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Section 1: Introduction

Definition — Cancer

Cancer is a condition where cells in a specific part of the body grows and reproduces uncontrollably.
The cancerous cells can invade and destroy surrounding healthy tissue, including organs.

Source: National Health Service (NHS), UK

Figure: Hepatocellular carcinoma, the most common liver cancer. (Source: Science Photo Library)
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Section 1: Introduction

Some numbers

– Cancer is the first or second leading cause of death in 134 of 183 countries in the world. It is

responsible for an estimated 10 million deaths in 2020, up from 9.6 million deaths in 2018, and

8.2 million deaths in 2016. Compare with total births and deaths.

– In the EU, cancer was responsible for 37% of all deaths in ages 0-65 and 23% of all deaths in ages

65+.

– Globally, among children 0-19 years, 300,000 new cancer cases arise every year.

– Approximately 70% of deaths from cancer occur in low- and middle-income countries.

– Around 30% of cancer deaths are due to the five leading behavioural and dietary risks: high body
mass index, low fruit and vegetable intake, lack of physical activity, and tobacco and alcohol use.

– Tobacco use is the most important risk factor for cancer and is responsible for approximately 22%

of cancer deaths.

– Infections causing cancer, such as hepatitis and human papilloma virus (HPV), are responsible for

up to 25% of cancer cases in low- and middle-income countries.

– The total annual economic cost of cancer in 2010 was estimated at approximately US$1.16 trillion.

– By 2030, cancer will develop in 20% of the global population before they reach the age of 75.

Sources: Cancer Research UK, World Health Organization (WHO) 2018 and Eurostat 2013
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Section 1: Introduction

Types of cancer

– Carcinoma: appears in the skin or in tissues that line or cover internal organs; also termed

malignancies of the epithelial tissue

– Sarcoma: appears in bone, cartilage, fat, muscle, blood vessels, or other connective or supportive

tissue.

– Leukemia: appears in blood-forming tissue, such as the bone marrow, and causes large numbers of

abnormal blood cells to be produced and enter the blood; also termed liquid or blood cancers.

– Lymphoma and multiple myeloma: appear in the cells of the immune system.

– Central nervous system cancers: appear in the tissues of the brain and spinal cord.

Source: National Institute of Health (NIH), US
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In South Africa (2019):

Women:

▶ Breast

▶ Cervix

▶ Colorectal

▶ Uterus

▶ Non-Hodgkin’s

Lymphoma

Men:

▶ Prostate

▶ Colorectal

▶ Lung

▶ Non-Hodgkin’s

Lymphoma

▶ Melanoma

National Cancer Registry (NCR), ZA



Section 1: Introduction

Risk factors

The direct cause of cancer is mutations in the DNA, which can be inherited or occur as a result of

environmental factors, e.g.:

– exposure to carcinogens (cancer-causing chemicals)

– exposure to radiation

– (unprotected) exposure to the sun

– certain viruses, e.g. human papilloma virus (HPV)

– smoking

– lifestyle choices, e.g. particular diets and level of physical activity

Moreover

– cancer risk increases with age

– some health (inflammation causing) conditions may also increase your risk of cancer

(Source: NIH)
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– smoking

– lifestyle choices, e.g. particular diets and level of physical activity

Moreover

– cancer risk increases with age

– some health (inflammation causing) conditions may also increase your risk of cancer

(Source: NIH)
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Section 1: Introduction

Types of cancer treatment

– Surgery: tissue removal from the organism

– Radiation therapy: high doses of radiation aimed to kill cancer cells and shrink tumours

– Chemotherapy: specialised chemicals aimed to kill cancer cells

– Hyperthermia: raising the local tissue temperature to 45 ◦
C damages cancer cells and leaves

healthy tissue unharmed

– Immunotherapy: helping the immune system to fight cancer

– Hormone therapy: aims to slow the growth of breast and prostate cancer

– Photodynamic therapy: light activated drug is used to kill cancer cells

– Targeted therapy: targets changes in cancer cells that helps them grow, divide, and spread

– Stem Cell transplant: restoration of blood-forming stem cells in patients who had their own been

destroyed by chemo- or radiotherapy

– Precision medicine: personalised treatment based on genetic footprint of the disease in each

patient

The treatment depends primarily on the type of cancer; most patients receive a combination of

treatments.

(Source: NIH)
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Section 1: Introduction

Definition — Oncology

Oncology is a branch of medicine that deals with the prevention, diagnosis, and treatment of cancer.
(Source: National Institues of Health (NIH), USA)

Etymology: from the Greek “ογκος” (ogkos) meaning volume/mass and “λογος” (logos) meaning speech/study.

Definition — Mathematical Oncology

Mathematical Oncology scientific discipline that studies processes in oncology using mathematical
tools and methods.
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Section 1: Introduction

What will we deal with in this module?

Definition — Tumour (or Neoplasm)

An abnormal mass of tissue that results when cells divide more than they should or do not die when
they should. Tumors may be benign (not cancer), or malignant (cancer).

(Source: NIH)

In these lectures, and in Mathematical Oncology research for that matter, we develop and study

mathematical models for Solid Tumours:

Definition — Solid Tumour

An abnormal mass of tissue that usually does not contain cysts or liquid areas. Solid tumors may be
benign (not cancer), or malignant (cancer). Examples of solid tumors are carcinomas, sarcomas, and
lymphomas. Leukemias (blood cancers) generally do not form solid tumors.

(Source: NIH)
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Section 1: Introduction

Progression to malignancy

Figure: Schematic depiction of a possible tumour progression path that includes 4 stages of mutation (Source: National Institute of

Health (NIH), US)

1. Initial Mutation and Hyperplasia: A cell acquires a first mutation, leading to faster division. This

results in hyperplasia, an increase in the number of normal cells.

2. Second Mutation and Dysplasia: A cell within the hyperplastic population gains a second

mutation, increasing division speed. This leads to dysplasia, where cells look abnormal and are

precancerous.

3. Third Mutation and In Situ Cancer: Another mutation occurs, causing cells to appear markedly

abnormal and form a tumour. This “in situ” cancer has not yet invaded beyond its original tissue.

4. Fourth Mutation and Malignancy: A fourth mutation allows the tumour to invade neighbouring

tissues, becoming malignant. This invasion is a key feature of cancer.

5. Metastasis: Some malignant cells spread through the circulatory or lymphatic systems. They can

establish new tumours in secondary locations, known as metastases.
Source: NIH US
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Section 1: Introduction

Normal-vs-Cancer cells

Figure: Normal, premalignant immortal, and cancer cells (second line) and tissue (first line) (Source: Sokolov et al, New Journal of Physics)

1. Uncontrolled Proliferation: Cancer cells proliferate uncontrollably and form tumours, lacking the

normal cells’ ability to stop dividing at optimal density.

2. Lack of Self-Repair Ability: Cancer cells exhibit genomic instability and altered DNA repair

mechanisms, contributing to their unregulated growth, rather than a complete lack of self-repair.

3. Evasion of Apoptosis: Cancer cells evade programmed cell death (apoptosis), allowing them to

survive and proliferate beyond their typical lifespan, which aids in tumor progression and

treatment resistance.
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Section 1: Introduction

Benign-vs-Malignant tumour

Figure: Differences between benign and malignant cancer cells (Source: Raj&Kumar 2016)

▶ Benign tumours:

– do not invade their surrounding tissue or spread around the body;

– grow slowly and generally respond better to treatment.

▶ Malignant tumours:

– invade the surrounding tissue and potentially spread around the body through the circulatory

or lymphatic system;

– grow quickly (time scale of weeks) and are (generally) more resilient to treatments.
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Section 1: Introduction

Epithelial-to-Mesenchymal Transition (EMT)

Figure: Schematic representation of the transition from epithelial to mesenchymal phenotype (Source: Kalluri&Weinberg 2009)

Epithelial-to-Mesenchymal Transition (EMT)

A cell programming process by which epithelial cells lose their cell polarity and cell-cell adhesion to gain

mesenchymal traits, including enhanced migratory and invasive properties. EMT endows the cells with

the ability to move more freely and invade other tissues.

EMT in Cancer: Progression to Malignancy

EMT enables cancer cells to detach from the primary tumor, invade surrounding tissues, and contribute

to the formation of metastases at distant sites. EMT is associated with increased resistance to

chemotherapy and the development of a more aggressive tumor phenotype.
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Epithelial-to-Mesenchymal Transition (EMT)

Figure: Schematic representation of the transition from epithelial to mesenchymal phenotype (Source: Kalluri&Weinberg 2009)
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Section 1: Introduction

Malignancy and invasion of the ECM

(a) (b)

Figure: (a): Human liver adenocarcinoma; emergence and growth of various tumour “islands” (Source: Haymanj/Wikimedia Commons).

(b): In vitro invasion of healthy tissue (pink) by cancer cells (dark red) (Source: Andasari et al. 2014)

After EMT, cancer cells:

▶ Break Cell-Cell Adhesions: The process disrupts tight cell junctions, allowing cancer cells to

detach from the primary tumor mass. This detachment is crucial for subsequent migration and

invasion.

▶ Increase Motility and Invasion: By acquiring mesenchymal traits, cancer cells enhance their ability

to move and invade. They can degrade and remodel the extracellular matrix (ECM).

▶ Interact with the Tumor Microenvironment: EMT is influenced by the tumor microenvironment.

Growth factors, cytokines, and ECM components promote EMT in cancer cells, indicating a

complex interplay that supports their invasive capabilities.
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Section 1: Introduction

Angiogenesis

Figure: Graphical depiction of the gradual formation of blood vessels in the vicinity of a tumour as a response to the growth factors (small

green dots) secreted by the cancer cells (Source: Creative BioArray)

▶ Tumours promote the formation of new blood vessels (angiogenesis) in their vicinity by secreting

specialized proteins, known as tumor angiogenic factors (TAFs). These new blood vessels supply

the tumor with essential oxygen and nutrients and facilitate the migration of cancer cells from the

primary tumor site. Cancer cells utilize these vessels to enter the bloodstream and metastasize to

new locations within the organism.
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Section 1: Introduction

Metastasis

Figure: Large scale schematic description. (Source: Terese Winslow LLC)

▶ After intravasation, the cancer cells must survive the hostile environment of the bloodstream. If

they manage to do so, they can extravasate at a new site within the organism. Here, they may

potentially establish new cancer cell colonies, completing the process of metastatic spread by

forming secondary tumors through complex interactions with the new tissue microenvironment.
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Section 1: Introduction

Tumour progression and metastasis

Figure: Metastatic pattern of 16 major cancer types on 1008 patients. (Source: Budczies et al, Oncotarget 2015)
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Section 1: Introduction

Hallmarks of cancer

Figure: Capabilities acquired by most, if not all, tumours. (Source: Hanahan&Weinberg 2000)
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Section 2

Tumour Spheroid Models, Growth Curves, & Necrotic cores
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Section 2.1: Tumour Spheroid models

Sigmoid growth curves

Figure: Examples of various multicellular tumour spheroids. (Source: Carver et al 2014)

Spheroids? Really?

In early avascular stages, the tumour grows as a spheroid, and its growth curve is a sigmoid
(A.K. Laird 1964).

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 2.1: Tumour Spheroid models

Sigmoid growth curves

Figure: Examples of various multicellular tumour spheroids. (Source: Carver et al 2014)

Spheroids? Really?

In early avascular stages, the tumour grows as a spheroid, and its growth curve is a sigmoid
(A.K. Laird 1964).

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 2.1: Tumour Spheroid models

Sigmoid growth curves

Figure: Examples of various multicellular tumour spheroids. (Source: Carver et al 2014)

Spheroids? Really?

In early avascular stages, the tumour grows as a spheroid, and its growth curve is a sigmoid
(A.K. Laird 1964).

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 2.1: Tumour Spheroid models

Sigmoid growth curves

Figure: Examples of various multicellular tumour spheroids. (Source: Carver et al 2014)

Spheroids? Really?

In early avascular stages, the tumour grows as a spheroid, and its growth curve is a sigmoid
(A.K. Laird 1964).

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 2.1: Tumour Spheroid models

Sigmoid growth curves

(generalised) von Bertalanffy equation

Let N(t) be the size/volume/mass of the tumour:

dN

dt
= αNλ − βNµ, (1)

for α, β, λ, µ > 0, and µ > λ.

Here Nλ
represents “cell proliferation” and Nµ

represents “cell death”. For N(0) > 0, it holds

N(t)
t→∞−→ K =

(
α
β

) 1
µ−λ

(why?)

Logistic equation

The von Bertalanffy (1) reads for λ = 1, µ = 2, α = r, β = r
K

as

dN

dt
= rN

(
1−

N

K

)
, (2)

for r, K > 0.

Q: What processes does this model describe?

Note: If 0 < N(0) < K then N(t)
t→∞−→ K (why?).

Of course, it also holds N(t)
t→∞−→ K when N(0) > K.
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Section 2.1: Tumour Spheroid models

Sigmoid growth curves

Surface-to-Volume ratio

Some biological structures “tend” to decrease the ratio

SA:V =
Surface Area

Volume

Why “tend”? ”Nothing in Biology makes sense except in the light of evolution”, Theodosius Dobzhansky;

A nice little reference: plants vs animals.

(special) von Bertalanffy

In a case of tumour spheroids, the von Bertalanffy equation (1):

(
dN

dt
= αNλ − βNµ

)
reads for

µ = 1, λ = 2/3 as

dN

dt
= αN2/3 − βN (3)

Q: Where do the exponents come from?

Surface-to-Volume ratio for spheres

A 3D sphere of radious r > 0 has volume V = 4
3
πr3 and surface area A = 4πr2 , i.e.

A ∝ V 2/3

A: The uptake of nutrients/resources/energy, modelled by N2/3
is through the surface and their

consumption through the bulk of the tumour, represented by N .
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Section 2.1: Tumour Spheroid models

Sigmoid growth curves

Gompertz equation

The von Bertalanffy equation (1)

(
dN

dt
= αNλ − βNµ

)
reads for µ = 1 (decay proportional to

volume/mass), as

dN

dt
= aNλ − bNλ

(
N1−λ − 1

1− λ

)
where a = α− b, b = β(µ− λ) = (1− λ)

or, in the λ → 1− limit as

dN

dt
= aN − bN logN (why?)

= −bN log

(
N

K

)
(4)

for K = ea/b.

Remark: (4) provides an excellent fit to empirical growth curves for avascular tumours as well as

vascular ones in their early stages of development.

Remark: We have yet to understand why this “entropy”-like model has been so successful, i.e. we do

not understand the biological “analogue” behind the λ → 1− limit.
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(
N1−λ − 1

1− λ

)
where a = α− b, b = β(µ− λ) = (1− λ) or, in the λ → 1− limit as

dN

dt
= aN − bN logN (why?)

= −bN log

(
N

K

)
(4)

for K = ea/b.

Remark: (4) provides an excellent fit to empirical growth curves for avascular tumours as well as

vascular ones in their early stages of development.

Remark: We have yet to understand why this “entropy”-like model has been so successful, i.e. we do

not understand the biological “analogue” behind the λ → 1− limit.

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 2.2: Tumour Spheroid models

Necrotic core & the diffusion-limited nutrient stage

(a) (b)

Figure: (a) Typical tumour spheroid; the grey interior is comprised of dead cancer cells the necrotic core while the dark outer region are

the living cancer cells (Source: Sutherland et al 1986). (b) A more “realistic” identification of tumour spheroid zones: necrotic, quiescent,

proliferating (Source: Chandrasekaran & King 2017)

Tumours with necrotic cores

– A tumour requires oxygen and nutrients to grow.

– In the avascular stage, the nutrients are provided through diffusion from the surrounding tissue.

– As the tumour grows, the nutrients can no longer reach the innermost cancer cells, which die

resulting in a necrotic core.

– The tumour might grow larger still, the thickness of the living-cancer-cells layer remains the
same. The tumour reaches a diffusion-limited state.
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Section 2.2: Tumour Spheroid models

Necrotic core model & Free Boundary Problems

From a mathematical modelling point of view

– Consider a radially symmetric tumour spheroid; let r be the distance from the centre; let

0 ≤ rnec ≤ rtum the radii of the necrotic core and tumour respectively.

– c(r): concentration of the resource (e.g. oxygen) at distance r, D its diffusion, and k the (constant)

uptake of the nutrient by the live cancer tissue (not the necrotic).

– As the dynamics of the nutrient (diffusion and uptake form cancer cells) are much faster than the

dynamics of cancer (tumour growth, cell death, etc.), we assume that the system is found in a ...

QSSS (cf. Appendix Quasi-Stationary Steady State) with respect to the resource:

0 =
∂c

∂t
=

{
D∆c, 0 ≤ r < rnec

D∆c− k, rnec ≤ r ≤ rtum

=


D

1

r2
d

dr

(
r2

dc

dr

)
, 0 ≤ r < rnec

D
1

r2
d

dr

(
r2

dc

dr

)
− k, rnec ≤ r ≤ rtum

(5)

since, in spherical coordinates (x, y, z) = (r cos θ sinϕ, r sin θ sinϕ, r cosϕ) ∈ R3
, it holds

∆ = ∂2
r +

2

r
∂r +

1

r2

(
∂2
ϕ + cotϕ∂ϕ

)
+

1

r2 sin2 ϕ
∂2
θ

and since the spherical symmetry enforces ∂ϕc = ∂θc = 0.

The interface r = rnec (between the necrotic core and proliferative layer) is unknown; it is given by the

density c = cthr of the nutrient below which cells die.

Mathematical objective:

Identify rnec, i.e. solve the Free Boundary Problem (5).
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Section 2.2: Tumour Spheroid models

Necrotic core model; a first look into Free Boundary Problems

Case 1: No necrotic core: rnec = 0

Solve the Free Boundary Problem without necrotic core: (i.e. say something about rnec and rtum)

0 =


�������
D

1

r2
d

dr

(
r2

dc

dr

)
, 0 ≤ r <��: 0

rnec

D
1

r2
d

dr

(
r2

dc

dr

)
− k, ��: 0

rnec ≤ r ≤ rtum

The BCs over [0, rtum] read

dc

dr

∣∣∣∣
r=0

= 0, c(rtum) = cenv.

Note that J = −D
dc

dr
represents the flux. The above (one branch) equation reads

after some manipulation (multiply by r2, integrate, divide by r2, integrate, employ

BCs) as

c(r) = −
1

6

k

D

(
r2

tum
− r2

)
+ cenv, r ∈ [0, rtum] (6)

Q: What does the naturally imposed constraint c(0) ≥ 0 implies? Solving w.r.t. rtum

we see that

rtum ≤
√

6
D

k
cenv

i.e. a non-necrotic core living tumour has a finite maximum size
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Note that J = −D
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after some manipulation (multiply by r2, integrate, divide by r2, integrate, employ

BCs) as
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Q: What does the naturally imposed constraint c(0) ≥ 0 implies? Solving w.r.t. rtum

we see that
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Section 2.2: Tumour Spheroid models

Necrotic core model; a first look into Free Boundary Problems

Case 2: The necrotic core “solution”: rnec > 0

Solve the Free Boundary Problem: (i.e. say something about rnec and rtum)
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)
− k, rnec ≤ r ≤ rtum

Q: What is the critical size/radious rtum of a tumour which, when exceeded, a

necrotic core forms? A necrotic core does not appear at the centre of the tumour

spheroid (where it is first expected) as long as:

c(0) ≥ cthr ⇐⇒ −
1

6

k

D
r2

tum
+ cenv ≥ cthr ⇐⇒ rtum ≤

√
6
D

k
(cenv − cthr)

The BCs over the living part of the tumour [rnec, rtum] are

c(rnec) = cthr, J(rnec) = 0, c(rtum) = cenv

where J is the flux of the nutrient

J = −D
dc

dr
.
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Section 2.2: Tumour Spheroid models

Necrotic core model; a first look into Free Boundary Problems

By integration of the second branch D
1

r2
d

dr

(
r2

dc

dr

)
− k we obtain (do the

calculation)

c(r) =
1

6

k

D
r2 +

A

r
+B;

employing the BCs
(
c(rnec) = cthr, J(rnec) = 0, c(rtum) = cenv

)
we further get

cenv =
1

6

k

D
r2

tum
+

A

rtum

+B, cthr =
1

6

k

D
r2nec +

A

rnec

+B, 0 =
1

3

k

D
rnec −

A

r2nec

which yield (do it!)

cenv − cthr =
1

6

k

D

(
1 + 2

rnec

rtum

)
(rtum − rnec)

2

What did we learn from that ?

As the tumour grows large, e.g. rtum → ∞, it holds:

▶ rnec

rtum

rtum→∞−→ 1 (divide by r2
tum

and calculate the limit)

▶ Moreover, rtum − rnec

rtum→∞−→
√

2
D

k
(cenv − cthr) (calculate the limit!)

i.e. the thickness of the proliferating cancer cells ring remains constant.
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▶ Moreover, rtum − rnec

rtum→∞−→
√

2
D

k
(cenv − cthr) (calculate the limit!)

i.e. the thickness of the proliferating cancer cells ring remains constant.
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Section 2.3: Tumour Spheroid models

Angiogenesis and Angiogenesis Inhibition model

Figure: Graphical depiction of tumour induced angiogenesis. Vascular Endothelial Growth Factors (VEGF) are secreted by the cancer cells

and, in turn, assit /provoke the formation of new blood vessel branches. (Source: LUNGevity Foundation)

Figure: Tumour microvessels in vitro; (left) untreated/control group; (right): anti-angiogenics (drugs that block vascular growth factors)

treated group
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Section 2.3: Tumour Spheroid models

Angiogenesis and Angiogenesis Inhibition model
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dN

dt
= aN

(
1−

N

K

)
dK

dt
= ωN − γN2/3K

− αc(t)K

N(t): mass/volume cancer cell population

K(t): carrying capacity

(resources provided by vasculature)

ωN : stimulation of angiogenesis

γN2/3K: tumour uptake of resources

αKc(t): vasculature decay due to treatment c(t)
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Section 2.3: Tumour Spheroid models

Angiogenesis and Angiogenesis Inhibition model

▶ Without treatment, c ≡ 0, we obtain one non-trivial steady state (SS) calculated from

dN

dt
=

dK

dt
= 0: (

Ñ, K̃
)
=

((
ω

γ

)3/2

,

(
ω

γ

)3/2
)

To characterise the steady state, we study the corresponding Jacobian matrix (cf. Appendix Linear

Stability Analysis)

J̃ = J
(
Ñ, K̃

)
=

(
−α α
1
3
ω −ω

)
,

for which we see that

det J̃ =
2

3
αω > 0, tr J̃ = −α− ω < 0,

This means that the SS

(
Ñ, K̃

)
is asymptotically stable—either in an oscillatory fashion or not

depending on the sign of the discriminant ∆ =
(
tr J̃

)2
− 4 det J.
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Section 2.3: Tumour Spheroid models

Angiogenesis and Angiogenesis Inhibition model

▶ With treatment, c ̸≡ 0, the non trivial steady state satisfies from{
Ñ = K̃

ωK̃ − γK̃5/3 − αc(t)K̃ = 0

Assuming that K ̸= 0 we see that

K̃2/3 =
ω − αc(t)

γ

which clearly indicates that the (asymptotic) size of the tumour Ñ decreases with the

administration of the drug (cf. with the previous no-treatment case)

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 3: Immune Response & Cancer

Hallmarks of Cancer by Hanahan and Weinberg
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Section 3.1: Immune response

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 3.1: Cancer immune response

Figure: Cancer immune system cascade (Source: Patient Resource LLC)

▶ Antigens: proteins produced by the (cancer) cells.

▶ Antigen-presenting cells (APCs): cells that digest antigens, process them, and present them to

T-cells so they know who to attack.

▶ T-cells: (named after the thymus gland where they mature) immune system cells, activated by

APCs, that attack the antigen producer (cancer) cells.

▶ Destroyed cancer cells undergo lysis.

▶ Lysis: Cell disintegration via membrane breakdown.
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Section 3.2: A first immune response model

Let N be the cancer cells and T the T-cells respectively, and for g, k, ϕ, µ > 0
dN

dt
= gN − kNT

dT

dt
= ϕNT − µT

What the expected size of the tumour after a long time? I.e. what is the long time asymptotic

behaviour of the solution? We perform linear stability analysis: and first identify the steady states:

(N∗, T ∗) = (0, 0) and

(
µ

ϕ
,
g

k

)
Then we calculate the Jacobian

J∗ = J(N∗, T ∗) =

(
∂N (gN − kNT ) ∂T (gN − kNT )
∂N (ϕNT − µT ) ∂T (ϕNT − µT )

) ∣∣∣∣∣
(N∗,T∗)

=

(
g − kT ∗ −kN∗

ϕT ∗ ϕN∗ − µ

)
And the eigenvalues through the characteristic equation:

λ2 − tr (J∗)λ+ det (J∗) = 0 =⇒ λ1,2 =
tr (J∗)±

√
tr (J∗)2 − 4 det (J∗)

2

▶ For the steady state (N∗, T ∗) =
(

µ
ϕ
, g
k

)
: tr (J∗) = 0, det (J∗) = gµ > 0, and ∆ = −4gµ < 0;

hence the steady state

(
µ
ϕ
, g
k

)
is a center.

▶ Steady state (N∗, T ∗) = (0, 0): tr (J∗) = g − µ, det (J∗) = −gµ < 0, and ∆ = (g + µ)2 > 0;

hence the steady state (0, 0) is a saddle.
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Section 3.3: Space dependent modelling

from Random Walk to Diffusion

uτ (τ, x) = au(τ, x− h)︸ ︷︷ ︸
gains from the left

+ au(τ, x+ h)︸ ︷︷ ︸
gains from the right

− au(τ, x)︸ ︷︷ ︸
losses to the left

− au(τ, x)︸ ︷︷ ︸
losses to the right

for 0 < h << 1, or, after expanding u(τ, x± h) in Taylor series about (τ, x) as:

uτ (τ, x) = −2au(τ, x) + a

(
u(τ, x)− hux(τ, x) +

1

2
h2uxx(τ, x) +O(h3)

)
+ a

(
u(τ, x) + hux(τ, x) +

1

2
h2uxx(τ, x) +O(h3)

)
= ah2uxx(τ, x) +O(h3)

Rescaling time as τ = λt, for which we obtain uτ (τ, x) =
1
λ
ut(t, x) (why?) which, when combined

with the above, yields

ut(t, x) = aλh2uxx(τ, x) +O(λh3).

The final modelling assumption, is the so called parabolic space-time scaling, i.e.

we demand
1

λ
→ 0, h → 0 in such way that λh2 → const.;

hence

aλh2 → D;

which, when employed in the above gives rise to the Diffusion eq.

ut = Duxx

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology
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Section 3.3: Main modelling tool

from Biased Random Walk to Advection-Diffusion

uτ (τ, x) = a+u(τ, x− h)︸ ︷︷ ︸
gains from the left

+ a−u(τ, x+ h)︸ ︷︷ ︸
gains from the right

− a−u(τ, x)︸ ︷︷ ︸
losses to the left

− a+u(τ, x)︸ ︷︷ ︸
losses to the right

Let a± = α± βh where α is the base migration rate and β as the directional bias (what?); the above

reads, after Taylor expansions, as

uτ (τ, x) =(α+ βh)

(
u(τ, x)− hux(τ, x) +

h2

2
uxx(τ, x) +O(h3)

)
+ (α− βh)

(
u(τ, x) + hux(τ, x) +

h2

2
uxx(τ, x) +O(h3)

)
− (α+ βh+ α− βh)u(τ, x)

=αh2uxx(τ, x)− 2βh2ux(τ, x) +O(h3)

Rescale time as τ = λt and obtain uτ (τ, x) =
1
λ
ut(t, x); the above yields

ut(t, x) = αλh2uxx(t, x)− 2βλh2ux(t, x) +O(λh3)

Parabolic space-time scaling: h → 0 and
1
λ
→ 0 such that λh2 → const., hence

αλh2 → D and 2βλh2 → χ

this leads to

ut(t, x) + χux(t, x) = Duxx(t, x)
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Section 3.3: Main modelling tool

Extensions, Adjustments, Corrections

▶ space dependent jumping rate, e.g. the existence of a chemoattractant: a± = a±(x)

▶ population dependent jumping rate, e.g. overpopulated or underpopulated origin or destination:

a± = a±(u(x, t), ux(x, t))

▶ large jumps (phenotypic, evolutionary, etc.); leading to fractional diffusion

▶ more detailed and bacteria specific jumping process

▶ more detailed and cancer cell-specific jumping process

▶ cancer environment-specific jumping process

Note/Disclaimer/Limitations:

The agents are assumed massless, volume-less particles that jump left-or-right; cells don’t jump. The

approach implies large number of agents; this might not be the case.
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Section 3.4: (another) Immune response model

Tumour growth model without immune response

∂X

∂t
= D∆X + rX

(
1−

X

K

)
(7)

X(r, t): concentration of cancer cells (r = (x, y, z) ∈ R3
or similar)

E(r, t): activated T-cell concentration

r: proliferation rate

Cancer-cell lysis reaction sub-model

X︸︷︷︸
cancer cell

+ E︸︷︷︸
T-cell

k1−→ C = E : X︸ ︷︷ ︸
complex

k2−→ E + P︸︷︷︸
lysate

In mathematical terms (cf. Appendix Chemical 2 Mathematical Reactions):
∂E

∂τ
= −k1EX + k2C

∂C

∂τ
= k1EX − k2C

(8)

The above indicate a conservation of the total concentration of E remains constant

d

dτ
(E + C) = 0 → E + C = E0 constant (9)

We expect the lysis to be very fast in w.r.t the other processes. We hence assume that the system is in

a QSSS (cf. Appendix QSSS)

∂C

∂τ
= 0
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Section 3.4: (another) Immune response model

Tumour growth with immune response

The QSSS assumption
∂C
∂τ

= 0 leads to

k1EX − k2C = 0

Which, together with the conservation of T-cells (9): E + C = E0, yields:

E =
k2E0

k2 + k1X
So, the rate at which cancer cells are destroyed is

−k1EX = −
k2k1E0X

k2 + k1X
(10)

Including the immune response (10) in the tumour growth model (7) we obtain:

∂X

∂τ
= D∆X + rX

(
1−

X

K

)
︸ ︷︷ ︸
cancer cell proliferation

−
k2k1E0X

k2 + k1X︸ ︷︷ ︸
immune response

(11)
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Section 3.4: (another) Immune response model

Model predictions

∂X

∂τ
= D∆X + rX

(
1 −

X

K

)
−

k2k1E0X

k2 + k1X︸ ︷︷ ︸
f(X)

f(X) = X

(
r

(
1−

X

K

)
−

k1k2E0

k2 + k1X

)
︸ ︷︷ ︸

g(X)

=
X

k2 + k1X

(
−
rk1

K
X2 + r

(
k1 −

k2

K

)
X + k2 (r − k1E0)

)
︸ ︷︷ ︸

h(X)

It holds that

f(0) = 0 and h(0) = k2 (r − k1E0)

and that h exhibits a maximum at

X̃ =
Kk1 − k2

2k1
with h(X̃) =

r(Kk1 + k2)2

4Kk1
− k1k2E0.
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Section 3.4: (another) Immune response model

Model predictions II

∂X

∂τ
= D∆X + f(X) f(X) = Xg(X) =

Xh(X)

k2 + k1X

h(X) = −
rk1

K
X

2
+ r

(
k1 −

k2

K

)
X + k2 (r − k1E0) g(X) =r

(
1 −

X

k

)
−

k1k2E0

k2 + k1X

hmax = h(X̃) =
r(Kk1 + k2)

2

4Kk1

− k1k2E0 f
′
(X) = g(X) + Xg

′
(X)

f
′
(X) =

(
h(X) + Xh′(X)

)
(k2 + k1X) − k1Xh(X)

(k2 + k1X)2

▶ Case r < k1E0:

It holds that f ′(0) = g(0) = r − k1E0 < 0, i.e. the steady-state X = 0 is asymptotically stable;

small perturbations are (self-)corrected, i.e. new (and hence small) tumours are eradicated.
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▶ Case r > k1E0:

▶ For X = 0: f ′(0) = g(0) = r − k1E0 > 0 i.e. the steady-state X = 0 is unstable; i.e. new

(and hence small) tumours will not be eradicated.

It holds h(X̃) =
r(Kk1+k2)

2

4Kk1
− k1k2E0 ≥ 0 (since

4Kk1k2
(Kk1+k2)2

≤ 1), along with

h(0) = k2 (r − k1E0) > 0 and limX→∞ h(X) = −∞ leads to

∃!X∗ > X̃ > 0 : h(X∗) = 0 for which h′(X∗) < 0 (since h(X) is 2nd order pol.).

So ∃ two spatially uniform steady-states X = 0 and X = X∗
.

▶ For X = X∗
: since h(X∗) = 0 and h′(X∗) < 0 we obtain f ′(X∗) < 0, i.e. the steady-state

X∗
is asymptotically stable.

The above, basic phase-field analysis reveals that there exist a solution connecting the unstable

SS X = 0 to the stable one X = X∗
.
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SS X = 0 to the stable one X = X∗
.
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Conslusions:

▶ Case r < k1E0 (Strong Immune System): the immune system is strong enough to eradicate small

tumours.

▶ Case r > k1E0 (Weak Immune System): the immune system cannot eradicate the tumour; it

rather contributes (along with the limited resources accounted for in the carrying capacity K) in

confining it in a finite size.

▶ In any Case: you’ll need something more (cf. Appendix Travelling Wave Analysis)
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Section 4

Tumour induced Angiogenesis

Hallmarks of Cancer by Hanahan and Weinberg
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Section 4.1: Chemotaxis
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Section 4.1: Chemotaxis

... of eukariotic cells

Source: L. Kohidai 2008

Examples: white blood cells chase bacteria collective leukocytes

Chemokinesis

Chemically prompted, but not directional, kinesis/motile response to chemical stimuli.
Source: E.L. Becker 1977

Chemotaxis

Directional locomotion of cells towards a source of a chemical gradient.
Source: Encyclopedia of Immunology

▶ First observed in 1884 by Pfeffer in spermatozoa; shortly after, 1888, by Leber in mamalian

leukocytes. Since then, chemotaxis is accepted as an important mechanism in a wide range of

biological processes/phenomena; cancer included.
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Section 4.1: Chemotaxis

Chemotaxis and Cancer by Rousos et al., Nature, 2011

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 4.1: Tumour induced Angiogenesis

Tumour Angiogenesis Factors (TAFs)

A host of TAFs

▶ Vascular Endothelial Growth Factors (VEGF)

▶ Epidermal growth factors (EGF)

▶ Transforming Growth Factor beta (TGF-β)

▶ . . .
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Section 4.2: Tumour induced Angiogenesis

Reminder: Angiogenesis model I

Figure: tumour microvessels in vitro; (left) untreated control group; (right): antiangiogenics treated group
dN

dt
= aN

(
1−

N

K

)
dK

dt
= ωN − γN2/3K−αKc(t)

N(t): cancer cell population K(t): carrying capacity

(resources due to vasculature)

ωN : stimulation of angiogenesis γN2/3K: tumour uptake of resources

αKc(t): vasculature decay due to treatment c(t)
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Section 4.2: Tumour induced Angiogenesis

Angiogenesis Model II

TAF submodel

∂e

∂t
= D∆e︸ ︷︷ ︸

diffusion

− f(e)g(n)︸ ︷︷ ︸
uptake by n

−h(e)︸︷︷︸
decay

(12)

e : concentration of TAFs

n : concentration of endothelial cells (representing blood vessels)

Blood vessel submodel

∂n

∂t
= G(e)F (n)−H(n)−∇ · J (13)

H(n) : loss of blood vessels in the absence of TAFs

G(e)F (n) : production of blood vessels when stimulated by the TAFs

J(e, n) : blood vessel kinesis-taxis flux

J = Jdiff + Jchemo = −D∇n+ nχ(e)∇e, (14)

corresponding to/modelling the random and biased part of the growth of blood vessels; i.e.

∂n

∂t
= G(e)F (n)−H(n) +D∆n−∇ · (nχ(e)∇e) (15)

But, where does the flux J comes from?
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Reminder:

from biased random walk to advection-diffusion

u(τ, x − h) u(τ, x) u(τ, x + h)

a− a+

uτ (τ, x) = a
+
u(τ, x − h)︸ ︷︷ ︸

gains from the left

+ a
−
u(τ, x + h)︸ ︷︷ ︸

gains from the right

− a
−
u(τ, x)︸ ︷︷ ︸

losses to the left

− a
+
u(τ, x)︸ ︷︷ ︸

losses to the right

We set a± = α ± βh and the above reads, after Taylor expansions, as

uτ (τ, x) =(α + βh)

(
u(τ, x) − hux(τ, x) +

h2

2
uxx(τ, x) + O(h

3
)

)

+ (α − βh)

(
u(τ, x) + hux(τ, x) +

h2

2
uxx(τ, x) + O(h

3
)

)
− (α + βh + α − βh)u(τ, x)

=αh
2
uxx(τ, x) − 2βh

2
ux(τ, x) + O(h

3
)

Rescale time τ = λt to obtain uτ (τ, x) = 1
λ
ut(t, x) and the above yields

ut(t, x) = αλh
2
uxx(t, x) − 2βλh

2
ux(t, x) + O(λh

3
)

Parabolic space-time scaling:

h → 0 and
1

λ
→ 0 such that αλh

2 → D and 2βλh
2 → χ

leads to

ut(t, x) + χux(t, x) = Duxx(t, x)
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Section 4.2: Tumour induced Angiogenesis

Angiogenesis Model II

Angiogenesis model II

Based on (12) and (15) we summarise
∂e

∂t
= De∆e− f(e)g(n)− h(e)

∂n

∂t
= Dn∆n−∇ · (nχ(e)∇e) +G(e)F (n)−H(n)

(16)

e : concentration of TAFs

n : concentration of endothelial cells (representing blood vessels)

(usual) Control functions

h(e) = de, f(e) =
Vme

Km + e

g(n) =
n

n0
, χ(e) =

χ0

1 + ae

F (n) = rn

(
1−

n

n0

)
H(n) = kpn,

G(e) =


0, e ≤ e∗

e− e∗

eb
e > e∗

, e∗ ≤ eb
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Section 4.2: Tumour induced Angiogenesis

Angiogenesis Model II

Angiogenesis model II

e : concentration of TAFs

n : concentration of endothelial cells (representing blood vessels)

∂e

∂t
= De∆e︸ ︷︷ ︸

mol. diffusion

−
Vme

Km + e

n

n0︸ ︷︷ ︸
angio-uptake

− de︸︷︷︸
mol. decay

∂n

∂t
= Dn∆n︸ ︷︷ ︸

cel. diffusion

−∇
(
n

χ0

1 + ae
∇e

)
︸ ︷︷ ︸

chemotaxis

+ rG(e)n

(
1−

n

n0

)
︸ ︷︷ ︸

angio-formation

− kpn︸︷︷︸
angio-decay

where the angiogenesis is controlled by the biochemical switch mechanism:

G(e) =


0, e ≤ e∗

e− e∗

eb
, e > e∗

, e∗ ≤ eb
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Section 4.3: Haptotaxis
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Eukariotic cells

... adhere on the matrix

Matrix deformation due to cell adhesion. Source: Han et al. 2013
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Haptotaxis...

... of eukariotic cells

Source: L. Kohidai 2008

Extracellular Matrix (ECM)

A network of macromolecules such as collagen and glycoproteins that provide structural and biochemical

support to surrounding cells.

Haptotaxis

(similar to chemokinesis and chemotaxis) the biased random motion up the gradient of ECM-bound

chemoattractants.
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Haptotaxis...

... of eukariotic cells
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Angiogenesis

Model II

ECM submodel I

Assuming just degradation (by the endothelial cells) of the matrix

∂v

∂t
= −µnv (17)

v : concentration of collagen, fibronectin

n : concentration of blood vessels (represented by endothelial cells)

Blood vessel submodel II

∂n

∂t
= D∆n− χ0∇ · (n∇e)︸ ︷︷ ︸

chemotaxis

− ρ0∇ · (n∇v)︸ ︷︷ ︸
haptotaxis

(18)

e : concentration of TAFs
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Section 4.4: Chemo- & haptotaxis together
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Angiogenesis

ECM submodel II

Assuming just degradation (by the endothelial cells) of the matrix

∂v

∂t
= βn− µnv (19)

v : concentration of collagen, fibronectin

n : concentration of blood vessels (represented by endothelial cells)

The Chaplain-Anderson model (1998)



∂n

∂t
= Dn∆n−∇ ·

(
χ0

1 + ac
n∇e

)
−∇ · (ρn∇v)

∂e

∂t
= De∆e− ηne

∂v

∂t
= βn− µnv

(20)

n : endothelial cell density (representing blood vessels)

v : ECM (represented by collagens)

e : tumour angiogenesis factors (secreted by the cancer cells)
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Section 5

Invasion of the ECM and metastasis

Hallmarks of Cancer by Hanahan and Weinberg
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Section 5.1: The Gatenby model(-s)
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Cancer invasion models

the Gatenby-Gawlinski 1996 model

Figure: Low pH promotes aggressive tumour growth. A cross-section of a human breast tumour showing that low pH regions (red)

coincide with regions of rapid retraction of the healthy tissue (green). (Source: Nazanin Rohani & PNAS)
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Cancer invasion models

the Gatenby-Gawlinski 1996 model

We follow the authors

“...we hypothesize that transformation-induced reversion of neoplastic tissue to primitive glycolytic
metabolic pathways, with resultant increased acid production and the diffusion of that acid into
surrounding healthy tissue, creates a peritoumoral microenvironment in which tumour cells survive
and proliferate, whereas normal cells are unable to remain viable.”

More specifically, the main assumptions behind the model are:

“(a) high H+ ion concentrations in tumours will extend, by chemical diffusion, as a gradient into
adjacent normal tissue, exposing these normal cells to tumour-like interstitial pH;
(b) normal cells immediately adjacent to the tumour edge are unable to survive in this chronically
acidic environment; and
(c) the progressive loss of layers of normal cells at the tumour-host interface facilitates tumour in-
vasion.”
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Cancer invasion models

the Gatenby-Gawlinski 1996 model

Initial model version:

∂N

∂t
= ∇ · (DNT∇N) + rNN

(
1−

N

KN
− bNT

T

KT

)
− dNLN

∂T

∂t
= ∇ · (DTN∇T ) + rTT

(
1−

T

KT
− bTN

N

KN

)
∂L

∂t
= DL∆L+ rLT − dLL

N : (healthy) tissue cell population T : tumour cell population L: H
+

concentration

Further modelling assumptions:


DNT = 0, immovable tissue

DTN = DT

(
1−

N

KN

)
, DT constant

bNT = bTN = 0, no cross-competition for resources
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Cancer invasion models

the Gatenby-Gawlinski 1996 model

To obtain: 

∂N

∂t
= rNN

(
1−

N

KN

)
− dNLN

∂T

∂t
= DT∇ ·

((
1−

N

KN

)
∇T

)
+ rTT

(
1−

T

KT

)
∂L

∂t
= DL∆L+ rLT − dLL

(21)

N : (healthy) tissue cell population T : tumour cell population L: H
+

concentration

Non-dimensionalisation:

v =
N

KN
, c =

T

KT
, L =

L

L0
, τ = rN t, χ =

√
rN

DL
x, L0 = rL

KT

dL
the above model recasts into: 

∂v

∂τ
= v (1− v)− σΛv

∂c

∂τ
= ∇ · (D (1− v)∇c) + rc (1− c)

∂L

∂τ
= ∆L+ ω (c− L)

(22)

for σ =
dN

dL

rL

rN
KT , ω =

dL

rN
, D =

DT

DL
, r =

rT

rN

What can we do with that? Well, not much...
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Cancer invasion models

the Gatenby-Gawlinski 1996 model

Spatially Uniform Steady States (SSs):

We solve the algebraic system 
v∗ (1− v∗ − σL∗) = 0

rc∗ (1− c∗) = 0

ω (c∗ − L∗) = 0

to obtain

(v∗, c∗, L∗) = (0, 0, 0) , (1, 0, 0) , (1− σ, 1, 1) , (0, 1, 1)

Stability of the SSs:

For the quality of the SS we further need the Jacobian

J(v∗, c∗, L∗) =

1− 2v∗ − σL∗ 0 −σv∗

0 r − 2rc∗ 0
0 ω −ω


and calculate the corresponding eigenvalues:

(v∗, c∗, L∗) =


(0, 0, 0) eigen: (λ1, λ2, λ3) = (1, r,−ω) :: unstable SS

(1, 0, 0) eigen: (λ1, λ2, λ3) = (−1, r,−ω) :: unstable SS

(1− σ, 1, 1) eigen: (λ1, λ2, λ3) = (−1 + σ,−r,−ω) :: stable if σ < 1

(0, 1, 1) eigen: (λ1, λ2, λ3) = (1− σ,−r,−ω) :: stable if σ > 1
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Cancer invasion models

the Gatenby-Gawlinski 1996 model

For (χ, τ) ∈ R × [0,∞) 

∂v

∂τ
= v (1 − v) − σLv

∂c

∂τ
= ∇ · (D (1 − v)∇c) + rc (1 − c)

∂L

∂τ
= ∆L + ω (c − L)

Not much we can do here....

Travelling wave solutions:

for z = χ− ξτ, (wave speed) ξ > 0, it holds
∂

∂τ
= −ξ

d

dz
,

∂

∂χ
=

d

dz
−ξv′ = v (1− v)− σLv

−ξc′ = D
(
(1− v) c′′ − v′c′

)
+ rc (1− c)

−ξL′ = L′′ + ω (c− L)
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Cancer invasion models

the Gatenby-Gawlinski 1996 model

(
v
∗
, c

∗
, L

∗)
=


(0, 0, 0) eigen: (λ1, λ2, λ3) = (1, r,−ω) — SS unstable

(1, 0, 0) eigen: (λ1, λ2, λ3) = (−1, r,−ω) — SS unstable

(1 − σ, 1, 1) eigen: (λ1, λ2, λ3) = (−1 + σ,−r,−ω) — SS stable if σ < 1

(0, 1, 1) eigen: (λ1, λ2, λ3) = (1 − σ,−r,−ω) — SS stable if σ > 1

There exist a travelling wave c(·) (one variable) s.t. for z = χ − ξτ holds

c(χ, τ) = c(z)

For fixed χ ∈ R, the solution c(χ, ·) (two variables) at the initial time τ = 0 is found at z = χ of the travelling wave, i.e.

c(χ, 0) = c(χ).

For fixed χ ∈ R, the solution c(χ, ·) (two variables) at really future times τ → ∞, is found at z → −∞ of the travelling wave, i.e.

′′
c(χ,+∞) = c(−∞)

′′

The following are assumptions placed on the travelling wave solutions for c(·) and L(·)
lim

z→−∞
c(z) = 1, lim

z→∞
c(z) = 0

lim
z→−∞

L(z) = 1, lim
z→∞

L(z) = 0

Still, how are these states at ±∞ connected? i.e. what do the travelling waves c(·) and L(·) look like?

i.e. how does the invading fronts (for c and L) look like?
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Cancer invasion models

the Gatenby-Gawlinski 1996 model

Returning to the travelling wave ODE-system


−ξv′ = v (1− v)− σLv

−ξc′ = D
(
(1− v) c′′ − v′c′

)
+ rc (1− c)

−ξL′ = L′′ + ω (c− L)

we see that there is not much we can do....

Even more simplified model:

Still, we can adjust it slightly to account for a) the differences in the diffusion rates:

D =
DT

DL

(
=

cancer cell diffusion

acid diffusion

)
≈ 0,

and b) the slow cancer propagation/invasion speed ξ vs the diffusion of the acid.

Accordingly we obtain: 
−ξv′ = v (1− v)− σLv

−ξc′ = rc (1− c)

0 = L′′ + ω (c− L)

Here we could solve for c, and then L, and v ...
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Cancer invasion models

the Gatenby-Gawlinski 1996 model


−ξv

′
= v (1 − v) − σLv

−ξc
′
= rc (1 − c)

0 = L
′′

+ ω (c − L)

lim
z→−∞

c(z) = 1, lim
z→∞

c(z) = 0

Clearly(!) from the c-ODE we can deduce

c(z) =
1

1 +Aer/ξz
, A > 0

and verify that the asymptotic assumptions are satisfied limz→−∞ c(z) = 1, limz→∞ c(z) = 0.

Figure: Graph of 2/(1 + ex)
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the Gatenby-Gawlinski 1996 model


−ξv

′
= v (1 − v) − σLv

−ξc
′
= rc (1 − c)

0 = L
′′

+ ω (c − L)

c(z) =
1

1 + Aer/ξz
, A > 0

What remains is to solve a v, L-ODE system
−ξv′ = v (1− v)− σΛv

L′′ − ωL = −
ω

1 +Aer/ξz

We will not pursue that any further because it becomes quite technical to solve, still the idea is to

solve the L-ODE first and then substitute in and solve the v-ODE.
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Cancer invasion models

the Gatenby et al 2002 model


∂N

∂t
= DN

∂2N

∂x2
+ rNN

(
1−

N

KN
−

T

KT

)
∂T

∂t
= DT

∂2T

∂x2
+ rTT

(
1−

T

KT
−

N

KN

) (23)

N : (healthy) tissue cell population T : tumour cell population

rN , rT : growth rates KN , KT : maximal cell densities

bNT , bTN : lumped competition terms DN , DT : cellular diffusion coeffs.

Non-dimensionalisation:

v =
N

KN
, c =

T

KT
, τ = rN t, x̄ =

√
rN

DN
x,

the above model recasts into: 
∂v

∂τ
= ∆v + v (1− v − c)

∂c

∂τ
= D∆c+ rc (1− c− v)

(24)

for D = DT
DN

, r = rT
rN
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Cancer invasion models

the Gatenby et al 2002 model


∂v

∂τ
= ∆v + v (1 − v − c)

∂c

∂τ
= D∆c + rc (1 − c − v)

Setting the reaction terms F = v (1− v − c) and G = rc (1− c− v), we identify the steady states by

solving the (algebraic) system‘ {
F (v∗, c∗) = 0

G(v∗, c∗) = 0

which yields

(v∗, c∗) = (0, 0) , (1, 0) , (0, 1) , (v∗, 1− v∗) , as long as v∗ < 1

The characterisation of the steady states follows from the Jacobian:

J(v, c) =

(
∂vF ∂cF
∂vG ∂cG

)
=

(
1− c− 2v −v

−rc r(1− v − 2c)

)
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Cancer invasion models

the Gatenby et al 2002

▶ The SS (v∗, c∗) = (0, 0) corresponds to complete loss of healthy tissue and complete eradication

of the tumour;

it is unstable since:

det (J(0, 0)) = r > 0 and tr (J(0, 0)) = 1 + r > 0.

▶ The SS (v∗, c∗) = (1, 0) corresponds to complete cancer eradication and survival of the healthy

tissue; it is a stable centre since:

det (J(1, 0)) = 0 and tr (J(1, 0)) = −1 < 0.

▶ The SS (v∗, c∗) = (0, 1) corresponds to the complete degradation of the healthy tissue and the

survival of the tumour; it is a stable centre since:

det (J(0, 1)) = 0 and tr (J(0, 1)) = −r < 0.

▶ The SS (v∗, c∗) = (v∗, 1− v∗) with v∗ < 1 corresponds to coexistence of the tumour and the

healthy tissue; it is a stable centre since:

det (J(v∗, 1− v∗)) = 0 and tr (J(v∗, 1− v∗)) = −v∗ − r(1− v∗) < 0.
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Cancer invasion models

The multifacted role of urokinase

Figure: Schematic diagram of the uPA–urokinase-type plasminogen activator receptor (uPAR)-mediated pathways.“The

glysocylphosphatidylinositol (GPI)-anchored receptor uPAR consisting of three domains (D1, D2, and D3) has the ability to bind the

zymogen pro-uPA as well as the active uPA through the growth factor domain. The catalytically active form of uPA then converts inactive

plasminogen into plasmin, which in turn can cleave and activate GFs, matrix metalloproteases (MMPs), as well as the extracellular matrix

(ECM). The activated MMPs can directly cause the degradation of ECM and thereby release various growth factors. Plasminogen activator
inhibitor-1 (PAI-1) can inhibit the catalytic activity of both uPA and plasmin. Apart from uPA, uPAR also binds to integrins and other cell

surface receptors to activate different intracellular signaling pathways, e.g. focal adhesion kinase (FAK), and Rac, and regulates cellular

processes such as cell proliferation, survival, migration, invasion, angiogenesis, and metastasis.”

(Source: Frontiers in Oncology, Mahmood et al (2018))
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Cancer invasion models

The multifacted role of urokinase

Figure: The role of uPA (Source: Laboratoire de Biologie des Tumeurs et du Dèveloppement, Liége)

▶ plasmin: ECM degradation protein

▶ MMP: matrix metaloproteinases
▶ uPA (urokinase plasminogen activator: proteolytic enzyme, over expressed by cancer cells) binds to

VN (vitronectin) and weakens migration

▶ uPA bounds to uPAR (uPA Receptors: anchored on the cells); activates plasmin (weakens

ECM/cell-contact); stimulates proliferation

▶ PAI-1: (Plasminogen Activator Inhibitor) inhibits/blocks uPA/uPAR activity; weakens migration

▶ PAI-1 binds to VN; weakens ECM/cell-contact; strengthens migration
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Cancer invasion models

The multifaceted role of urokinase – Chaplain - Lolas (2006)

∂c

∂t
= Dc

∂2c

∂x2︸︷︷︸
diffusion

−
∂

∂x

(
χcc

∂u

∂x
+ ζcc

∂p

∂x
+ ξcc

∂v

∂x

)
︸ ︷︷ ︸

hapto-, chemotaxis

+ϕ13cu︸ ︷︷ ︸
uPA/uPAR

+ µ1c(1− c)

∂v

∂t
= ϕ21pu︸ ︷︷ ︸

PAI-1/uPA

− ϕ22pv︸ ︷︷ ︸
PAI-1/VN

+ µ2v(1− v)− δvm

∂u

∂t
= Du

∂2u

∂x2
− ϕ31pu︸ ︷︷ ︸

PAI-1/uPA

− ϕ33cu︸ ︷︷ ︸
uPA/uPAR

+ α31c

∂p

∂t
= Dp

∂2p

∂x2
− ϕ41pu︸ ︷︷ ︸

PAI-1/uPA

− ϕ42pv︸ ︷︷ ︸
PAI-1/VN

+ α41m

∂m

∂t
= Dm

∂2m

∂x2
− ϕ51pu︸ ︷︷ ︸

PAI-1/uPA

+ ϕ52pv︸ ︷︷ ︸
PAI-1/VN

+ ϕ53cu︸ ︷︷ ︸
uPA/uPAR

c : cancer cells

v : extracellular matrix

u : uPA

p : PAI-1 inhibitors

m : plasmin

uPA/uPAR : yields plasmin, increases cell proliferation

PAI-1/VN : increases plasmin production

PAI-1/uPA : decreases plasmin, increases vitronectin
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Cancer invasion models

The multifaceted role of urokinase – Chaplain - Lolas (2006)

▶ Special setting: consider the following set of parameters

Dc = 3.5× 10−4 Du = 2.5× 10−3 Dp = 3.5× 10−3 Dm = 4.91× 10−3

χu = 3.05× 10−2 χp = 3.75× 10−2 χu = 2.85× 10−2 µ1 = 0.25
δ = 8.15 ϕ21 = 0.75 ϕ22 = 0.55 µ2 = 0.15
ϕ31 = 0.75 ϕ33 = 0.3 α31 = 0.215
ϕ41 = 0.75 ϕ42 = 0.55 α41 = 0.5
ϕ52 = 0.11 ϕ53 = 0.75 ϕ54 = 0.5

▶ Special setting: Initial conditions

c(0,x) = e−|x|2/ε, v(0,x) = 1− 0.5e−|x|2/ε, u(0,x) = 0.5e−|x|2/ε

p(0,x) = 1/20e−|x|2/ε, m(0,x) = 0
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Cancer invasion models

The multifaceted role of urokinase – Chaplain - Lolas (2006)

Analytical treatment

▶ Special setting: spatially uniform steady states. The authors calculated (we don’t need to do that

here) that the system possesses the, following steady state

(c, v, u, p,m) = (1, 0.047, 0.222, 0.889, 0.343)

▶ Special setting: the Jacobian (verify and correct if needed)

J =


µ1(1− 2c) 0 0 0 0

0 −δm− ϕ22p+ µ2(1− 2v) ϕ21p ϕ21u− ϕ22v −δv
−ϕ33u+ a31 0 −ϕ31p− ϕ33c −ϕ31u 0

0 −ϕ42p −ϕ41p −ϕ41u− ϕ42v a41
ϕ53u ϕ52p ϕ53c ϕ52v −ϕ54


which has all its eigenvalues with negative real part
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Cancer invasion models

The multifaceted role of urokinase – Numerical treatment – Sfakianakis et al (2016)

• Dynamical solutions:
cancer cells
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Section 5.3: Two-scale modelling
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Cancer invasion models

EMT and metastasis

Katsuno 2013

Figure: (Soufce: Katsumo et al., Curr. Opin. Oncol., 2013)
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Cancer invasion models

The Sfakianakis-Kolbe model (2018)

∂cd

∂t
= Dd∆cd︸ ︷︷ ︸

diffusion

−χd∇ · (cd∇v)︸ ︷︷ ︸
haptotaxis

− µEMT cd + µd cd Vfree︸ ︷︷ ︸
proliferation

∂cs

∂t
= Ds∆cs − χs∇ · (cs∇v) −µTRA cs + µEMT cd + µs cs Vfree

∂cf

∂t
= Df∆cf + χF∇ ·

(
cf∇v

)
+µTRA cs −βf cf + µf cf Vfree

∂v

∂t
= −δv mv + µv cf Vfree

∂m

∂t
= Dm∆m +αd cd + αs cs −βm m

Vfree = (1− cd − cs − cf − v)+

cd: differentiated cancer cells (non-metastatic) v: extracellular matrix

cs: de-differentiated cancer cells

cf : cancer associated fibroblast cells m: matrix degen. proteine

EMT: epithlial-mesenchymal transition TRA: transdifferentiation
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Cancer invasion models

The Sfakianakis-Kolbe model (2018)

Michaelis-Menten type kinetics:

µEMT = µ0
gbd

µ1/2 + gbd
,

with {
∂τg

b = k+gf rf − k−gb

∂τg
f = Df∆gf− k+gf rf + k−gb

bound EGF :: gb = gbc + gbd ,

free EGFR :: rf .

and time (re-)scaling

τ =
t

ε
, 0 < ε << 1 .

gives

gb =
gf

kD + gf
(λscs + λdcd)

total EGFR :: λs , λd

So

µEMT = µ0
gfλdcd

µ1/2kD + µ1/2g
f + gfλdcd
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Cancer invasion models

The Sfakianakis-Kolbe model (2018)

Highly dynamic metastatic cells

Invasion 2D: ▷ ▷ Invasion 1D: ▷

0.3

0.7

1

0 5
0

1

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 5.4: Prostate cancer modelling
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Cancer invasion models

Prostate cancer modelling

Source: American Cancer Society

▶ Most common form of cancer amongst men in the UK; almost 0.2% of the overall men population.

▶ Elevated levels of the prostate specific antigen (PSA) in blood are correlated with prostatic tissue
hyperplasia.

▶ PSA is related to androgenic hormones, (testosterone or dihydrotestosterone) which bind to the

androgen receptor (AR)

▶ AR function as transcription factors with many biological actions in the reproductive,

musculoskeletal, cardiovascular, immune, neural and haemopoietic systems.

▶ When overexpressed, AR might lead to a local prostatic tissue hyperplasia.

Still it is more complex than that...
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Cancer invasion models

Prostate cancer modelling - the Jackson model (2004)

Assumptions

▶ The tumour is comprised of two populations of cancer cells: AR dependent (ARd) and AR

independent (ARi)

▶ The increase of the androgen levels ...

▶ increases in the proliferation of the ARds;

▶ does not affect the proliferation of the ARis ;

▶ decreases the apoptosis of the ARds ;

▶ increases the apoptosis of the ARis.

Tumour-wide Jackson-model

For p: ARd, q: ARi, and for a: AR (androgen)
dp(t)

dt
= apθp(a)p− δpωp(a)p

dq(t)

dt
= aqθq(a)q − δqωq(a)p

(25)

where ap, aq > 0, δp, δq are the maximum cell proliferation and death rates, and where

θp = θ1 + (1− θ1)
a

a+K
, 0 ≤ θ1 ≤ 1,

θq = 1,

ωp = ω1 + (1− ω1)
a

a+K
, ω1 > 1

ωq = ω2 + (1− ω2)
a

a+K
, 0 ≤ ω2 ≤ 1

(26)
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Cancer invasion models
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Cancer invasion models

Prostate cancer modelling - the Jackson model (2004) cont’d

Continuum version Jackson model

Assuming radial symmetry (with r being the radious) of the tumour and p(r, t), q(r, t): cancer cell type

volume fraction, i.e. p(r, t) + q(r, t) = k, constant
∂p

∂t
+∇ · (up) = Dp∆p+ apθp(a)p− δpωp(a)p

∂q

∂t
+∇ · (uq) = Dq∆q + aqθq(a)q − δqωq(a)p

(27)

where u is the vector of collective cell migration.

Single cancer cell type equation

Adding the above two equations one obtains:

k∇ · u = (Dp −Dq)∆p+ apθp(a)p+ aqθq(a)(k − p)− δpωp(a)p− δqωq(a)(k − p)

which, based on the radial symmetry, can be used to solve for u.

Adding AR specific treatment

Assuming that AR levels a(r, t) is at a steady state a0 before treatment (surgical or chemical) is

introduced

a(r, t) =

{
a0, t ≤ T

(a0 − am)e−b(t−T ) + am, t ≥ T

where 0 ≤ am ≤ a0 is the minimum AR levels that can be achieved by the therapy.
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Cancer invasion models

Prostate cancer modelling - the Portz-Kuang-Nagy model (2012)

Some definition

▶ Dendritic cells (DC) are a class of Antigen Presenting Cells.

▶ Cytokines is a large group of proteins secreted, for communication, by cells of the immune system.

▶ Homeostasis is a self-regulating process of recovering physical and chemical stability in the

organism.
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Cancer invasion models

Prostate cancer modelling - the Portz-Kuang-Nagy model (2012) cont’d



ARds :
dX1

dt
= r1(A)X1 − m(A)X1︸ ︷︷ ︸

mutation to X2

−
e1X1T

g1 +X1︸ ︷︷ ︸
killed by T cells

ARis :
dX2

dt
= r2X2 + m(A)X1︸ ︷︷ ︸

mutation from X1

−
e1X2T

g1 +X2︸ ︷︷ ︸
killed by T cells

T-cells :
dT

dt
=

e2D

g2 +D︸ ︷︷ ︸
activation by DCs

−µT +
e3TIL

g3 + IL︸ ︷︷ ︸
clonal expansion

cytokines :
dIL

dt
=

e4T (X1 +X2)

g4 +X1 +X2︸ ︷︷ ︸
production by T-cells

−ωIL

AR :
dA

dt
= γ (a0 −A)︸ ︷︷ ︸

homeostasis

− γa0u(t)︸ ︷︷ ︸
therapy

DCs :
dD

dt
= −cD

(28)

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Cancer invasion models

Prostate cancer modelling - the Salim et al model (2021)

Link to the paper

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Section 5.5: Glioblastoma modelling
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Cancer invasion models

Glioblastoma modelling

Figure: Brain scan of an 11 year old boy with a large size glioblastoma tumour (Source: NIH)

Glioblastoma (GBM)

A fast-growing type of central nervous system tumor that forms from glial (supportive) tissue of the

brain and spinal cord and has cells that look very different from normal cells.
Source: NIH
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Cancer invasion models

Glioblastoma modelling - The Stepien et al model

A single equation model by Stepien et al, (2015)

∂u

∂t
= ∇ ·

(
D

(
u

umax

)
∇u

)
+ gu

(
1−

u

umax

)
− sgn(x)v∇ · u

for the non-constant diffusion coefficient D(u) = D1 − D2 un

an+un

u(r, t): invasive tumour cells at radius r at time t umax: carrying capacity

v: invasion “speed” (in the sense of advection) g > 0

1-D analogue

The 1-D analogue reads, after expanding the diffusion derivatives,

∂u

∂t
= D

(
u

umax

)
∂2u

∂x2
+

1

umax

D′
(

u

umax

)(
∂u

∂x

)2

+ gu

(
1−

u

umax

)
− v

∂u

∂x

Non-dimensionalisation

We rescale using the change of variables

t∗ = gt, x∗ = x
√
g, u∗ =

u

umax

, v =
v
√
g
,

divide by gumax, and drop the asterisk, the previous PDE recasts into

∂u

∂t
= D (u)

∂2u

∂x2
+D′ (u)

(
∂u

∂x

)2

− v
∂u

∂x
+ u (1− u)
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A single equation model by Stepien et al, (2015)

∂u

∂t
= ∇ ·

(
D

(
u

umax

)
∇u

)
+ gu

(
1−

u

umax

)
− sgn(x)v∇ · u

for the non-constant diffusion coefficient D(u) = D1 − D2 un

an+un

u(r, t): invasive tumour cells at radius r at time t umax: carrying capacity

v: invasion “speed” (in the sense of advection) g > 0

1-D analogue

The 1-D analogue reads, after expanding the diffusion derivatives,

∂u

∂t
= D

(
u

umax

)
∂2u

∂x2
+

1

umax

D′
(

u

umax

)(
∂u

∂x

)2

+ gu

(
1−

u

umax

)
− v

∂u

∂x

Non-dimensionalisation

We rescale using the change of variables

t∗ = gt, x∗ = x
√
g, u∗ =

u

umax

, v =
v
√
g
,

divide by gumax, and drop the asterisk, the previous PDE recasts into

∂u

∂t
= D (u)

∂2u

∂x2
+D′ (u)

(
∂u

∂x

)2

− v
∂u

∂x
+ u (1− u)
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Cancer invasion models

Glioblastoma modelling - The Stepien et al model cont’d

∂u

∂t
= D (u)

∂2u

∂x2
+ D

′
(u)

(
∂u

∂x

)2

− v
∂u

∂x
+ u (1 − u)

Invasion-like travelling wave solution

Wave speed k: w(z) = w(x− kt) if limz→−∞ w = 1 and limz→+∞ w = 0 (where does these come

from?), and such that u(x, t) = w(x− kt) for every x and t.

Accordingly the PDE recasts to the second

order ODE

w′′(z) +
1

D(w(z))

(
(k − v)w′(z) +D′(w(z))(w′(z))2 + w(z)(1− w(z))

)
= 0

which after the change of variable w′ = y reads as
w′ = y

y′ = −
1

D(w)

(
D′(w)y2 + (k − v)y + w(1− w)

) (29)

This system possesses two steady states:: (w∗, y∗) = (0, 0) and (1, 0).

Nikolaos Sfakianakis (n.sfakianakis@st-andrews.ac.uk) 3MC — Mathematical Oncology



Cancer invasion models
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Cancer invasion models

Glioblastoma modelling - The Stepien et al model cont’d
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Cancer invasion models

Glioblastoma modelling - The Stepien et al model cont’d
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Cancer invasion models

Glioblastoma modelling - The Stepien et al model cont’d

▶ The Jacobian reads at (1, 0)

J(1, 0) =

(
0 1
1

D(1)
−(k−v)
D(1)

)
which has negative determinant J(1, 0) = −1

D(1)
< 0; hence the steady state (w∗, y∗) = (1, 0) is a

saddle point.

▶ Similarly, the Jacobian at (0, 0) reads

J(0, 0) =

(
0 1

− 1
D(0)

−(k−v)
D(0)

)

for which det J(0, 0) = 1
D(0)

= 1
D1

> 0 and, by assuming that k > v, tr(0, 0) =
−(k−v)

D1
< 0;

hence the steady state (w∗, y∗) = (0, 0) is stable.

(You now know how it goes...)
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Cancer invasion models
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Cancer invasion models

Glioblastoma modelling - The (simplified) Dietrich et al (2021) model

M : glioma cell density, Q: brain tissue density, h: ion (acid) concentration, and e: endothelial cell density

∂tM +∇x · (g(y∗)M) =
1

1 + h
M(1−M),

∂tQ = c1Q(1−Q−M)− c2
h

1 + h
Q,

∂th = Dh∆h+ γ(1− h)
M

1 +M
− δhe,

∂te = De∆e− ςe∇ · (e(1− e)∇h) + νee(1− e),

(30)

where y∗ is the concentration of free membrane-bound (i.e. on the cell) adhesion receptors,
g(y∗) = a1(1−M)DW b(y∗),

b(y∗) = (1− ρ1 − ρ2)
−∇h√

1 + |∇h|2
+ ρ1(1− y∗)

∇Q√
1 + |∇Q|2

+ ρ2
−∇M√

1 + |∇M |2
,

(31)

and where DW is the brain tissue tensor.
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Cancer invasion models
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Cancer invasion models

Glioblastoma modelling - The Dietrich et al (2021) model (cont’d)

Q e pH M

t
=

0
t
=

5
0

t
=

1
0
0

Figure: Simulation results for the brain tissue Q, the vasculature e,the pH, and of the 10−5
isosurface of the tumour at three different

time instances.

movie: ▷
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Section 6

Multiscale models
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Section 6.1: Hybrid Atomistic-Macroscopic Invasion model
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Hybrid atomistic-macroscopic modelling

(a) cytokine secretion (b) breast cancer cells invading healthy tissue

Source: Wikipedia Source: John Hopkins Pathology

▶ Many processes in biology are driven by the interactions between different scales; they take the

form of e.g. cytokines interacting with cells, isolated cells interacting with tissues, and many-many

more.

▶ At the same time, it is quite often the case that the main agents undergo transitions from one

phase to another. An example are the dynamic cellular programming EMT and MET processes.

Both processes are combined in the modelling approach that we develop here.
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Hybrid atomistic-macroscopic modelling:

Stochastic Differential Equations

red: Brownian motion without drift (random); blue: Brownian motion with drift (biased random)

▶ A stochastic process is a family of random variables {Xt}, where t ∈ T (e.g. time) and Xt ∈ S (e.g

R2
). The family {Xt} is understood as the path of a particle moving randomly in space S.

▶ A Stochastic Differential Equation (SDE) is a differential equation where at least one of the terms is

a stochastic process.

▶ A typical SDE is of the form

dXt = µ(Xt, t)dt+ σ(Xt, t)dBt

Xt :: stochastic process, µ :: drift coef. (directed part), σ :: diffusion coef. (random part)

During a small time period τ the stochastic process Xt (e.g. bacteria position in a petri dish)

changes by an “amount” that is normally distributed with mean µ(Xt, t)τ and variance σ(Xt, t)2τ .
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Main modelling tool:

Cell migration and SDEs

A large number of particle-cells migrating with a pattern: here simulated by SDEs

Similar pattern can be seen when modelling with a density

dXp
t = µ(Xp

t , t)dt+ σ(Xp
t , t)dW

p
t , p ∈ P (t) = {1 . . . N(t)}

X
p
t :: position of cell p at time t, µ :: drift coefficient, σ :: diffusion coefficient, Wt :: Wiener process

1

▶ The coefficients µ and σ encode the modelling assumptions placed on the directed and random

parts of the motion of the cell-particles.

▶ In the large cell limit N(t) → ∞ this system of SDE converges to a particular PDE. Which one? It

depends on µ and σ; one needs to see in details the theory developed by Stratonovich and Itô.
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Phase transition between density and cells

0
1

0.2

0.8

0.4

0.6

0.6

x

0

0.8

0.4 0.2

1

y

0.4
0.2 0.6

0.80 1

{
(xp(t),mp), p ∈ P (t)

} F
⇄
B

c(x, t)

xp , mp :: position and mass of the particle p, c :: density profile

The transition between the density and (particle-)cell phases is taken care by:

mp(t) =

∫
Mp

c(x, t)dx, xp(t) :: (bary)centre of Mp

Mp :: support of the cell
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Hybrid atomistic-macroscopic cancer invasion model

A two-cancer-cell species, haptotaxis, EMT

Assumptions

1. Four main components: epithelial-like cancer cells (EC), mesenchymal-like cancer cells (MC), ECM,

and MMPs.

2. The ECs mostly proliferate and barely migrate; the MCs migrate and barely proliferate.

3. The ECs mutate via EMT to MCs, and vice-versa through MET.

4. The ECs compete for resources with the MCs and the ECM.

5. Mechanical pushing forces are developed between the ECs.

6. The MCs perform a haptotaxis biased random motion.

7. The MMPs are produced by both ECs and MCs.

8. The MMPs diffuse freely in the environment and decay.

9. The ECM is degraded by the complexes of ECs and MCs with MMPs.
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Hybrid atomistic-macroscopic cancer invasion model

A two-cancer-cell species, haptotaxis, EMT

Density description of main variables:



∂

∂t
cα = Dα∆cα − µEMT

α cα + µMET

β cβ + ραc c
α
(
1− cα − cβ − v

)
∂

∂t
cβ= Dα∆cβ − χβ∇ · (cβ∇v) + µEMT

α cα − µMET

β cβ

∂

∂t
m = Dm∆m+ ραmcα + ρβmcβ − λmm

∂

∂t
v = −

(
λα
v c

α + λβ
v c

β
)
mv

(32)

cα :: ECs cβ :: MCs m :: MMPs v :: ECM

Note: The use of a density profile is not justified for the MCs as they are only appear in small numbers

within the tumour; order 102 vs 109 epithelial-like cells in a 1 cm3
tumour.

Note: How do we couple the systems of PDEs and SDEs? i.e. how do we make the (phase) transition
from isolated cells to densities?
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Hybrid atomistic-macroscopic cancer invasion model

A two-cancer-cell species, haptotaxis, EMT

Density description of main variables:



∂

∂t
cα = Dα∆cα − µEMT

α cα + µMET

β cβ + ραc c
α
(
1− cα − cβ − v

)

∂

∂t
m = Dm∆m+ ραmcα + ρβmcβ − λmm

∂

∂t
v = −

(
λα
v c

α + λβ
v c

β
)
mv

(33)

cα :: ECs cβ :: MCs m :: MMPs v :: ECM

Note: The use of a density profile is not justified for the MCs as they only appear in small numbers inside

the tumour; order 102 mesenchymal vs 109 epithelial-like cancer cells in a 1cm
3

tumour.

A system of isolated mesenchymal cells:

dXp
t = µ(Xp

t , t)dt+ σ(Xp
t , t)dW

p
t , p ∈ P (t) = {1 . . . N(t)}

X
p
t :: position of MCs, µ :: drift coeff., σ :: diffusion coeff., Wt :: Wiener process

Note: How do we couple the systems of PDEs and SDEs? i.e. how do we make the (phase) transition
from isolated cells to densities?
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Hybrid atomistic-macroscopic cancer invasion model

Combination of the PDEs and SDEs

Splitting type approach at a discrete level

Let the discrete densities and (particle-)cells be given at time tn

Wn =
{
wn

(i,j) =
(
cn(i,j),m

n
(i,j), v

n
(i,j)

)}
Pβ,n =

{(
xβ,n
p ,mβ

p

)
, p ∈ Pn

}

▶ We perform the migration step for half time step ∆t/2(
Wn,Pβ,n

) M∆t/2−−−−−→
(
Wn+1/2,Pβ,n+1/2

)
▶ All the particles are transformed to densities and take into account the reaction terms for a full

time step ∆t (
Wn+1/2, Pβ,n+1/2

) R∆t−−−−→
(
W̃n+1/2, P̃β,n+1/2

)
▶ We perform the other half of the migration step(

W̃n+1/2, P̃β,n+1/2
) M∆t/2−−−−−→

(
Wn+1, Pβ,n+1

)
Overall: (

Wn+1, Pβ,n+1
)
= M∆t/2R∆tM∆t/2

(
Wn,Pβ,n

)
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Cancer Invasion hybrid atomistic-macroscopic model

A two-cancer-cell species, haptotaxis, EMT

flow self-generated 2d-invasion

gradient
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Cancer Invasion hybrid atomistic-macroscopic model

A two-cancer-cell species, haptotaxis, EMT
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