1, 0 ≤ t ≤ ω,

0, t > ω.

i.e., the sojourn time in the infective state is a constant ω > 0

In this case (8) becomes

I(t) = I0(t) +
∫ t

t−ω
β
(N− I(u))I(u)

N du. (10)

Here, it is more difficult to obtain an expression for I0(t). It is
however assumed that I0(t) vanishes for t > ω
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When differentiated, (10) gives, for t ≥ ω,

I′(t) = I′0(t) + β
(N− I(t))I(t)

N − β
(N− I(t− ω)) I(t− ω)

N .

Since I0(t) vanishes for t > ω, this gives the delay differential
equation (DDE)

I′(t) = β
(N− I(t))I(t)

N − β
(N− I(t− ω))I(t− ω)

N .
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A model with vaccine efficacy and waning

▶ Exponential distribution of recovery times (rate γ)

▶ Susceptible individuals are vaccinated (number of vaccinated
at time t is denoted V(t))

▶ Vaccination wanes, a fraction P(t) of the vaccinated at time
t = 0 remain protected by the vaccine

▶ Vaccination is imperfect, 0 ≤ 1−σ ≤ 1 is the vaccine efficacy
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Model structure

S I

V

(1− α)dN

αdN

dS dI

dV

βSI/N

γIϕS
P(t) σβ

VI/N
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Parametres

▶ d > 0: mortality rate

▶ γ ≥ 0: recovery rate

▶ β > 0: infectiousness of the disease

▶ ϕ ≥ 0: vaccination rate of susceptible individuals

▶ α ∈ [0, 1): fraction of newborns vaccinates

▶ 0 ≤ 1− σ ≤ 1: efficacy of the vaccine. From now on, assume
0 ≤ σ < 1
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▶ Disease transmission: standard incidence

▶ Vaccination of newborns

▶ Birth and death rate equal (⇒constant total population)
Assumptions on P: P(t) is a nonnegative and nonincreasing
function with P(0+) = 1, and such that

∫∞
0 P(u)du is positive and

finite

Constant total population ⇒ S(t) = N− I(t)− V(t); further, we
switch to proportions: S, I and V represent the proportions in the
population, and N = 1 (S used in equations for conciseness)
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The SIS model with vaccination

dI(t)
dt = β(S(t) + σV(t))I(t)− (d + γ)I(t) (11a)

V(t) = V0(t) (11b)

+

∫ t

0
(ϕS(u) + αd)P(t− u)e−d(t−u)e−σβ

∫ t
u I(x)dxdu

▶ αd proportion of vaccinated newborns
▶ ϕS(u) proportion of vaccinated susceptibles
▶ P(t− u) fraction of the proportion vaccinated still in the V

class t− u time units after going in
▶ e−d(t−u) fraction of the proportion vaccinated not dead due to

natural causes
▶ e−σβ

∫ t
u I(x)dx fraction of the proportion vaccinated not gone to

the infective class
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Obtaining the initial condition

Let v(t, τ) be the (density) proportion of individuals in vaccination
class-age τ still vaccinated at time t, then(

∂

∂t +
∂

∂τ

)
v(t, τ) = −(σβI(t) + d + η(τ))v(t, τ) (12)

where V(t) =
∫∞

0 v(t, τ)dτ . η(τ) is the vaccine waning rate
coefficient, with proportion still in the vaccination class-age τ
being P(τ) = exp

(
−
∫ τ

0 η(q)dq
)
. It is assumed that P is a survival

function

Inflow in class-age zero is

v(t, 0) = ϕS(t) + αd

and v(0, τ) ≥ 0 is assumed
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Integrating (12) along characteristics, dividing the integral for V(t)
at t, substituting in the solutions, and changing integration
variables, we get

V0(t) = e−
∫ t

0 (σβI(x)+d)dx
∫ ∞

0
v(0, u)P(t + u)

P(u) du (13)

The ratio P(t + u)/P(u) = exp
(∫ t+u

u η(q)dq
)

is well defined for
t + u ≥ u ≥ 0 and bounded above by 1

Since V(0) is finite, the integral in V0(t) converges, and thus V0(t)
is nonnegative, nonincreasing and limt→∞ V0(t) = 0
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Let
D = {(S, I,V); S ≥ 0, I ≥ 0,V ≥ 0, S + I + V = 1}

Theorem 2
The set D is positively invariant under the flow of (11) with
I(0) > 0, S(0) > 0
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With the assumed initial conditions in D, it can be shown that the
system defined by (11a) and (11b) is equivalent to the system
defined by (11a) and

d
dtV(t) = d

dtV0(t) + ϕS(t) + αd (14)

− (d + σβI(t))(V(t)− V0(t)) + Q(t)

where to simplify notation, we denote

Q(t) =
∫ t

0
(ϕS(u) + αd)dt(P(t− u))e−d(t−u)e−σβ

∫ t
u I(x)dxdu

The system defined by (11a) and (14) is of standard form, therefore
results of Hale (see Hale & Verduyn-Lunel) ensure the local
existence, uniqueness and continuation of solutions of model (11)
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R0

Define R0 with vaccination as

Rv = R0

[
1 + σϕP̃− (1− σ)αdP̃

1 + ϕP̃

]
(15)

where R0 = β
d+γ is the reproduction number in the absence of

vaccination and
P̃ = lim

t→∞

∫ t

0
P(v)e−dvdv

in such a way that P̃ < 1/d

▶ Rv ≤ R0 and, in absence of vaccination, Rv = R0
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Theorem 3
System (11) with an arbitrary loss of vaccination function P(t)
always admits the disease-free equilibrium
▶ If R0 < 1, then the DFE is the only equilibrium of the system

and the disease goes extinct
▶ If Rv < 1, the DFE is LAS; if Rv > 1, the DFE is unstable
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Reduction of the system using specific P(t) functions

As before, two examples

▶ The distribution of waning times is exponential, which leads
to an ODE system. Treated briefly here, just so as to
emphasize the presence of a so-called backward bifurcation, a
rather uncommon phenomenon in epidemiological models

▶ The waning time is a constant, which leads to a DDE model.
We show that the backward bifurcation is also present
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Case reducing to an ODE system

Assume P(v) = e−θv, θ > 0. V0(t) = V0(0)e−(d+θ)te−
∫ t

0 σβI(x)dx

from (13). Then (11a) and (14) give the ODE system

dI
dt = β(1− I− (1− σ)V)I− (d + γ)I (16a)

dV
dt = ϕ(1− I− V)− σβIV− (d + θ)V + αd (16b)

which with no newborn vaccination (α = 0) is the model studied in
Kribs-Zaletta & Velasco-Hernandez, 2000

From Theorem 3 the DFE always exists, with

IDFE = 0, SDFE =
θ + d(1− α)

d + θ + ϕ
,VDFE =

ϕ+ αd
d + θ + ϕ
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Backward bifurcation

Assume that R0 > 1, then endemic equilibria (positive I equilibria,
denoted by I⋆) can be obtained analytically from the quadratic
equation

P(I) = AI2 + BI + C = 0

where

A = −σβ
B = σ(β − (d + γ))− (d + θ + σϕ)

C = (d + γ)(d + θ + ϕ)(Rv − 1)/β

with
Rv = R0

d + θ + σϕ− α(1− σ)d
d + θ + ϕ

from (15).
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Backward bifurcation leading to two endemic equilibria occurs for
σ > 0 if P ′(0) = B > 0, P(0) = C < 0 and B2 > 4AC (we always
have P(1) < 0)

▶ On an (Rv, I) bifurcation diagram, this occurs for Rc < Rv < 1,
where Rc is the value of Rv at the saddle node bifurcation point
where the two values of I coincide, i.e., I = Ic = B/(−2A)

▶ For Rv < Rc, there is no endemic equilibrium (EEP). For
Rv > 1, the constant term C > 0, and there is a unique EEP

▶ In the case of forward bifurcation, Rc = 1; this is the case in
particular if the vaccine is totally effective (σ = 0)
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By standard planar ODE arguments the following can be shown

Theorem 4
For the ODE system (16) with V(0) ≥ 0, I(0) > 0, and R0 > 1

(i) if Rv < Rc, then the disease dies out

(ii) if Rc < Rv < 1, then the EEP with larger I is l.a.s., and the
EEP with smaller I is unstable

(iii) if Rv > 1, then the unique EEP is globally asymptotically
stable in D \ {I = 0}
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Pertussis:
▶ 3 week average disease duration (γ = 0.04762)
▶ Average lifetime 75 years (d = 3.6530E− 05)
▶ Average number of adequate contacts per infective per day is

estimated at 0.4 (β = 0.4)
▶ Most newborns are vaccinated in the first few months of life

(α = 0.9)
▶ Vaccine is effective, σ = 0.1 (90% effective vaccine).
▶ Pertussis vaccine begins to wane after about 3 years and the

average waning time of the vaccine 1/θ is assumed to be 5
years, giving θ = 5.4794E− 04

With these parameter values, there is backward bifurcation for a
range of ϕ values given by 0.0254 ≤ ϕ ≤ 0.1506
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With the above parameter values, R0 = 8.3936 and
Rv(ϕ) = 0.8807 for ϕ = 0.1, which is in the range of backward
bifurcation since the critical value Rc(ϕ) = 0.8669 < Rv(ϕ) < 1
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Step function case: a delay integral model

Suppose that
P(v) =

{
1 if v ∈ [0, ω]
0 otherwise

Since V0(t) = 0 for t > ω, with S = 1− I−V the integral equation
(11b) becomes, for t > ω

V(t) =
∫ t

t−ω
(ϕ(1− I(u)−V(u))+αd)e−d(t−u)e−σβ

∫ t
u I(x)dxdu (17)
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Differentiating (17) (see equation (14)) gives the model as the two
dimensional system, for t > ω

d
dt I(t) = β(1− I(t)− (1− σ)V(t))I(t)− (d + γ)I(t) (18a)
d
dtV(t) = ϕ(1− I(t)− V(t)) (18b)

− ϕ(1− I(t− ω)− V(t− ω))e−dωe−σβ
∫ t

t−ω I(x)dx

− σβIV− dV + αd
(

1− e−dωe−σβ
∫ t

t−ω I(x)dx
)

Hereafter, shift time by ω so that these equations hold for t > 0
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The well posedness of the problem follows from Theorem 2 and
from the fact that solutions of (11) exist and are unique. For a
constant waning period, the basic reproduction number from (15)
is

Rv = R0
d + (σϕ− α(1− σ)d)(1− e−dω)

d + ϕ(1− e−dω)
(19)

With IDF = 0, from Theorem 3

VDF =
(ϕ+ αd)(1− e−dω)

d + ϕ(1− e−dω)
, SDF =

d− αd(1− e−dω)

d + ϕ(1− e−dω)
(20)
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Finding the EEP’s

From nullclines, there exists one (or more) endemic equilbria
(EEP) iff there exists 0 < I⋆ ≤ 1 such that

V⋆ = f(I⋆) = g(I⋆) (21)

where
f(I) = 1− 1/R0 − I

1− σ
(22)

for σ < 1, and

g(I) = (ϕ(1− I) + αd)(1− e−dω−σβωI)

ϕ(1− e−dω−σβωI) + d + σβI (23)
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Visualising and locating the bifurcation

From the nullcline equations, an EEP exists iff there exists an
I⋆ ∈ (0, 1] such that equations (21)-(23) hold. So we study the
zeros of

H(I) = 1− 1/R0 − I
1− σ

− (ϕ(1− I) + αd)(1− e−dω−σβωI)

ϕ(1− e−dω−σβωI) + d + σβI

To state the problem in a formal way, let A = {α, β, γ, ω, ϕ, σ} be
the set of parameters of interest, and denote

H(I,A) = f(I)− g(I) (24)

to show the dependence on these parameters.
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Proceed as follows
1. Choose a parameter ai ∈ A
2. Fix all other aj’s (j 6= i)
3. Choose ai,min, ai,max and ∆ai for ai

4. For all ai,k = ai,min + k∆ai (k such that ai,k ≤ ai,max),
compute I⋆ such that H(I⋆, ai,k) = 0

Step 4 is carried out using the MatLab fzero function

Further precision can be gained by showing that

H(0) = Rv − 1
(1− σ)R0

and that, for σ < 1

H(1) = − 1
(1− σ)R0

− αd(1− e−dω−σβω)

ϕ(1− e−dω−σβω) + d + σβ
< 0
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Define Rc as previously. For R0 > 1 and Rv < 1, there are several
possibilities
▶ If Rv < Rc, then there is no EEP. H(0) and H(1) are strictly

negative, and numerical simulations seem to indicate that H
has no roots in (0, 1] (i.e., that H < 0 on this interval)

▶ If Rc < Rv < 1, then there are endemic equilibria. Here, since
H(0) and H(1) are strictly negative, the only possibility is thus
to have an even number of zeros of H. Numerical simulations
appear to indicate that the number of endemic equilibria is 2

In between these two situations Rv = Rc and there is one endemic
equilibrium I⋆. Using the same procedure as for the visualisation of
the bifurcation, it is possible to compute Rc by finding the value I⋆
such that H(I⋆,A) = 0 and H′(I⋆,A) = 0, for a given parameter
ai ∈ A

If Rv > 1 then H(0) > 0 and so there is an odd number of
endemic equilibria. Numerical simulations indicate that there is a
unique EEP
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Numerical bifurcation analysis

Same parameter values as in ODE case, except that the constant
waning time (the delay) ω has to be substituted for θ. We take
ω = 1825, i.e., corresponding to a 5 years waning time

These parameters give R0 = 8.3936 and Rv(ϕ) = 0.8819, which is
in the range of the backward bifurcation since (using the above
method) Rc(ϕ) = 0.8675

The bifurcation diagram is very like that depicted in earlier for the
ODE. Numerical simulations of the DDE model (using dde23)
indicate that there are no additional bifurcations; solutions either
go to the DFE or to the (larger) EEP
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(a) Values of I⋆ as a function of ω by solving H(I,A) = 0 with
ai = ω. (b) Value of I(t) versus time, obtained by numerical
integration of system (18) with initial data I(t) = c, for
t ∈ [−ω, 0], ω = 1825, c varying from 0 to 1 by steps of 0.02
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Age of vaccination

We have seen that infinite dimensionality can result from a detailed
description (or an unspecified one) of the sojourn time in
compartments

We used age of vaccination to find the initial condition of (11)

Here we take a closer look at this type of model

Originally, age of infection was introduced to account for
differences in infectivity depending on the time since an individual
became infected

For instance, it is known that infectiousness of HIV positive
patients vary as a function of time
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How to model time between vaccine doses

S ′ = −fS− V1(t, 0) (25a)

A ′ =
(
(1− p)S + (1− p1)δ1Ṽ1 + (1− p2)δ2V2

)
f− µAA (25b)

I ′ = (pS + p1δ1Ṽ1 + p2δ2V2)f− µI (25c)
V2

′ = V1(t, a⋆)− δ2fV2(t) (25d)(
∂

∂t +
∂

∂a

)
V1(t, a) = −δ1fV1(t, a), 0 ≤ a ≤ a⋆ (25e)

and boundary condition

V1(t, 0) =
{
γS0

(
S(t)

S(t)+A(t)

)
if T ≤ t ≤ Te and S > 0

0 otherwise
(25f)

where f = β(δAA + I) and Ṽ1(t) =
∫ a⋆

0 V1(t, a)da
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Simplifying a bit

Integrate (25e) using characteristics along lines a = s and
t = T + s, with s as a new variable

V1(t, a) = V1(t− a, 0) exp
(∫ t

t−a
−δ1f(ξ) dξ

)
(26)

Define
ζ(t) =

∫ t

0
δ1f(ξ)dξ

and substitute into (26), giving

V1(t, a) = V1(t− a, 0) exp (ζ(t− a)ζ(t))

So the distributed delay is now discrete
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Simplifying a bit more
Let

ν(t) =
∫ t

0
V1(s, 0)eζ(s)ds

Then the total number of individuals having been vaccinated with
a single dose is

Ṽ1(t) = e−ζ(t) (ν(t)− ν(t− a⋆))

S ′ = −fS− V1(t, 0) (27a)

A ′ =
(
(1− p)S + (1− p1)δ1Ṽ1 + (1− p2)δ2V2

)
f− µAA (27b)

I ′ = (pS + p1δ1Ṽ1 + p2δ2V2)f− µI (27c)
V2

′ = V1(t− a⋆, 0)eζ(t−a⋆) − δ2fV2(t) (27d)
ζ ′ = δ1f (27e)
ν ′ = V1(t, 0)eζ(t) (27f)
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Conclusions on sojourn times

▶ The time of sojourn in compartments plays an important role
in determining the type of model that we deal with

▶ All ODE models, when they use terms of the form κX, make
the assumption that the time of sojourn in compartments is
exponentially distributed with parameter κ

▶ At the other end of the spectrum, delay differential with
discrete delay make the assumption of a constant sojourn
time, equal for all individuals

▶ Both can be true sometimes... but reality is more likely
somewhere in between
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A discrete-time Markov chain takes the form

p(n + 1) = p(n)P, n = 1, 2, 3, . . .

where p(n) = (p1(n), p2(n), . . . , pr(n)) is a (row) probability vector
and P = (pij) is a r× r transition matrix

P =


p11 p12 · · · p1r
p21 p22 · · · p2r

pr1 pr2 · · · prr
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Stochastic matrices
Definition 5
The nonnegative r× r matrix M is (row) stochastic if∑r

j=1 aij = 1 for i = 1, 2, . . . , r

Definition 6
Let M be a stochastic matrix M. Then all eigenvalues λ of M are
such that |λ| ≤ 1. Furthermore, λ = 1 is an eigenvalue of M

Theorem 7
If M,N are stochastic matrices, then MN is a stochastic matrix

Theorem 8
If M is a stochastic matrix, then for any k ∈ N, Mk is a stochastic
matrix

p. 79 – Discrete-time Markov chains



Asymptotic behavior

Let p(0) be the initial distribution (row) vector. Then

p(1) = p(0)P
p(2) = p(1)P

= (p(0)P)P
= p(0)P2

Iterating, we get that for any n,

p(n) = p(0)Pn

Therefore,

lim
n→+∞

p(n) = lim
n→+∞

p(0)Pn = p(0) lim
n→+∞

Pn
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Regular Markov chain

Definition 9
A regular Markov chain is one in which Pk is positive for some
integer k > 0, i.e., Pk has only positive entries, no zero entries

Definition 10
A nonnegative matrix M is primitive if, and only if, there is an
integer k > 0 such that Mk is positive

Theorem 11
A Markov chain is regular if, and only if, the transition matrix P is
primitive
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Important result for regular Markov chains

Theorem 12
If P is the transition matrix of a regular Markov chain, then

1. the powers Pn approach a stochastic matrix W
2. each row of W is the same (row) vector w = (w1, . . . ,wr)

3. the components of w are positive

So if the Markov chain is regular

lim
n→+∞

p(n) = p(0) lim
n→+∞

Pn = p(0)W
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The vector w is the left eigenvector corresponding to the
eigenvalue 1 of P. (We already know that the (right) eigenvector
corresponding to 1 is 1l.)

Indeed, if p(n) converges, then p(n + 1) = p(n)P, so w is a fixed
point of the system. We thus write

wP = w

and solve for w, which amounts to finding w as the left eigenvector
corresponding to the eigenvalue 1

Alternatively, we can find w as the (right) eigenvector associated
to the eigenvalue 1 for the transpose of P

PTwT = wT

(normalise if need be)
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Linking matrix and graph theory
Definition 13
A digraph G is strongly connected if there is a path between all
pairs of vertices

Definition 14
A matrix M ∈Mn is irreducible if there does not exist a matrix
P ∈Mn s.t. P−1AP block triangular

Theorem 15
A ∈Mn irreducible ⇐⇒ G(A) strongly connected
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Random walk 1.0 (regular case)

▶ chain of states S1, . . . , Sp
▶ if in state Si, i = 2, . . . , p− 1, probability 1/2 of going left (to

Si−1) and 1/2 of going right (to Si+1)
▶ if in state S1, probability 1 of going to S2
▶ if in state Sp, probability 1 of going to Sp−1
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Transition matrix for RW 1.0

P =



0 1 0 0 0 · · · 0
1/2 0 1/2 0
0 1/2 0 1/2
... . . . . . . . . . ...

1/2 0 1/2
0 1 0


Clearly a primitive matrix, so a regular Markov chain. We find
(easy to do by hand)

wT =

(
1

2(p− 1) ,
1

p− 1 , . . . ,
1

p− 1 ,
1

2(p− 1)

)
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Setting up the transition matrix

# Total population
nb_states = 10 # Small so we can see output
# Parameters
proba_left = 0.5
proba_right = 0.5
proba_stay = 1-(proba_left+proba_right)
# Make the transition matrix
T = mat.or.vec(nr = nb_states, nc = nb_states)
for (row in 2:(nb_states-1)) {

T[row,(row-1)] = proba_left
T[row,(row+1)] = proba_right
T[row, row] = proba_stay

}
# First row only has move right
T[1,2] = 1
# Last row only has move left
T[nb_states, (nb_states-1)] = 1
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Analysis using markovchain library

library(markovchain)
mcRW <- new("markovchain",

states = sprintf("S_%d", 1:nb_states),
transitionMatrix = T,
name = "RW_reg")

> summary(mcRW)
RW_reg Markov chain that is composed by:
Closed classes:
S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10
Recurrent classes:
{S_1,S_2,S_3,S_4,S_5,S_6,S_7,S_8,S_9,S_10}
Transient classes:
NONE
The Markov chain is irreducible
The absorbing states are: NONE
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> steadyStates(mcRW)
S_1 S_2 S_3 S_4 S_5 S_6
S_7 S_8 S_9

[1,] 0.05555556 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111
0.1111111 0.1111111 0.1111111

S_10
[1,] 0.05555556

Jives with

wT =

(
1

2(p− 1) ,
1

p− 1 , . . . ,
1

p− 1 ,
1

2(p− 1)

)
we had computed
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meanRecurrenceTime: outputs a named vector with the expected
time to first return to a state when the chain starts there. States
present in the vector are only the recurrent ones. If the matrix is
ergodic (i.e. irreducible), then all states are present in the output
and order is the same as states order for the Markov chain
> meanRecurrenceTime(mcRW)
S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10
18 9 9 9 9 9 9 9 9 18

period: returns a integer number corresponding to the periodicity
of the Markov chain (if it is irreducible)
> period(mcRW)
[1] 2

(period of state x ∈ S is gcd{n ∈ N+ : Tn(x, x) > 0})
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meanFirstPassageTime: Given an irreducible (ergodic)
markovchain object, this function calculates the expected number
of steps to reach other states
> meanFirstPassageTime(mcRW)

S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_10
S_1 0 1 4 9 16 25 36 49 64 81
S_2 17 0 3 8 15 24 35 48 63 80
S_3 32 15 0 5 12 21 32 45 60 77
S_4 45 28 13 0 7 16 27 40 55 72
S_5 56 39 24 11 0 9 20 33 48 65
S_6 65 48 33 20 9 0 11 24 39 56
S_7 72 55 40 27 16 7 0 13 28 45
S_8 77 60 45 32 21 12 5 0 15 32
S_9 80 63 48 35 24 15 8 3 0 17
S_10 81 64 49 36 25 16 9 4 1 0
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Absorbing states, absorbing chains

Definition 16
A state Si in a Markov chain is absorbing if whenever it occurs on
the nth generation of the experiment, it then occurs on every
subsequent step. In other words, Si is absorbing if pii = 1 and
pij = 0 for i 6= j

Definition 17
A Markov chain is absorbing if it has at least one absorbing
state, and if from every state it is possible to go to an absorbing
state

Definition 18
In an absorbing Markov chain, a state that is not absorbing is
called transient
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Some questions on absorbing chains

Suppose we have a chain like the following

1. Does the process eventually reach an absorbing state?
2. Average number of times spent in a transient state, if starting

in a transient state?
3. Average number of steps before entering an absorbing state?
4. Probability of being absorbed by a given absorbing state,

when there are more than one, when starting in a given
transient state?
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Reaching an absorbing state

Answer to question 1:

Theorem 19
In an absorbing Markov chain, the probability of reaching an
absorbing state is 1
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Standard form of the transition matrix

For an absorbing chain with k absorbing states and r− k transient
states, the transition matrix can be written as

P =

(
Ik 0
R Q

)
Absorbing states Transient states

Absorbing states Ik 0
Transient states R Q

Ik the k× k identity, 0 ∈ Rk×(r−k), R ∈ R(r−k)×k, Q ∈ R(r−k)×(r−k)
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The matrix Ir−k − Q is invertible. Let
▶ N = (Ir−k − Q)−1 be the fundamental matrix of the Markov

chain
▶ Ti be the sum of the entries on row i of N
▶ B = NR

Answers to our remaining questions:
2. Nij is the average number of times the process is in the jth

transient state if it starts in the ith transient state
3. Ti is the average number of steps before the process enters an

absorbing state if it starts in the ith transient state
4. Bij is the probability of eventually entering the jth absorbing

state if the process starts in the ith transient state

See for instance book of Kemeny and Snell
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Random walk 2.0 (absorbing case)

▶ chain of states S1, . . . , Sp
▶ if in state Si, i = 2, . . . , p− 1, probability 1/2 of going left (to

Si−1) and 1/2 of going right (to Si+1)
▶ if in state S1, probability 1 of going to S1
▶ if in state Sp, probability 1 of going to Sp

p. 97 – Discrete-time Markov chains



Transition matrix for DMW 2.0

P =



1 0 0 0 0 · · · 0
1/2 0 1/2 0
0 1/2 0 1/2
... . . . . . . . . . ...

1/2 0 1/2
0 0 1
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Put P in standard form

Absorbing states are S1 and Sp, write them first, then write other
states

S1 Sp S2 S3 S4 · · · Sp−2 Sp−1
S1 1 0 0 0 0 · · · 0 0
Sp 0 1 0 0 0 · · · 0 0
S2 1/2 0 0 1/2 0 · · · 0 0
S3 0 0 1/2 0 1/2 · · · 0 0
...

Sp−2 0 0 0 0 0 · · · 0 1/2
Sp−1 0 1/2 0 0 0 · · · 1/2 0
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So we find
P =

(
I2 0
R Q

)
where 0 a 2× (p− 2)-matrix, R a (p− 2)× 2 matrix and Q a
(p− 2)× (p− 2) matrix
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R =


1/2 0
0 0
... ...
0 0
0 1/2


and

Q =



0 1/2 0
1/2 0 1/2
0 1/2 0

. . . . . . . . .

0 1/2 0 1/2
0 1/2 0
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Ip−2 − Q =



1 −1/2 0
−1/2 1 −1/2

0 −1/2 1
. . . . . . . . .

0 −1/2 1 −1/2
0 −1/2 1



This is a symmetric tridiagonal Toeplitz matrix

(symmetric: obvious; tridiagonal: there are three diagonal bands;
Toeplitz: each diagonal band is constant)

Could invert it explicitly, let us not bother
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Setting up the transition matrix

# Total population
nb_states = 10 # Small so we see output
# Parameters
proba_left = 0.5
proba_right = 0.5
proba_stay = 1-(proba_left+proba_right)
# Make the transition matrix
T = mat.or.vec(nr = nb_states, nc = nb_states)
for (row in 2:(nb_states-1)) {

T[row,(row-1)] = proba_left
T[row,(row+1)] = proba_right
T[row, row] = proba_stay

}
# First and last rows only have stay
T[1,1] = 1
T[nb_states, nb_states] = 1
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Analysis using markovchain library

library(markovchain)
mcRW <- new("markovchain",

states = sprintf("S_%d", 1:nb_states),
transitionMatrix = T,
name = "RW_abs")

> summary(mcRW)
RW_abs Markov chain that is composed by:
Closed classes:
S_1
S_10
Recurrent classes:
{S_1},{S_10}
Transient classes:
{S_2,S_3,S_4,S_5,S_6,S_7,S_8,S_9}
The Markov chain is not irreducible
The absorbing states are: S_1 S_10

p. 104 – Discrete-time Markov chains



> canonicForm(mcRW)
RW_abs

A 10 - dimensional discrete Markov Chain defined by the
following states:
S_1, S_10, S_2, S_3, S_4, S_5, S_6, S_7, S_8, S_9
The transition matrix (by rows) is defined as follows:

S_1 S_10 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9
S_1 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S_10 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
S_2 0.5 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
S_3 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0 0.0
S_4 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 0.0
S_5 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0
S_6 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0
S_7 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0
S_8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5
S_9 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0
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> meanAbsorptionTime(mcRW)
S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9

8 14 18 20 20 18 14 8
> absorptionProbabilities(mcRW)

S_1 S_10
S_2 0.8888889 0.1111111
S_3 0.7777778 0.2222222
S_4 0.6666667 0.3333333
S_5 0.5555556 0.4444444
S_6 0.4444444 0.5555556
S_7 0.3333333 0.6666667
S_8 0.2222222 0.7777778
S_9 0.1111111 0.8888889
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hittingProbabilities: given a markovchain object, this
function calculates the probability of ever arriving from state i to j
> hittingProbabilities(mcRW)

S_1 S_2 S_3 S_4 S_5 S_6 S_7
S_8 S_9 S_10

S_1 1.0000000 0.0000 0.0000000 0.0000000 0.000 0.000 0.0000000
0.0000000 0.0000 0.0000000

S_2 0.8888889 0.4375 0.5000000 0.3333333 0.250 0.200 0.1666667
0.1428571 0.1250 0.1111111

S_3 0.7777778 0.8750 0.6785714 0.6666667 0.500 0.400 0.3333333
0.2857143 0.2500 0.2222222

S_4 0.6666667 0.7500 0.8571429 0.7500000 0.750 0.600 0.5000000
0.4285714 0.3750 0.3333333

S_5 0.5555556 0.6250 0.7142857 0.8333333 0.775 0.800 0.6666667
0.5714286 0.5000 0.4444444

S_6 0.4444444 0.5000 0.5714286 0.6666667 0.800 0.775 0.8333333
0.7142857 0.6250 0.5555556

S_7 0.3333333 0.3750 0.4285714 0.5000000 0.600 0.750 0.7500000
0.8571429 0.7500 0.6666667

S_8 0.2222222 0.2500 0.2857143 0.3333333 0.400 0.500 0.6666667
0.6785714 0.8750 0.7777778

S_9 0.1111111 0.1250 0.1428571 0.1666667 0.200 0.250 0.3333333
0.5000000 0.4375 0.8888889

S_10 0.0000000 0.0000 0.0000000 0.0000000 0.000 0.000 0.0000000
0.0000000 0.0000 1.0000000
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The general model
Case reducing to an ODE
Case reducing to a DDE

Discrete-time Markov chains
Absorbing DTMC

DTMC SIS system



DTMC SIS system

Since S = P⋆ − I, consider only the infected. To simulate as
DTMC, consider a random walk on I (' Gambler’s ruin problem)

Denote λI = β(P⋆ − I)I∆t, µI = γI∆t and σI = 1− (λI + µI)∆t
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To make things easy to see: Pop=5
# Make the transition matrix
T = mat.or.vec(nr = (Pop+1), nc = (Pop+1))
for (row in 2:Pop) {

I = row-1
mv_right = gamma*I*Delta_t # Recoveries
mv_left = beta*I*(Pop-I)*Delta_t # Infections
T[row,(row-1)] = mv_right
T[row,(row+1)] = mv_left

}
# Last row only has move left
T[(Pop+1),Pop] = gamma*(Pop)*Delta_t
# Check that we don't have too large values
if (max(rowSums(T))>1) {

T = T/max(rowSums(T))
}
diag(T) = 1-rowSums(T)
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Analysis using markovchain library

library(markovchain)
mcSIS <- new("markovchain",

states = sprintf("I_%d", 0:Pop),
transitionMatrix = T,
name = "SIS")

> summary(mcSIS)
SIS Markov chain that is composed by:
Closed classes:
I_0
Recurrent classes:
{I_0}
Transient classes:
{I_1,I_2,I_3,I_4,I_5}
The Markov chain is not irreducible
The absorbing states are: I_0
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> canonicForm(mcSIS)
SIS

A 6 - dimensional discrete Markov Chain defined by the
following states:
I_0, I_1, I_2, I_3, I_4, I_5
The transition matrix (by rows) is defined as follows:

I_0 I_1 I_2 I_3 I_4 I_5
I_0 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
I_1 0.1666667 0.5000000 0.3333333 0.0000000 0.0000000 0.0000000
I_2 0.0000000 0.3333333 0.1666667 0.5000000 0.0000000 0.0000000
I_3 0.0000000 0.0000000 0.5000000 0.0000000 0.5000000 0.0000000
I_4 0.0000000 0.0000000 0.0000000 0.6666667 0.0000000 0.3333333
I_5 0.0000000 0.0000000 0.0000000 0.0000000 0.8333333 0.1666667
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# The vector of steady states. Here, all mass should be in I_0
> steadyStates(mcSIS)

I_0 I_1 I_2 I_3 I_4 I_5
[1,] 1 0 0 0 0 0

> hittingProbabilities(mcSIS)
I_0 I_1 I_2 I_3 I_4 I_5

I_0 1 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
I_1 1 0.8333333 0.6666667 0.5454545 0.4615385 0.3529412
I_2 1 1.0000000 0.8888889 0.8181818 0.6923077 0.5294118
I_3 1 1.0000000 1.0000000 0.9090909 0.8461538 0.6470588
I_4 1 1.0000000 1.0000000 1.0000000 0.8974359 0.7647059
I_5 1 1.0000000 1.0000000 1.0000000 1.0000000 0.8039216

Read by row: if the process starts in Ii (row i− 1), probability that
state Ij (column j− 1) is visited
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> meanAbsorptionTime(mcSIS)
I_1 I_2 I_3 I_4 I_5

24.30 33.45 37.55 39.65 40.85
> absorptionProbabilities(mcSIS)

I_0
I_1 1
I_2 1
I_3 1
I_4 1
I_5 1
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Sojourn times in compartments

Discrete-time Markov chains

Continuous time Markov chains

Structuration in age



Continuous-time Markov chains

CTMC similar to DTMC except in way they handle time between
events (transitions)

DTMC: transitions occur each ∆t

CTMC: ∆t→ 0 and transition times follow an exponential
distribution parametrised by the state of the system

CTMC are roughly equivalent to ODE

p. 114 – Continuous time Markov chains



Continuous time Markov chains
ODE ↔ CTMC
Simulating CTMC (in theory)
Simulating CTMC (in practice)
Parallelising your code in R



Converting your compartmental ODE model to CTMC

Easy as π :)

▶ Compartmental ODE model focuses on flows into and out of
compartments

▶ ODE model has as many equations as there are compartments

▶ Compartmental CTMC model focuses on transitions

▶ CTMC model has as many transitions as there are arrows
between (or into or out of) compartments
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ODE to CTMC : focus on different components

S I S I

−βSI

+γI

+βSI

−γI

βSI

γI

ODE CTMC

focus focus
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SIS without demography

Transition Effect Weight Probability

S→ S− 1, I→ I + 1 new infection βSI βSI
βSI + γI

S→ S + 1, I→ I− 1 recovery of an in-
fectious

γI γI
βSI + γI

States are S, I
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SIS with demography

Transition Effect Weight Probability
S→ S + 1 birth of a suscepti-

ble
b b

b+d(S+I)+βSI+γI

S→ S− 1 death of a suscep-
tible

dS dS
b+d(S+I)+βSI+γI

S → S − 1, I →
I + 1

new infection βSI βSI
b+d(S+I)+βSI+γI

I→ I− 1 death of an infec-
tious

dI dI
b+d(S+I)+βSI+γI

S → S + 1, I →
I− 1

recovery of an in-
fectious

γI γI
b+d(S+I)+βSI+γI

States are S, I
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Kermack & McKendrick model

Transition Effect Weight Probability

S→ S− 1, I→ I + 1 new infection βSI βSI
βSI + γI

I→ I− 1, R→ R + 1 recovery of an in-
fectious

γI γI
βSI + γI

States are S, I,R
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Gillespie’s algorithm

▶ A.k.a. the stochastic simulation algorithm (SSA)

▶ Derived in 1976 by Daniel Gillespie

▶ Generates possible solutions for CTMC

▶ Extremely simple, so worth learning how to implement; there
are however packages that you can use (see later)

p. 120 – Continuous time Markov chains



Gillespie’s algorithm

Suppose system has state x(t) with initial condition x(t0) = x0 and
propensity functions ai of elementary reactions

set t← t0 and x(t)← x0
while t ≤ tf
- ξt ←

∑
j aj(x(t))

- Draw τt from T ∼ E(ξt)
- Draw ζt from U([0, 1])
- Find r, smallest integer s.t.

∑j
k=1 ak(x(t)) > ζt

∑
j aj(x(t)) = ζtξt

- Effect the next reaction (the one indexed r)
- t← t + τt
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Drawing at random from an exponential distribution
If you do not have an exponential distribution random number
generator.. We want τt from T ∼ E(ξt), i.e., T has probability
density function

f(x, ξt) = ξte−ξtx1x≥0

Use cumulative distribution function F(x, ξt) =
∫ x
−∞ f(s, ξt) ds

F(x, ξt) = (1− e−ξtx)1x≥0

which has values in [0, 1]. So draw ζ from U([0, 1]) and solve
F(x, ξt) = ζ for x

F(x, ξt) = ζ ⇔ 1− e−ξtx = ζ

⇔ e−ξtx = 1− ζ

⇔ ξtx = − ln(1− ζ)

⇔ x =
− ln(1− ζ)

ξt
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Gillespie’s algorithm (SIS model with only I eq.)

set t← t0 and I(t)← I(t0)
while t ≤ tf
- ξt ← β(P⋆ − i)i + γi
- Draw τt from T ∼ E(ξt)
- v← [β(P⋆ − i)i, ξt] /ξt
- Draw ζt from U([0, 1])
- Find pos such that vpos−1 ≤ ζt ≤ vpos
- switch pos

- 1: New infection, I(t + τt) = I(t) + 1
- 2: End of infectious period, I(t + τt) = I(t)− 1

- t← t + τt
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Sometimes Gillespie goes bad

▶ Recall that the inter-event time is exponentially distributed
▶ Critical step of the Gillespie algorithm:

▶ ξt ← weight of all possible events (propensity)
▶ Draw τt from T ∼ E(ξt)

▶ So the inter-event time τt → 0 if ξt becomes very large for
some t

▶ This can cause the simulation to grind to a halt
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Example: a birth and death process

▶ Individuals born at per capita rate b
▶ Individuals die at per capita rate d
▶ Let’s implement this using classic Gillespie

(See simulate_birth_death_CTMC.R on course GitHub repo)

p. 125 – Continuous time Markov chains
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Gillespie’s algorithm (birth-death model)

set t← t0 and N(t)← N(t0)
while t ≤ tf
- ξt ← (b + d)N(t)
- Draw τt from T ∼ E(ξt)
- v← [bN(t), ξt] /ξt
- Draw ζt from U([0, 1])
- Find pos such that vpos−1 ≤ ζt ≤ vpos
- switch pos

- 1: Birth, N(t + τt) = N(t) + 1
- 2: Death, N(t + τt) = N(t)− 1

- t← t + τt
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b = 0.01 # Birth rate
d = 0.01 # Death rate
t_0 = 0 # Initial time
N_0 = 100 # Initial population

# Vectors to store time and state. Initialise with initial
condition.

t = t_0
N = N_0

t_f = 1000 # Final time

# We'll track the current time and state (could also just check
last entry in t

# and N, but will take more operations)
t_curr = t_0
N_curr = N_0
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while (t_curr<=t_f) {
xi_t = (b+d)*N_curr
# The exponential number generator does not like a rate of 0
(when the
# population crashes), so we check if we need to quit
if (N_curr == 0) {

break
}
tau_t = rexp(1, rate = xi_t)
t_curr = t_curr+tau_t
v = c(b*N_curr, xi_t)/xi_t
zeta_t = runif(n = 1)
pos = findInterval(zeta_t, v)+1
switch(pos,

{
N_curr = N_curr+1 # Birth

},
{

N_curr = N_curr-1 # Death
})

N = c(N, N_curr)
t = c(t, t_curr)

}
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Last one did not go well

▶ Wanted 1000 time units (days?)
▶ Interrupted at t = 344.4432 because I lost patience

(Penultimate slide: sim stopped because the population went
extinct, I did not stop it!)

▶ At stop time
▶ N = 103, 646
▶ |N| = 208, 217 (and |t| as well, of course!)
▶ time was moving slowly

> tail(diff(t))
[1] 1.282040e-05 5.386999e-04 5.468540e-04 1.779985e-04 6.737294e

-05 2.618084e-04
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Tau-leaping (and packages) to the rescue!

▶ Approximation method (compared to classic Gillespie, which is
exact)

▶ Roughly: consider ”groups” of events instead of individual
events

▶ Good news: GillespieSSA2 and adaptivetau, two standard
packages for SSA in R, implement tau leaping
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Simulating a CTMC

library(GillespieSSA2)
IC <- c(S = (Pop-I_0), I = I_0)
params <- c(gamma = gamma, beta = beta)
reactions <- list(

reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)
set.seed(NULL)
sol <- ssa(

initial_state = IC,
reactions = reactions,
params = params,
method = ssa_exact(),
final_time = t_f,

)
plot(sol$time, sol$state[,"I"], type = "l",

xlab = "Time (days)", ylab = "Number infectious")
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Parallelisation

To see multiple realisations: good idea to parallelise, then
interpolate results. Write a function, e.g., run_one_sim that ..
runs one simulation

On the GitHub repo for the course, see
▶ SIS-CTMC-parallel.R
▶ SIS-CTMC-parallel-multiple-R0.R
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run_one_sim = function(params) {
IC <- c(S = (params$Pop-params$I_0), I = params$I_0)
params_local <- c(gamma = params$gamma, beta = params$beta)
reactions <- list(

# propensity function effects name for reaction
reaction("beta*S*I", c(S=-1,I=+1), "new_infection"),
reaction("gamma*I", c(S=+1,I=-1), "recovery")

)
set.seed(NULL)
sol <- ssa(
initial_state = IC,
reactions = reactions,
params = params_local,
method = ssa_exact(),
final_time = params$t_f,
log_firings = TRUE # This way we keep track of events
)
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# Interpolate result (just I will do)
wanted_t = seq(from = 0, to = params$t_f, by = 0.01)
sol$interp_I = approx(x = sol$time, y = sol$state[,"I"], xout
= wanted_t)

names(sol$interp_I) = c("time", "I")
# Return result
return(sol)

}
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nb_cores <- detectCores()
if (nb_cores > 124) {

nb_cores = 124
}
cl <- makeCluster(nb_cores)
clusterEvalQ(cl,{

library(GillespieSSA2)
})
clusterExport(cl,

c("params",
"run_one_sim"),
envir = .GlobalEnv)

SIMS = parLapply(cl = cl,
X = 1:params$number_sims,
fun = function(x) run_one_sim(params))

stopCluster(cl)
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Benefit of parallelisation

Run the parallel code for 100 sims between ‘tictoc::tic()‘ and
‘tictoc::toc()‘, giving ‘66.958 sec elapsed‘, then the sequential
version
tictoc::tic()
SIMS = lapply(X = 1:params$number_sims,

FUN = function(x) run_one_sim(params))
tictoc::toc()

which gives ‘318.141 sec elapsed‘ on a 6C/12T Intel(R) Core(TM)
i9-8950HK CPU @ 2.90GHz (4.75× faster) or ‘12.067 sec elapsed‘
versus ‘258.985 sec elapsed‘ on a 32C/64T AMD Ryzen
Threadripper 3970X 32-Core Processor (21.46× faster !)
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Age structure

Taking into account age can be important in some cases

▶ Demographic characteristics vary with age
▶ Interactions are in general more frequent between people of a

similar age. They are also more frequent in younger individuals
▶ Some diseases attack preferentially younger individuals
▶ The immunity of individuals changes with age, so for instance,

older people may be more susceptible to some diseases than
younger people

This is based on courses given by Jia Li during a Banff summer
school in 2004
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Note on age

Chronological age, as a structuring variable, is “easier” than
other structuring variables

Indeed, if a is (chronological) age, then

d
dta = 1
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Formulation of an SIR model

Let a be the age. Assume that natural death and recovery occur at
the rates µ and γ, respectively, both dependent on a

When an individual is sick, they are subject to disease-induced
death at the rate δ(a)

Governing equations are
(∂t + ∂a)S(t, a) = Λ(a)− (µ(a) + λ(t, a))S(t, a) (28a)
(∂t + ∂a)I(t, a) = −(µ(a) + γ(a) + δ(a))I(t, a) + λ(t, a)S(t, a) (28b)
(∂t + ∂a)R(t, a) = γ(a)I(t, a) (28c)
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Boundary conditions are

S(t, a0) = B (28d)
I(t, a0) = 0 (28e)

R(t, a0) = 0 (28f)

while initial conditions take the form

S(0, a) = Φ(a) (28g)
I(0, a) = Ψ(a) (28h)

R(0, a) = 0 (28i)
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Force of infection

Transmission λ(t, a) of the disease takes the form

λ(t, a) = r(a)
∫ ∞

a0

β(a, s)ρ(a, s) I(t, s)
N(t, s)ds

where
▶ r(a) is the number of contacts by individuals of age a per unit

time
▶ β(a, s) is the probability of disease transmission to a

susceptible of age a by an infectious of age s
▶ ρ(a, s) is the meeting rate between people of age a and people

of age s
▶ N(t, a) = S(t, a) + I(t, a) + R(t, a) is the distribution of total

population
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To simplify, assume that β(a, s) is separable

β(a, s) = f(a)g(s)

where f(a) is the susceptibility of individuals aged a and g(s) is the
force of infection of individuals aged s

Then
λ(t, a) = r(a)f(a)

∫ ∞

a0

g(s)ρ(a, s) I(t, s)
N(t, s)ds (29)
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Analysis of the SIR model

We seek the DFE by setting I = 0

We find (S, I,R) = (S0(a), 0, 0) with

S0(a) = Be−M(a) + e−M(a)
∫ a

a0

eM(x)Λ(x)dx

where
M(a) =

∫ a

a0

µ(s)ds
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Consider the perturbed solution u(t, a) = S(t, a)− S0(a). Assume
that the meeting rate ρ is also separable,

ρ(a, s) = p1(a)p2(s)

Then

λ̃(t, a) := r(a)f(a)p1(a)
∫ ∞

a0

g(s)p2(s)
S0(s) I(t, s)ds ' λ(t, a)

and we obtain the linearisation

(∂t + ∂a)u = −µ(a)u− λ̃(t, a)S0(a)
(∂t + ∂a)I = −(µ(a) + γ(a) + δ(a))I + λ̃(t, a)S0(a)
(∂t + ∂a)R = γ(a)I
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Let
u(t, a) = ũ(a)ec(t−a) I(t, a) = Ĩ(a)ec(t−a)

and denote

b(a) = S0(a)r(a)f(a)p1(a) W =

∫ ∞

a0

g(s)p2(s)
S0(s) e−cs̃I(s)ds
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Then

dũ(a)
da = −µ(a)ũ(a)− b(a)ecaW

d̃I(a)
da = −(µ(a) + γ(a))̃I(a) + b(a)ecaW

Ĩ(a) = We−M(a)−Γ(a)
∫ ∞

a0

eM(s)+Γ(s)b(s)ecsds

where Γ(a) =
∫ a

a0
γ(s)ds

Therefore

W = W
∫ ∞

a0

g(s)p2(s)
S0(s) e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds
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Let then

H(c) :=
∫ ∞

a0

g(s)p2(s)
S0(s) e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds

We seek roots of the characteristic equation H(c) = 1

We have
dH(c)

dc = −
∫ ∞

a0

g(s)p2(s)
S0(s) e−M(s)−Γ(s)

∫ s

a0

(s − v)eM(v)+Γ(v)b(v)e−c(s−v)dvds < 0

implying that H(c) is a decreasing function
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▶ Let c⋆ be a real solution to H(c) = 1. If H(0) > 1, then c > 0,
whereas if H(0) < 1, c < 0

▶ Suppose that c⋆ = α+ iβ is a complex root of H(c) = 1. Then

Re H(c) =
∫ ∞

a0

g(s)p2(s)
S0(s) e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−α(s−v) cos β(s − v)dvds

As a consequence, H(0) < 1 =⇒ α < 0

So H(0) = 1 is a threshold and we take R0 = H(0)
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Analysis using semigroups: SIA model

To illustrate the use of the semigroup method in this context, we
consider an SIA model describing the evolution of HIV/AIDS

The model is almost equivalent to (28), with a few differences

The I compartment contains inviduals bearing HIV, but not yet in
the AIDS stage

The rate γ(a) represents the progression towards the AIDS stage

The AIDS stage is represented by compartment A, where
individuals are subject to a specific mortality rate
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(∂t + ∂a)S(t, a) = Λ(a)− (d(a) + λ(t, a))S(t, a) (30a)
(∂t + ∂a)I(t, a) = −(d(a) + γ(a))I(t, a) + λ(t, a)S(t, a) (30b)
(∂t + ∂a)A(t, a) = γ(a)A(t, a)− (d(a) + δ(a))A(t, a) (30c)

Assume
λ(t, a) = h(a)

∫ ∞

a0

ρ(a, a′) I(t, a′)
T(t, a′)da′ (30d)

where T(t, a′) = S(t, a′) + I(t, a′)
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An individual in AIDS stage no longer has contacts. Therefore the
dynamics of S and I do not depend on the dynamics of A, and we
consider the system consisting of the first two variables

Let ω be the maximum age. The system in proportions takes the
form

x :=
S
T y :=

I
T

As we are only considering S and I, we have x + y = 1 and the
system reads

(∂t + ∂a)y(t, a) = (1− y)(−γ(a)y + λ(t, a)) (31a)

λ(t, a) = h(a)
∫ ω

0
p(a, a′)y(t, a′)da′ (31b)
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Let X = {f ∈ L1(0, ω)}. Define

(Af)(a) := − d
daf(a), f ∈ D(A)

with D(a) = {f ∈ X, f is absolutely continuous, f(0) = 0}, and

F(f)(a) ≡ (1− f(a))
(
−γ(a)f(a) + h(a)

∫ ω

0
p(a, a′)f(a′)da′

)
an operator from X→ X

Let Ω = {f ∈ X, 0 ≤ f ≤ 1 a.e.}. Then (31) takes the form

dy
dt = Ay + F(y)

y(0) = y0 ∈ Ω
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Let

(Bf)(a) = −df(a)
da −γ(a)f(a) (Pf)(a) = h(a)

∫ ω

0
p(a, a′)f(a′)da′

We have

(∂t +∂a)y = −γ(a)y+h(a)
∫ ω

0
ρ(a, a′)y(t, a′)da′ ⇔ dy

dt = (B+P)y

B + P generates a C0-semigroup T(t), t ≥ 0, which is eventually
uniformly continuous
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The resolvant of B + P is

R(λ;B + P) = (Sλ − I)−1G

with
(Gf)(a) =

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
f(σ)dσ

(Sλf)(a) =
∫ ω

0

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
ρ(σ, ξ)dσf(ξ)dξ

where we denoted

Γ(a) = exp

(
−
∫ a

0
γ(a′)da′

)
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R0

R0 is the spectral radius of the operator

(Sf)(a) =
∫ ω

0

∫ a

0

Γ(a)
Γ(σ)

h(σ)p(σ, ξ)dσf(ξ)dξ
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Pair formation

ρ(t, a, a′) proportion of partners of an individual aged a who are
aged a′

r(t, a) mean number of partners of an individual aged a

T(t, a) total number of individuals aged a

The following conditions must hold
▶ 0 ≤ ρ ≤ 1
▶ ∫∞

0 ρ(t, a, a′)da′ = 1
▶ ρ(t, a, a′)r(t, a)T(t, a) = ρ(t, a′, a)r(t, a′)T(t, a′)
▶ r(t, a)T(t, a)r(t, a′)T(t, a′) = 0⇒ ρ(t, a, a′) = 0
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