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Diseases have been known to be mobile for a while
The plague of Athens of 430 BCE

It first began, it is said, in the parts of Ethiopia above Egypt,
and thence descended into Egypt and Libya and into most of
the [Persian] King’s country. Suddenly falling upon Athens,
it first attacked the population in Piraeus [..] and afterwards
appeared in the upper city, when the deaths became much
more frequent.

Thucydides (c. 460 BCE - c. 395 BCE)
History of the Peloponnesian War
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Scale of mobility difficult to apprehend ... but mobility is critical

Working definition

Mobility is the collection of processes through which individuals change their current
location

All migrants/travellers carry with them their “health history”

Pathogens ignore borders and politics
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Why use metapopulations for disease models?

▶ Appropriate for the description of spatial spread of some diseases

▶ Ease of simulation

▶ Aggregation of data by governments is most often done at the jurisdictional level,
very easy to reconcile with locations in metapopulations

p. 4 – Spatio-temporal spread of infectious pathogens



A few pointers

▶ JA & PvdD. Disease spread in metapopulations. Fields Institute Communications
48:1-13 (2006)

▶ JA. Diseases in metapopulations. In Modeling and Dynamics of Infectious
Diseases, World Scientific (2009)

▶ JA. Spatio-temporal spread of infectious pathogens of humans. Infectious Disease
Modelling 2(2):218-228 (2017)
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https://julien-arino.github.io/assets/pdf/papers/2006_ArinoPvdD-FIC48.pdf
https://julien-arino.github.io/assets/pdf/papers/2009_Arino-metapopulations.pdf
https://doi.org/10.1016/j.idm.2017.05.001
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Metapopulations with explicit movement

Split continuous space into N discrete geographical locations (ptatches)

Each location contains compartments (homogeneous groups of individuals). E.g.,
preys, predators, etc.

Here, we consider a single compartment, the species of interest, with no further
compartmentalisation

Individuals may move between locations; mqp ≥ 0 rate of movement of individuals
from location p = 1, . . . ,N to location q = 1, . . . ,N
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Explicit movement (focus on P1)

P1

P2

P3

P4P5
P6

Pk

m21

m31

m51

m61

mk1 m12

m14

m16

m1k

P ′
1 =

N∑
j=1
j ̸=1

m1jPj−P1

N∑
j=1
j ̸=1

mj1

or

P ′
1 =

N∑
j=1

m1jPj assuming m11 = −
N∑
j=1
j ̸=1

mj1
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Graph setting

Suppose

▶ |P| locations, vertices in a (directed) graph G
▶ Each location contains a certain number of compartments belonging to a common

set C of compartments

▶ Arcs of G represent the possibility for a given compartment to move between two
locations; any two locations are connected by a maximum of |C| edges

Graph is a digraph: movement is not always symmetric
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G = (P,A) is multi-digraph, where

▶ P is the set of vertices (locations)

▶ A is the set of arcs, i.e., an ordered multiset of pairs of elements of P

Any two vertices X ,Y ∈ P are connected by at most |C| arcs from X to Y and at
most |C| arcs from Y to X

Because there are |C| compartments and movements are compartment-specific, we also
define, for all c ∈ C, Pc and Ac as well as the compartment-specific digraphs
Gc = (Pc ,Ac)
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Connection matrix

For a given compartment c ∈ C, a connection matrix can be associated to the digraph
Gc

This is the adjacency matrix of Gc , but we emphasize the reason why we use Gc by
using the term connection

Choosing an ordering of elements of P, the (i , j) entry of the |P| × |P|-matrix
Nc = Nc(Gc) is one if Rc(Pi ,Pj) and zero otherwise, i.e., if Pi has no direct access to
Pj

For convenience, the ordering of the locations is generally assumed the same for all
compartments
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Srong connectedness and irreducibility

Definition 1 (Reducible/irreducible matrix)

A matrix A is reducible if there exists a permutation matrix P such that PTAP is
block upper triangular. A matrix that is not reducible is irreducible

Matrix A ∈ Fn×n is irreducible if for all i , j = 1, . . . , n, there exists k such that akij > 0,

where akij is the (i , j)-entry in Ak

Theorem 2

Strong connectedness ⇔ irreducibility of the connection matrix Cc
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The prototype SLIRS used in patches

S L I R
B(N) Φ εL γI

νR

dS dL dI dR

S ′ = B(N) + νR − Φ− dS (1a)

L′ = Φ− (ε+ d)L (1b)

I ′ = εL− (γ + d)I (1c)

R ′ = γI − (ν + d)R (1d)

Φ force of infection. Depends on S , I , possibly N. In general

Φ = β(N)ϕ(S , I )

Mass action, Φ = βSI , proportional incidence, Φ = βSI/N
p. 12 – Spatio-temporal spread of infectious pathogens



|P|-SLIRS model

S ′
p = B (Np) + νpRp − Φp − dpSp+

∑
q∈PmSpqSq (2a)

L′p = Φp − (εp + dp) Lp+
∑

q∈PmLpqLq (2b)

I ′p = εpLp − (γp + dp)Ip+
∑

q∈PmIpqIq (2c)

R ′
p = γpIp − (νp + dp)Rp+

∑
q∈PmRpqRq (2d)

with incidence

Φp = βp
SpIp

N
qp
p

, qp ∈ {0, 1} (2e)
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|S| |P|-SLIRS (multiple species)

p ∈ P and s ∈ S (a set of species)

S ′
sp = Bsp(Nsp) + νspRsp − Φsp − dspSsp+

∑
q∈PmSspqSsq (3a)

L′sp = Φsp − (εsp + dsp)Lsp+
∑

q∈PmLspqLsq (3b)

I ′sp = εspLsp − (γsp + dsp)Isp+
∑

q∈PmIspqIsq (3c)

Rsp = γspIsp − (νsp + dsp)Rsp+
∑

q∈PmRspqRsq (3d)

with incidence

Φsp =
∑
k∈S

βskp
SspIkp

N
qp
p

, qp ∈ {0, 1} (3e)

▶ JA, Davis, Hartley, Jordan, Miller & PvdD. A multi-species epidemic model with spatial dynamics. Mathematical Medicine and Biology
22(2):129-142 (2005)

▶ JA, Jordan & PvdD. Quarantine in a multi-species epidemic model with spatial dynamics. Mathematical Biosciences 206(1):46-60 (2007)
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https://julien-arino.github.io/assets/pdf/papers/2005_ArinoDavisHartleyJordanMillerPvdD-MMB22.pdf
https://julien-arino.github.io/assets/pdf/papers/2007_ArinoJordanPvdD-MBS206.pdf


|P|2-SLIRS (residents-travellers)

S ′
pq =Bpq

(
N r
p

)
+ νpqRpq − Φpq − dpqSpq+

∑
k∈PmSpqkSpk (4a)

L′pq =Φpq − (εpq + dpq)Lpq+
∑

k∈PmLpqkLpk (4b)

I ′pq =εpqLpq − (γpq + dpq)Ipq+
∑

k∈PmIpqk Ipk (4c)

R ′
pq =γpqIpq − (νpq + dpq)Rpq+

∑
k∈PmRpqkRpk (4d)

with incidence

Φpq =
∑
k∈P

βpqk
SpqIkq

N
qq
p

, qq = {0, 1} (4e)

▶ Sattenspiel & Dietz. A structured epidemic model incorporating geographic mobility among regions (1995)

▶ JA & PvdD. A multi-city epidemic model. Mathematical Population Studies 10(3):175-193 (2003)

▶ JA & PvdD. The basic reproduction number in a multi-city compartmental epidemic model. In Positive Systems (2003)

p. 15 – Spatio-temporal spread of infectious pathogens

https://doi.org/10.1016/0025-5564(94)00068-B
https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPvdD-MPS10_correct.pdf
https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPvdD-LNCIS294.pdf


Steps for an analysis

Basic steps

1. Well-posedness of the system

2. Existence of disease free equilibria (DFE)

3. Computation of a reproduction number R0, study local asymptotic stability of
DFE

4. If DFE unique, prove global asymptotic stability when R0 < 1

Additional steps

5. Existence of mixed equilibria, with some locations at DFE and others with disease

6. Computation of some bounds on R0

7. EEP and its LAS & GAS properties

. . .
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Analysis – Toy system

For simplicity, consider |P|-SLIRS with Bp(Np) = bp

S ′
p = bp − Φp − dpSp + νpRp +

∑
q∈PmSpqSq (5a)

L′p = Φp − (εp + dp) Lp +
∑

q∈PmLpqLq (5b)

I ′p = εpLp − (γp + dp)Ip +
∑

q∈PmIpqIq (5c)

R ′
p = γpIp − (νp + dp)Rp +

∑
q∈PmRpqRq (5d)

with incidence
Φp = βpSpIp (5e)

System of 4|P| equations
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Don’t panic: size is not that bad..

System of 4|P| equations !!!

However, a lot of structure:

▶ |P| copies of individual units, each comprising 4 equations

▶ Dynamics of individual units well understood

▶ Coupling is linear

=⇒ Good case of large-scale system

(matrix analysis is your friend)

p. 18 – Spatio-temporal spread of infectious pathogens
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Notation

▶ Xcp(t) number of individuals of compartment c in location p at time t

(Here and elsewhere: omit dependence on t unless it causes confusion)

▶ Xc =
(
Xc1, . . . ,Xc|P|

)T
distribution of individuals of compartment c ∈ C among

the different locations
[E.g., for (5), XS = (S1, . . . ,S|P|)

T ]

▶ X p =
(
X p
1 , . . . ,X

p
|P|

)T
composition of the population in location p ∈ P

[E.g., for (5), X p = (Sp, Lp, Ip,Rp)
T ]
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Metapopulation models with linear movement

Use a linear autonomous movement operator

Then, for a given compartment c ∈ C and in a given location p ∈ P

X ′
cp = fcp(X p) +

∑
q∈P
q ̸=p

mcpqXcq −

∑
q∈P
q ̸=p

mcqp

Xcp

where mcpq rate of movement of individuals in compartment c ∈ C from location
q ∈ P to location p ∈ P
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A more compact notation

To make

X ′
cp = fcp(X p) +

∑
q∈P
q ̸=p

mcpqXcq −

∑
q∈P
q ̸=p

mcqp

Xcp

more compact, denote the rate of leaving location p as

mcpp = −
∑
q∈P
q ̸=p

mcqp (6)

Then
X ′
cp = fcp(X p) +

∑
q∈P

mcpqXcq (7)

p. 21 – Spatio-temporal spread of infectious pathogens



Vector form of the system

For compartment c ∈ C,
X ′

c = f (X ) +McXc (8)

with

Mc =


−
∑
k∈P

mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑
k∈P

mck|P|

 (9)
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Definitions and notation for matrices

▶ M ∈ Rn×n a square matrix with entries denoted mij

▶ M ≥ 0 if mij ≥ 0 for all i , j (could be the zero matrix); M > 0 if M ≥ 0 and ∃i , j
with mij > 0; M ≫ 0 if mij > 0 ∀i , j = 1, . . . , n. Same notation for vectors

▶ σ(M) = {λ ∈ C;Mλ = λv, v ̸= 0} spectrum of M

▶ ρ(M) = maxλ∈σ(M){|λ|} spectral radius

▶ s(M) = maxλ∈σ(M){Re (λ)} spectral abscissa (or stability modulus)

▶ M is an M-matrix if it is a Z-matrix (mij ≤ 0 for i ̸= j) and M = sI− A, with
A ≥ 0 and s ≥ ρ(A)
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The movement matrix

The matrix

Mc =


−
∑
k∈P

mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑
k∈P

mck|P|

 (9)

is the movement matrix

It plays an extremely important role in the analysis of metapopulation systems, so we’ll
spend some time discussing its properties

Mc describes

▶ existence of connections

▶ when they exist, their “intensity”
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Properties of the movement matrix M

First, remark −Mc is a Laplacian matrix

Lemma 3

1. 0 ∈ σ(M) corresponding to left e.v. 1T [σ spectrum]

2. −M is a singular M-matrix

3. 0 = s(M) ∈ σ(M) [s spectral abscissa]

4. If M irreducible, then s(M) has multiplicity 1

For complete proof of Lemma 3 and Proposition 4 (next page), see Arino, Bajeux &
Kirkland, BMB 2019

p. 25 – Spatio-temporal spread of infectious pathogens
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Proposition 4 (D a diagonal matrix)

1. s(M+ dI) = d , ∀d ∈ R
2. s(M+ D) ∈ σ(M+ D) associated to v > 0. If M irreducible, s(M+ D) has

multiplicity 1 and is associated to v ≫ 0

3. If diag(D) ≫ 0, then D −M invertible M-matrix and (D −M)−1 > 0

4. M irreducible and diag(D) > 0 =⇒ D −M nonsingular irreducible M-matrix and
(D −M)−1 ≫ 0

p. 26 – Spatio-temporal spread of infectious pathogens
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Behaviour of the mobility component – No demography

Assume no within-location dynamics, just movement. Then (8) takes the form

X ′
c = McXc (10)

Theorem 5

For a given compartment c ∈ C, suppose that the movement matrix Mc is irreducible.
Then for any Xc(0) > 0, (10) satisfies

lim
t→∞

Xc(t) = X ⋆
c ≫ 0

Note that X ⋆
c depends on ⟨1l,Xc(0)⟩
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Reduction to total population per location – Demography

Let
Tp =

∑
c∈C

Xcp

be the total population in location p

It is often posssible to obtain, in each location p ∈ P, an equation for the evolution of
the total population that takes the form

T ′
p = Dp(Tp) +

∑
c∈C

∑
q∈P

mcpqXcq (11)

where Dp(Tp) describes the demography in location p
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Nature of the demography

Most common types of demographic functions

▶ Dp(Tp) = bp − dpTp (asymptotically constant population)

▶ Dp(Tp) = bpTp − dpTp

▶ Dp(Tp) = dpTp − dpTp = 0 (constant population)

▶ Dp(Tp) = rpTp(1− Tp/Kp) (logistic demography)

In what follows, assume
Dp(Tp) = bp − dpTp (12)
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Vector / matrix form of the equation

Assuming demography is of the form (12), write (11) in vector form

T′ = b− dT +
∑
c∈C

McXc (13)

where

▶ b = (b1, . . . , b|P|)
T ∈ R|P|

▶ T = (T1, . . . ,T|P|)
T ∈ R|P|

▶ X = (Xc1, . . . ,Xc|P|)
T ∈ R|P|

▶ d = diag
(
d1, . . . , d|P|

)
∈ R|P|×|P|

▶ Mc ∈ R|P|×|P|
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The nice case

Suppose movement rates equal for all compartments, i.e.,

Mc ≡ M

(stronger than the property of movement being similar for all compartments, which
only requires zero/nonzero patterns in all Mc , c ∈ C, to be the same)

Then

T ′ = b − dT +M
∑
c∈C

Nc

= b − dT +MT (14)
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Equilibria

T ′ = 0 ⇔ b− dT+MT = 0

⇔ (d −M)T = b

⇔ T⋆ = (d −M)−1b

given, of course, that d −M (or, equivalently, M− d ) is invertible..

Is it?
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Nonsingularity of M− d

Using the spectrum shift of Theorem 4(1)

s

(
M−min

p∈P
dp

)
= −min

p∈P
dp

This gives a constraint: for total population to behave well (in general, we want this),
we must assume all death rates are positive

Assume they are (in other words, assume d nonsingular). Then M− d is nonsingular
and T ⋆ = (d −M)−1b unique
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Behaviour of the total population
Equal irreducible movement case

T⋆ = (d −M)−1b attracts solutions of

T′ = b− dT+MT =: f (T)

Indeed, we have
Df = M− d

Since we now assume that d is nonsingular, we have by Theorem 4(1) that
s(M−minp∈P dp) = −minp∈P dp < 0

M irreducible → T⋆ ≫ 0 (provided b > 0, of course)
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Behaviour of total population
Equal reducible movement case

Theorem 6

Assume M reducible. Let a be the number of minimal absorbing sets in the
corresponding connection graph G(M). Then

1. The spectral abscissa s(M) = 0 has multiplicity a

2. Associated to s(M) is a nonnegative eigenvector v s.t.
▶ vi > 0 if i is a vertex in a minimal absorbing set
▶ vi = 0 if i is a transient vertex

From Foster and Jacquez, Multiple zeros for eigenvalues and the multiplicity of traps
of a linear compartmental system, Mathematical Biosciences (1975)
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The not-so-nice case

Recall that
T ′ = b− dT +

∑
c∈C

McXc

Suppose movement rates similar for all compartments, i.e., the zero/nonzero
patterns in all matrices are the same but not the entries
Let

M =

[
min
c∈C

mcpq

]
pq,p ̸=q

M =

[
max
c∈C

mcpq

]
pq,p=q

and

M =

[
max
c∈C

mcpq

]
pq,p ̸=q

M =

[
min
c∈C

mcpq

]
pq,p=q

p. 36 – Spatio-temporal spread of infectious pathogens



Cool, no? No!

Then we have
b− dT+MT ≤ T′ ≤ b− dT+MT

Me, roughly every 6 months: Oooh, coooool, a linear differential inclusion!

Me, roughly 10 minutes after making that previous statement: Quel con!

Indeed M and M are are not movement matrices (in particular, their column sums
are not all zero)

So no luck there..

However, we can still do stuff, but more on a case-by-case basis
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Existence and uniqueness

▶ Existence and uniqueness of solutions classic, assured by good choice of birth and
force of infection functions

▶ In the cases treated later, the birth function is either constant or a linear
combination of state variables

▶ May exist problems at the origin, if the force of infection is not defined there

▶ Assumption form now on: existence and uniqueness

p. 38 – Spatio-temporal spread of infectious pathogens



Other basic stuff

Skipped until I homogeneise notation

Not complicated but sometimes tedious

Easy if it has been proved for the constituting units

p. 39 – Spatio-temporal spread of infectious pathogens
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Disease free equilibrium

The model is at equilibrium if the time derivatives are zero

Definition 7 (Metapopulation DFE)

In the case of system (5), location p ∈ P is at a disease-free equilibrium (DFE) if
Lp = Ip = 0, and the |P|-location model is at a metapopulation DFE if Lp = Ip = 0
for all p ∈ P

Here, we want to find the DFE for the |P|-location model. Later, the existence of
mixed equilibria, with some locations at the DFE and others at an endemic
equilibrium, is considered

(For (3), replace Lp with Lsp and Ip with Isp, for (4), replace Lp by Lpp and Ip by Ipp.
To simplify notation, we could write L• and I•)

p. 40 – Spatio-temporal spread of infectious pathogens



Assume (5) at metapopulation DFE. Then Φp = 0 and

0 = bp − dpSp + νpRp +
∑

q∈PmSpqSq

0 = − (νp + dp)Rp +
∑

q∈PmRpqRq

Want to solve for Sp,Rp. Here, it is best (crucial in fact) to remember some linear
algebra. Write system in vector form:

0 = b− dS+ νR +MSS

0 = − (ν + d )R +MRR

where S,R,b ∈ R|P|, d , ν,MS ,MR |P| × |P|-matrices (d , ν diagonal)
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R at DFE

Recall second equation:

0 = − (ν + d )R +MRR ⇔ (MR − ν − d )R = 0

So unique solution R = 0 if MR − ν − d invertible Is it?

We have been here before!

From spectrum shift, s(MR − ν − d ) = −minp∈P(νp + dp) < 0

So, given L = I = 0, R = 0 is the unique equilibrium and

lim
t→∞

R(t) = 0

=⇒ DFE has L = I = R = 0
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S at the DFE

DFE has L = I = R = 0 and b− dS+MSS = 0, i.e.,

S = (d −MS)−1b

Recall: −MS singular M-matrix. From previous reasoning, d −MS has instability
modulus shifted right by minp∈P dp. So:

▶ d −MS invertible

▶ d −MS nonsingular M-matrix

Second point =⇒ (d −MS)−1 > 0 =⇒ (d −MS)−1b > 0 (would have ≫ 0 if
MS irreducible)

So DFE makes sense with

(S,L, I,R) =
(
(d −MS)−1b, 0, 0, 0

)
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▶ Linear stability of the disease free equilibrium can be investigated by using the
next generation matrix

▶ In general, R0 depends on the demographic, disease and mobility parameters
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Computing the basic reproduction number R0

Use next generation method with Ξ = {L1, . . . , L|P|, I1, . . . , I|P|}, Ξ′ = F − V

F =
(
Φ1, . . . ,Φ|P|, 0, . . . , 0

)T

V =



(ε1 + d1) L1 −
∑
q∈P

mL1qLq

...(
ε|P| + d|P|

)
L|P| −

∑
q∈P

mL|P|qLq

−ε1L1 + (γ1 + d1)I1 −
∑
q∈P

mI1qIq

...
−ε|P|L|P| + (γ|P| + d|P|)I|P| −

∑
q∈P

mI |P|qIq
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Differentiate w.r.t. Ξ:

DF =



∂Φ1

∂L1
· · · ∂Φ1

∂L|P|

∂Φ1

∂I1
· · · ∂Φ1

∂I|P|
...

...
...

...
∂Φ|P|

∂L1
· · ·

∂Φ|P|

∂L|P|

∂Φ|P|

∂I1
· · ·

∂Φ|P|

∂I|P|
0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0
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Note that
∂Φp

∂Lk
=

∂Φp

∂Ik
= 0

whenever k ̸= p, so

DF =

(
diag

(
∂Φ1
∂L1

, . . . ,
∂Φ|P|
∂L|P|

)
diag

(
∂Φ1
∂I1

, . . . ,
∂Φ|P|
∂I|P|

)
0 0

)
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Evaluate DF at DFE

If Φp = βpSpIp, then

▶
∂Φp

∂Lp
= 0

▶
∂Φp

∂Ip
= βpSp

If Φp = βp
SpIp
Np

, then

▶
∂Φp

∂Lp
= βp

SpIp
N2
p

= 0 at DFE

▶
∂Φp

∂Ip
= βp

Sp
Np

at DFE

In both cases, ∂/∂L block is zero so

F = DF(DFE ) =

(
0 diag

(
∂Φ1
∂I1

, . . . ,
∂Φ|P|
∂I|P|

)
0 0

)
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Compute DV and evaluate at DFE

V =

(
diagp(εp + dp)−ML 0

−diagp(εp) diagp(γp + dp)−MI

)
where diagp(zp) := diag(z1, . . . , z|P|)

Inverse of V easy (2× 2 block lower triangular):

V−1 =

((
diagp(εp + dp)−ML

)−1
0

Ṽ−1
21

(
diagp(γp + dp)−MI

)−1

)

where

Ṽ−1
21 =

(
diagp(εp + dp)−ML

)−1
diagp(εp)

(
diagp(γp + dp)−MI

)−1
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R0 as ρ(FV
−1)

Next generation matrix

FV−1 =

(
0 F12
0 0

)(
Ṽ−1
11 0

Ṽ−1
21 Ṽ−1

22

)
=

(
F12Ṽ

−1
21 F12Ṽ

−1
22

0 0

)
where Ṽ−1

ij is block ij in V−1. So

R0 = ρ
(
F12Ṽ

−1
21

)
i.e.,

R0 = ρ

(
diag

(
∂Φ1

∂I1
, . . . ,

∂Φ|P|

∂I|P|

)(
diagp(εp + dp)−ML

)−1

diagp(εp)
(
diagp(γp + dp)−MI

)−1
)
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Local asymptotic stability of the DFE

Theorem 8

Define R0 for the |P|-SLIRS as

R0 = ρ

(
diag

(
∂Φ1

∂I1
, . . . ,

∂Φ|P|

∂I|P|

)(
diagp(εp + dp)−ML

)−1

diagp(εp)
(
diagp(γp + dp)−MI

)−1
)

Then the DFE
(S,L, I,R) =

(
(d−MS)−1b, 0, 0, 0

)
is locally asymptotically stable if R0 < 1 and unstable if R0 > 1

From PvdD & Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Bulletin of

Mathematical Biology 180(1-2): 29-48 (2002)
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Some remarks about R0

The expression for R0 in Theorem 8 is exact

However, unless you consider a very small set of locations, you will not get a closed
form expression

Indeed, by Theorem 4(3) and more importantly (often M is irreducible),
Theorem 4(4), the two inverses in R0 are likely crowded (≫ 0 in the irreducible case)

However, numerically, this works easy unless conditioning is bad
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Do not in R0 put all your .. interpretation?
An urban centre and satellite cities

Winnipeg as urban centre and 3 smaller satellite cities: Portage la Prairie, Selkirk and
Steinbach

▶ population density low to very low outside of Winnipeg

▶ MB road network well studied by MB Infrastructure Traffic Engineering Branch

JA & S Portet. Epidemiological implications of mobility between a large urban centre
and smaller satellite cities. Journal of Mathematical Biology 71(5):1243-1265 (2015)
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Known and estimated quantities

City Pop. (2014) Pop. (now) Dist. Avg. trips/day

Winnipeg (W) 663,617 749,607 - -
Portage la Prairie (1) 12,996 13,270 88 4,115

Selkirk (2) 9,834 10,504 34 7,983
Steinbach (3) 13,524 17,806 66 7,505
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Estimating movement rates

Assume myx movement rate from city x to city y . *Ceteris paribus*, N ′
x = −myxNx ,

so Nx(t) = Nx(0)e
−myx t . Therefore, after one day, Nx(1) = Nx(0)e

−myx , i.e.,

myx = − ln

(
Nx(1)

Nx(0)

)
Now, Nx(1) = Nx(0)− Tyx , where Tyx number of individuals going from x to y / day.
So

myx = − ln

(
1− Tyx

Nx(0)

)
Computed for all pairs (W , i) and (i ,W ) of cities
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Sensitivity of R0 to variations of Rx
0 ∈ [0.5, 3]

with disease: Rx
0 = 1.5; without disease: Rx

0 = 0.5. Each box and corresponding
whiskers are 10,000 simulations
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Lower connectivity can drive R0

PLP and Steinbach have comparable populations but with parameters used, only PLP
can cause the general R0 to take values larger than 1 when RW

0 < 1

This is due to the movement rate: if M = 0, then

R0 = max{RW
0 ,R1

0,R2
0,R3

0},

since FV−1 is then block diagonal

Movement rates to and from PLP are lower → situation closer to uncoupled case and
R1

0 has more impact on the general R0
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R0 does not tell the whole story!

Plots as functions of R1
0 in PLP and the reduction of movement between Winnipeg

and PLP. Left: general R0. Right: Attack rate in Winnipeg
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The toy |P|-SLIRS

LAS results for R0 < 1 can sometimes be strengthened to GAS. One class of models
where this works often is when the population is either constant or asymptotically
constant and incidence is standard

Theorem 9

Let R0 be defined as in Theorem 8 and use proportional incidence Φp = βpSpIp/Np. If
R0 < 1, then the DFE of system (5) is globally asymptotically stable
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|S| |P|-SLIRS with multiple species

In the case in which movement is equal for all compartments and there is no disease
death, a comparison theorem argument can be used as in Theorem 9 to show that if
R0 < 1, then the DFE of the |S| |P|-SLIRS (3) is globally asymptotically stable.

Theorem 10

For system (3) with |S| species and |P| locations, with movement equal for all
compartments, define R0 appropriately and use proportional incidence. If R0 < 1, then
the DFE is globally asymptotically stable
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Metapopulation-specific problems – Two main types

▶ Inheritance problems – Which of the properties of the constituting units are
inherited by the metapopulation?

▶ Metapopulation-specific behaviours – Are there dynamic behaviours observed
in a metapopulation not observed in the constituting units?
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Inherited dynamical properties (a.k.a. I am lazy)
Given

s ′kp = fkp(Sp, Ip) (15a)

i ′ℓp = gℓp(Sp, Ip) (15b)

with known properties, what is known of

s ′kp = fkp(Sp, Ip) +
∑

q∈Pmkpqskq (16a)

i ′ℓp = gℓp(Sp, Ip) +
∑

q∈Pmℓpq iℓq (16b)

▶ Existence and uniqueness ✓
▶ Invariance of R•

+ under the flow ✓
▶ Boundedness ✓
▶ Location of individual R0i and general R0 ?
▶ GAS ?

-
p. 64 – Spatio-temporal spread of infectious pathogens



An inheritance problem – Backward bifurcations

▶ Suppose a model that, isolated in a single patch, undergoes so-called backward
bifurcations

▶ This means the model admits subthreshold endemic equilibria

▶ What happens when you couple many such consistuting units?

YES, coupling together backward bifurcating units can lead to a system-level backward
bifurcation

JA, Ducrot & Zongo. A metapopulation model for malaria with transmission-blocking
partial immunity in hosts. Journal of Mathematical Biology 64(3):423-448 (2012)
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Metapopulation-induced behaviours ?

“Converse” problem to inheritance problem. Given

s ′kp = fkp(Sp, Ip) (9a)

i ′ℓp = gℓp(Sp, Ip) (9b)

with known properties, does

s ′kp = fkp(Sp, Ip) +
∑

q∈Pmkpqskq (10a)

i ′ℓp = gℓp(Sp, Ip) +
∑

q∈Pmℓpq iℓq (10b)

exhibit some behaviours not observed in the uncoupled system?
E.g.: units have {R0 < 1 =⇒ DFE GAS, R0 > 1 =⇒ 1 GAS EEP} behaviour,
metapopulation has periodic solutions
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Mixed equilibria

Can there be situations where some locations are at the DFE and others at an EEP?

This is the problem of mixed equilibria

This is a metapopulation-specific problem, not one of inheritance of dynamical
properties!
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Types of equilibria

Definition 11 (Location level EP)

Location p ∈ P at equilibrium is empty if X ⋆
p = 0, at the disease-free equilibrium if

X ⋆
p = (s⋆k1p, . . . , s

⋆
kup

, 0, . . . , 0), where k1, . . . , ku are some indices with 1 ≤ u ≤ |U| and
s⋆k1p, . . . , s

⋆
kup

are positive, and at an endemic equilibrium if Xp ≫ 0

Definition 12 (Metapopulation level EP)

A population-free equilibrium has all locations empty. A metapopulation
disease-free equilibrium has all locations at the disease-free equilibrium for the same
compartments. A metapopulation endemic equilibrium has all locations at an
endemic equilibrium
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Mixed equilibria

Definition 13

A mixed equilibrium is an equilibrium such that

▶ all locations are at a disease-free equilibrium but the system is not at a
metapopulation disease-free equilibrium

▶ or, there are at least two locations that have different types of location-level
equilibrium (empty, disease-free or endemic)

E.g.,
((S1, I1,R1), (S2, I2,R2)) = ((+, 0, 0), (+,+,+))

is mixed and so is

((S1, I1,R1), (S2, I2,R2)) = ((+, 0, 0), (+, 0,+))
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Theorem 14

Suppose that movement is similar for all compartments (MSAC) and that the system is
at equilibrium

▶ If patch p ∈ P is empty, then all patches in A(p) are empty

▶ If patch p ∈ P is at a disease free equilibrium, then the subsystem consisting of all
patches in {p,A(p)} is at a metapopulation disease free equilibrium

▶ If patch p ∈ P is at an endemic equilibrium, then all patches in D(p) are also at
an endemic equilibrium

▶ If Gc is strongly connected for some compartment c ∈ C, then there does not exist
mixed equilibria

Note that MSAC =⇒ Ac = A and Dc = D for all c ∈ C
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▶ JA. Spatio-temporal spread of infectious pathogens of humans. Infectious Disease
Modelling 2(2):218-228 (2017)

▶ JA. Mathematical epidemiology in a data-rich world. Infectious Disease Modelling
5:161-188 (2020)

▶ github repo modelling-with-data
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Not very difficult

As for the mathematical analysis: if you do things carefully and think about things a
bit, numerics are not hard. Well: not harder than numerics in low-D

Exploit vector structure
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Set up parameters

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1e+06

countries = c("Canada", "China", "India", "Pakistan", "Philippines")

T = matrix(data = c(0, 1268, 900, 489, 200,

1274, 0, 678, 859, 150,

985, 703, 0, 148, 58,

515, 893, 144, 0, 9,

209, 174, 90, 2, 0),

nrow = 5, ncol = 5, byrow = TRUE)
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Computing birth and death rates

Average life expectancy at birth (years): 81.30, 78.59, 67.74, 66.43, 72.19

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1e+06

countries = c("Canada", "China", "India", "Pakistan", "Philippines")

death_rates = 1/(365.25*c(81.30, 78.59, 67.74, 66.43, 72.19))

birth_rates = pop*death_rates
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Work out movement matrix

Use the approximation explained in Arino & Portet (JMB 2015)

p = list()

p$M = mat.or.vec(nr = dim(T)[1], nc = dim(T)[2])

for (from in 1:5) {
for (to in 1:5) {
p$M[to, from] = -log(1 - T[from, to]/pop[from])

}
p$M[from, from] = 0

}
p$M = p$M - diag(colSums(p$M))

For simplicity, let’s assume all movement rates are equal
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p$P = dim(p$M)[1]

p$epsilon = rep((1/1.5), p$P)

p$gamma = rep((1/5), p$P)

p$nu = rep((1/365.25), p$P)

p$b = birth_rates

p$d = death_rates

# The desired values for R_0

R_0 = rep(1.5, p$P)

p. 76 – Spatio-temporal spread of infectious pathogens



Write down indices of the different state variable types

Save index of state variable types in state variables vector (we have to use a vector and
thus, for instance, the name “S” needs to be defined)

p$idx_S = 1:p$P

p$idx_L = (p$P+1):(2*p$P)

p$idx_I = (2*p$P+1):(3*p$P)

p$idx_R = (3*p$P+1):(4*p$P)

p. 77 – Spatio-temporal spread of infectious pathogens



Set up IC and time

# Set initial conditions. For example, we start with 2

# infectious individuals in Canada.

L0 = mat.or.vec(p$P, 1)

I0 = mat.or.vec(p$P, 1)

R0 = mat.or.vec(p$P, 1)

I0[1] = 2

S0 = pop - (L0 + I0 + R0)

# Vector of initial conditions to be passed to ODE solver.

IC = c(S = S0, L = L0, I = I0, R = R0)

# Time span of the simulation (5 years here)

tspan = seq(from = 0, to = 5 * 365.25, by = 0.1)
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Computing R0 in patches in isolation to set up β

Useful to know R0p, basic reproduction numnber for patch p ∈ P disconnected from
the network

In the absence of movement, system in p ∈ P is

S ′
p = bp − βpSpIp − dpSp + νpRp (17a)

L′p = βpSpIp − (εp + dp) Lp (17b)

I ′p = εpLp − (γp + dp)Ip (17c)

R ′
p = γpIp − (νp + dp)Rp (17d)
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DFE is clearly (Sp, Lp, Ip,Rp) = (bp/dp, 0, 0, 0)

Infected variables are I = {L, I}

F = (βpSpIp, 0)
T and V = ((εp + dp)Lp,−εpLp + (γp + dp)Ip)

so

F =

(
0 βp

bp
dp

0 0

)
and V =

(
εp + dp 0
−εp γp + dp

)
Thus

R0p = ρ(FV−1) = ρ

((
0 βp

bp
dp

0 0

)
1

(εp + dp)(γp + dp)

(
γp + dp 0

εp εp + dp

))

and it follows that

R0p =
βp

γp + dp

εp
εp + dp

bp
dp

(18)
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Set up β to avoid blow up

Let us take R0p = 1.5 for patches in isolation. Solve (18) for βp:

βp =
R0p(γp + dp)(εp + dp)dp

εpbp

for (i in 1:p$P) {
p$beta[i] =

R_0[i] *(p$gamma[i]+p$d[i]) * (p$epsilon[i]+p$d[i]) * p$d[i] /

(p$espilon[i]*p$d[i])

}
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Define the vector field

SLIAR_metapop_rhs <- function(t, x, p) {
with(as.list(p), {

S = x[idx_S]

L = x[idx_L]

I = x[idx_I]

R = x[idx_R]

Phi = beta*S*I

dS = b - d*S - Phi + M%*%S

dL = Phi - (epsilon+d)*L + M%*%L

dI = epsilon*L - (gamma+d)*I + M%*%I

dR = gamma*I + - (nu+d)*R + M%*%R

return(list(c(dS, dL, dI, dR)))

})
}
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And now call the solver

# Call the ODE solver

sol <- ode(y = IC,

times = tspan,

func = SLIRS_metapop_rhs,

parms = p,

method = "ode45")

## Error: object ’SLIRS metapop rhs’ not found
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One little trick (case with demography)

Suppose demographic EP is N⋆ = (d −M)−1b
Want to maintain N(t) = N⋆ for all t to ignore convergence to demographic EP.
Think in terms of b:

N′ = 0 ⇐⇒ b− dN+MN = 0 ⇐⇒ b = (d −M)N

So take b = (d −M)N⋆

Then
N′ = (d −M)N⋆ − dN+MN

and thus if N(0) = N⋆, then N′(0) = 0 and thus N′ = 0 for all t ≥ 0, i.e., N(t) = N⋆

for all t ≥ 0
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Word of warning about that trick, though..

b = (d −M)N⋆

d −M has nonnegative (typically positive) diagonal entries and nonpositive
off-diagonal entries
Easy to think of situations where the diagonal will be dominated by the off-diagonal,
so b could have negative entries
=⇒ use this for numerics, not for the mathematical analysis
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Spatial spread of an epidemic on a “road”

▶ SIS and SIR models

▶ Consider a road of length L

▶ S(x , t), I (x , t) and (when relevant) R(x , t) are the densities of individuals in the
different compartments at location x ∈ [0, L] at time t

▶ For simplicity, denote
∂

∂t
X (x , t) = Xt(x , t)
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The SIR model on the road

St(x , t) = −β(x , t)S(x , t)− dS(x , t) + dN(x) + λ1I (x , t) (19a)

It(x , t) = λ(x , t)S(x , t)− dI (x , t)− (γ1 + γ2)I (x , t) (19b)

Rt(x , t) = γ2I (x , t)− dR(x , t) (19c)

where the force of infection is

λ(x , t) =
1

N

∫ L

0
β(x , x ′)I (x , x ′)dx ′ (19d)

and the total population along the road is

N =

∫ L

0
N(x ′)dx ′ (19e)
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Take the SIS model as an example (γ2 = 0, γ1 = γ). Solve (19b) in terms of λ:

I (x , t) = exp

(
−
∫ t

0
λ(x , s)− (d + γ)tds

)
×
∫ t

0
λ(x , t ′)N(x)e

∫ t′
0 λ(x ,s)+(d+γ)t′dsdt ′

+ I (x , 0) exp

(
−
∫ t

0
λ(x , s)− (d + γ)tds

) (20)
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Substitute (20) into (19d)

λ(x , t) =

∫ L

0
β(x , x ′)n(x ′)

∫ t

0
λ(x ′, t ′)e−

∫ t
t′ λ(x

′,s)−(d+γ)(t−t′)dsdt ′dx ′

+

∫ L

0
β(x , x ′)i(x ′, 0)e−

∫ t
0 λ(x ′,s)−(d+γ)tdsdx ′

where n(x) = N(x)/N and i(x , t) = I (x , t)/N. Without demography (d = 0):

λ(x , t) =

∫ L

0
β(x , x ′)n(x ′)

∫ t

0
λ(x ′, t ′)e−

∫ t
t′ λ(x

′,s)−γ(t−t′)dsdt ′dx ′

+

∫ L

0
β(x , x ′)i(x ′, 0)e−

∫ t
0 λ(x ′,s)−γtdsdx ′
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Thus the problem is in the form

Bλ(x , t) = λ(x , t)

In both cases, B is a Hammerstein-type operator in x

▶ SIR case: B is a nonlinear Volterra operator in t ⇒existence and uniqueness of
solutions

▶ SIS case: B is not a nonlinear Volterra operator in t. However, it resembles one
and the authors establish existence and uniqueness of solutions
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In both cases, there is a travelling wave front then convergence to a steady state

In the SIS case

λ(x) = lim
t→∞

Bλ(x , t) = B∞λ(x) =

∫ L

0
β(x , x ′)n(x ′)

λ(x ′,∞)

λ(x ′,∞) + γ

which does not depend on t

They then discuss conditions s.t. this limit ̸= 0, by looking for values of z s.t.
B∞λ(x) = zλ(x) has a positive solution

Show there exists a threshold zthreshold = R0 s.t. λ(x) ≡ 0 if R0 < 1 and a positive
solution if R0 > 1
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Spatial spread of rabies with immunity

∂S

∂t
= (a− b)

(
1− N

K

)
S + a⋆R − βSI (21a)

∂L

∂t
= βSI − σL−

(
b + (a− b)

N

K

)
L (21b)

∂I

∂t
= σL− αI − γI −

(
b + (a− b)

N

K

)
I + DI

∂2I

∂x2
(21c)

∂R

∂t
= γI + (a− a⋆)R +

(
b + (a− b)

N

K

)
R (21d)

where N = S + L+ I + R
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Spatio-temporal spread of infectious pathogens

Sojourn times-related models

Age of infection

Structuration in age



See the work of Horst Thieme

If one considers time of sojourn in compartments from a more detailed perspective, one
obtains integro-differential models

We use here continuous random variables. See chapters 12 and 13 in Thieme’s book
for arbitrary distributions
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Time to events

We suppose that a system can be in two states, S1 and S2
▶ At time t = 0, the system is in state S1.

▶ An event happens at some time t = τ , which triggers the switch from state S1 to
state S2.

Let us call T the random variable
“time spent in state S1 before switching into state S2”
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The states can be anything:

▶ S1: working, S2: broken;

▶ S1: infected, S2: recovered;

▶ S1: alive, S2: dead;

▶ . . .

We take a collection of objects or individuals that are in state S1 and want some law
for the distribution of the times spent in S1, i.e., a law for T

For example, we make light bulbs and would like to tell our customers that on average,
our light bulbs last 200 years..

For this, we conduct an infinite number of experiments, and observe the time that it
takes, in every experiment, to switch from S1 to S2
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A distribution of probability is a model

From the sequence of experiments, we deduce a model, which in this context is called
a probability distribution

We assume that T is a continuous random variable
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Probability density function
Since T is continuous, it has a continuous probability density function f
▶ f ≥ 0
▶
∫ +∞
−∞ f (s)ds = 1

▶ P(a ≤ T ≤ b) =
∫ b
a f (t)dt

t

f(t)
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Cumulative distribution function
The cumulative distribution function (c.d.f.) is a function F (t) that characterizes the
distribution of T , and defined by

F (s) = P(T ≤ s) =

∫ s

−∞
f (x)dx

t

f(t)
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Survival function

Another characterization of the distribution of the random variable T is through the
survival (or sojourn) function

The survival function of state S1 is given by

S(t) = 1− F (t) = P(T > t) (22)

This gives a description of the sojourn time of a system in a particular state (the time
spent in the state)

S is a nonincreasing function (since S = 1− F with F a c.d.f.), and S(0) = 1 (since T
is a nonnegative random variable)
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The average sojourn time τ in state S1 is given by

τ = E (T ) =

∫ ∞

0
tf (t)dt

Since limt→∞ tS(t) = 0, it follows that

τ =

∫ ∞

0
S(t)dt

Expected future lifetime:

1

S(t0)

∫ ∞

0
t f (t + t0) dt

S(t)− S(a) = P {survive during (a, t) having survived until a}

= exp

(
−
∫ t

a
h(u)du

)
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Hazard rate

The hazard rate (or failure rate) is

h(t) = lim
∆t→0

S(t)− S(t +∆t)

∆t

= lim
∆t→0

PT < t +∆t|T ≥ t

∆t

=
f (t)

S(t)

It gives probability of failure between t and ∆t, given survival to t.

We have

h(t) = − d

dt
lnS(t)
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Competing risks

Suppose now that the system starts in state A at time t = 0 and that depending on
which of the two events E1 or E2 takes place first, it switches to state B1 or B2,
respectively

Consider the random variables TA, time spent in state A (or sojourn time in A), TAB1 ,
time before switch to B1 and TAB2 , time before switch to B2

If we consider state A, we cannot observe the variables TAB1 or TAB2 . What is
observable is the sojourn time in A

T ∗
A = min (TAB1 ,TAB2)

(where ∗ indicates that a quantity is observable)
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Failure rate by type of event

We have two (or more) types of events whose individual failure rates have to be
accounted for

hj(t) = lim
∆t→0

P(T < t +∆t, S = Sj |T ≥ t)

∆t

where P(T < t +∆t,S = Sj |T ≥ t) is the probability of failure due to cause Sj
(j = 1, 2 ici), i.e., S is a discrete r.v. representing the event that is taking place
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By the law of total probability, since only one of the event can take place, if there are n
risks, then

h(t) =
n∑

i=1

hj(t)

or, identically,

S(t) = exp

(
−
∫ t

0

∑
n
j=1hj(s) ds

)
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As a consequence, if a process is subject to two competing exponential risks with
respective distributions with parameters θ1 and θ2, the the mean sojourn time in the
initial state before being affected by one of the two risks is

1

θ1 + θ2
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Sojourn times-related models
Two “extreme” distributions
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The exponential distribution

The random variable T has an exponential distribution if its probability density
function takes the form

f (t) =

{
0 if t < 0,

θe−θt if t ≥ 0,
(23)

with θ > 0. Then the survival function for state S1 is of the form S(t) = e−θt , for
t ≥ 0, and the average sojourn time in state S1 is

τ =

∫ ∞

0
e−θtdt =

1

θ
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Particularities of the exponential distribution

The standard deviation of an exponential distribution is also 1/θ. When estimating θ,
it is impossible to distinguish the mean and the standard deviation

The exponential distribution is memoryless: its conditional probability obeys

P(T > s + t | T > s) = P(T > t), ∀s, t ≥ 0

The exponential and geometric distributions are the only memoryless probability
distributions

The exponential distribution has a constant hazard function
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The Dirac delta distribution

If for some constant ω > 0,

S(t) =
{

1, 0 ≤ t ≤ ω
0, ω < t

meaning that T has a Dirac delta distribution δω(t), then the average sojourn time is

τ =

∫ ω

0
dt = ω

p. 111 – Sojourn times-related models



Sojourn times-related models
Two “extreme” distributions
A simple cohort model with death
Sojourn times in an SIS disease transmission model
A model with vaccination



A model for a cohort with one cause of death

Consider a cohort of individuals born at the same time, e.g., the same year

▶ At time t = 0, there are initially N0 > 0 individuals

▶ All causes of death are compounded together

▶ The time until death, for a given individual, is a random variable T , with
continuous probability density distribution f (t) and survival function P(t)

N(t) the cohort population at time t ≥ 0

N(t) = N0P(t) (24)

N0P(t) proportion of initial population still alive at time t

p. 112 – Sojourn times-related models



Case where T is exponentially distributed

Suppose that T has an exponential distribution with mean 1/d (or parameter d),
f (t) = de−dt . Then the survival function is P(t) = e−dt , and (24) takes the form

N(t) = N0e
−dt (25)

Now note that

d

dt
N(t) = −dN0e

−dt

= −dN(t)

with N(0) = N0.

⇒ The ODE N ′ = −dN makes the assumption that the life expectancy at birth is
exponentially distributed
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Survival function, S(t) = P(T > t), for an exponential distribution with mean 80 years

0 20 40 60 80 100 120
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (years)

S
ur

vi
va

l f
un

ct
io

n

p. 114 – Sojourn times-related models



Case where T has a Dirac delta distribution

Suppose that T has a Dirac delta distribution at t = ω, giving the survival function

P(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

Then (24) takes the form

N(t) =

{
N0, 0 ≤ t ≤ ω,

0, t > ω.
(26)

All individuals survive until time ω, then they all die at time ω.

Here, we have N ′ = 0 everywhere except at t = ω, where it is undefined.
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An SIS model
Hypotheses

▶ Individuals typically recover from the disease

▶ The disease does not confer immunity

▶ There is no birth or death (from the disease or natural)
⇒ Constant total population N ≡ N(t) = S(t) + I (t)

▶ Infection is of standard incidence type
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Recovery

▶ Traditional models suppose that recovery occurs with rate constant γ

▶ Here, of the individuals that become infective at time t0, a fraction P(t − t0)
remain infective at time t ≥ t0

▶ ⇒ For t ≥ 0, P(t) is a survival function. As such, it verifies P(0) = 1 and P is
nonnegative and nonincreasing
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Model for infectious individuals

Since N is constant, S(t) = N − I (t) and we need only consider the following equation
(where S is used for clarity)

I (t) = I0(t) +

∫ t

0
β
S(u)I (u)

N
P(t − u)du (27)

▶ I0(t) number of individuals who were infective at time t = 0 and still are at time
t.
▶ I0(t) is nonnegative, nonincreasing, and such that limt→∞ I0(t) = 0.

▶ P(t − u) proportion of individuals who became infective at time u and who still
are at time t.
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Expression under the integral

Integral equation for the number of infective individuals:

I (t) = I0(t) +

∫ t

0
β
(N − I (u))I (u)

N
P(t − u)du (27)

The term

β
(N − I (u))I (u)

N
P(t − u)

▶ β(N − I (u))I (u)/N is the rate at which new infectives are created, at time u,

▶ multiplying by P(t − u) gives the proportion of those who became infectives at
time u and who still are at time t.

Summing over [0, t] gives the number of infective individuals at time t.
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Case of an exponentially distributed time to recovery

Suppose P(t) such that sojourn time in the infective state has exponential distribution
with mean 1/γ, i.e., P(t) = e−γt .

Initial condition function I0(t) takes the form

I0(t) = I0(0)e
−γt ,

with I0(0) the number of infective individuals at time t = 0. Obtained by considering
the cohort of initially infectious individuals, giving a model such as (24).

Equation (27) becomes

I (t) = I0(0)e
−γt +

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du. (28)

p. 120 – Sojourn times-related models



Taking the time derivative of (28) yields

I ′(t) = −γI0(0)e
−γt − γ

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du

+ β
(N − I (t))I (t)

N

= −γ

(
I0(0)e

−γt +

∫ t

0
β
(N − I (u))I (u)

N
e−γ(t−u)du

)
+ β

(N − I (t))I (t)

N

= β
(N − I (t))I (t)

N
− γI (t),

which is the classical logistic type ordinary differential equation (ODE) for I in an SIS
model without vital dynamics (no birth or death).
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Case of a step function survival function

Consider case where the time spent infected has survival function

P(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

i.e., the sojourn time in the infective state is a constant ω > 0.
In this case (27) becomes

I (t) = I0(t) +

∫ t

t−ω
β
(N − I (u))I (u)

N
du. (29)

Here, it is more difficult to obtain an expression for I0(t). It is however assumed that
I0(t) vanishes for t > ω.
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When differentiated, (29) gives, for t ≥ ω,

I ′(t) = I ′0(t) + β
(N − I (t))I (t)

N
− β

(N − I (t − ω)) I (t − ω)

N
.

Since I0(t) vanishes for t > ω, this gives the delay differential equation (DDE)

I ′(t) = β
(N − I (t))I (t)

N
− β

(N − I (t − ω))I (t − ω)

N
.
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A model with vaccine efficacy and waning

▶ Exponential distribution of recovery times (rate γ)

▶ Susceptible individuals are vaccinated (number of vaccinated at time t is denoted
V (t))

▶ Vaccination wanes, a fraction P(t) of the vaccinated at time t = 0 remain
protected by the vaccine

▶ Vaccination is imperfect, 0 ≤ 1− σ ≤ 1 is the vaccine efficacy
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Model structure

S I

V

(1− α)dN

αdN

dS dI

dV

βSI/N

γIϕS

P(t) σβ
VI
/N
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Parametres

▶ d > 0: mortality rate

▶ γ ≥ 0: recovery rate

▶ β > 0: infectiousness of the disease

▶ ϕ ≥ 0: vaccination rate of susceptible individuals

▶ α ∈ [0, 1): fraction of newborns vaccinates

▶ 0 ≤ 1− σ ≤ 1: efficacy of the vaccine. From now on, assume 0 ≤ σ < 1
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▶ Disease transmission: standard incidence

▶ Vaccination of newborns

▶ Birth and death rate equal (⇒constant total population)

Assumptions on P: P(t) is a nonnegative and nonincreasing function with
P(0+) = 1, and such that

∫∞
0 P(u)du is positive and finite

Constant total population ⇒ S(t) = N − I (t)− V (t); further, we switch to
proportions: S , I and V represent the proportions in the population, and N = 1 (S
used in equations for conciseness)
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The SIS model with vaccination

dI (t)

dt
= β(S(t) + σV (t))I (t)− (d + γ)I (t) (30a)

V (t) = V0(t) (30b)

+

∫ t

0
(ϕS(u) + αd)P(t − u)e−d(t−u)e−σβ

∫ t
u I (x)dxdu

▶ αd proportion of vaccinated newborns,

▶ ϕS(u) proportion of vaccinated susceptibles,

▶ P(t − u) fraction of the proportion vaccinated still in the V class t − u time units
after going in,

▶ e−d(t−u) fraction of the proportion vaccinated not dead due to natural causes,

▶ e−σβ
∫ t
u I (x)dx fraction of the proportion vaccinated not gone to the infective class.
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Obtaining the initial condition

Let v(t, τ) be the (density) proportion of individuals in vaccination class-age τ still
vaccinated at time t, then(

∂

∂t
+

∂

∂τ

)
v(t, τ) = −(σβI (t) + d + η(τ))v(t, τ) (31)

where V (t) =
∫∞
0 v(t, τ)dτ . η(τ) is the vaccine waning rate coefficient, with

proportion still in the vaccination class-age τ being P(τ) = exp
(
−
∫ τ
0 η(q)dq

)
. It is

assumed that P is a survival function

Inflow in class-age zero is
v(t, 0) = ϕS(t) + αd

and v(0, τ) ≥ 0 is assumed
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Integrating (31) along characteristics, dividing the integral for V (t) at t, substituting
in the solutions, and changing integration variables, we get

V0(t) = e−
∫ t
0 (σβI (x)+d)dx

∫ ∞

0
v(0, u)

P(t + u)

P(u)
du (32)

The ratio P(t + u)/P(u) = exp
(∫ t+u

u η(q)dq
)
is well defined for t + u ≥ u ≥ 0 and

bounded above by 1.

Since V (0) is finite, the integral in V0(t) converges, and thus V0(t) is nonnegative,
nonincreasing and limt→∞ V0(t) = 0
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Let
D = {(S , I ,V );S ≥ 0, I ≥ 0,V ≥ 0,S + I + V = 1}

Theorem 15

The set D is positively invariant under the flow of (30) with I (0) > 0, S(0) > 0
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With the assumed initial conditions in D, it can be shown that the system defined by
(30a) and (30b) is equivalent to the system defined by (30a) and

d

dt
V (t) =

d

dt
V0(t) + ϕS(t) + αd (33)

− (d + σβI (t))(V (t)− V0(t)) + Q(t)

where to simplify notation, we denote

Q(t) =

∫ t

0
(ϕS(u) + αd)dt(P(t − u))e−d(t−u)e−σβ

∫ t
u I (x)dxdu

The system defined by (30a) and (33) is of standard form, therefore results of Hale
(see Hale & Verduyn-Lunel) ensure the local existence, uniqueness and continuation of
solutions of model (30)
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R0

Define R0 with vaccination as

Rv = R0

[
1 + σϕP̃ − (1− σ)αdP̃

1 + ϕP̃

]
(34)

where R0 =
β

d+γ is the reproduction number in the absence of vaccination and

P̃ = lim
t→∞

∫ t

0
P(v)e−dvdv

in such a way that P̃ < 1/d

▶ Rv ≤ R0 and, in absence of vaccination, Rv = R0
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Theorem 16

System (30) with an arbitrary loss of vaccination function P(t) always admits the
disease-free equilibrium

▶ If R0 < 1, then the DFE is the only equilibrium of the system and the disease
goes extinct

▶ If Rv < 1, the DFE is LAS; if Rv > 1, the DFE is unstable

vac

R
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R
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Reduction of the system using specific P(t) functions

As before, two examples

▶ The distribution of waning times is exponential, which leads to an ODE system.
Treated briefly here, just so as to emphasize the presence of a so-called backward
bifurcation, a rather uncommon phenomenon in epidemiological models

▶ The waning time is a constant, which leads to a DDE model. We show that the
backward bifurcation is also present
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Case reducing to an ODE system

Assume P(v) = e−θv , θ > 0. V0(t) = V0(0)e
−(d+θ)te−

∫ t
0 σβI (x)dx from (32). Then

(30a) and (33) give the ODE system

dI

dt
= β(1− I − (1− σ)V )I − (d + γ)I (35a)

dV

dt
= ϕ(1− I − V )− σβIV − (d + θ)V + αd (35b)

which with no newborn vaccination (α = 0) is the model studied in Kribs-Zaletta &
Velasco-Hernandez, 2000 (extended to SIR with vaccination: Arino, McCluskey and
van den Driessche).

From Theorem 16 the DFE always exists, with

IDFE = 0, SDFE =
θ + d(1− α)

d + θ + ϕ
,VDFE =

ϕ+ αd

d + θ + ϕ
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Backward bifurcation

Assume that R0 > 1, then endemic equilibria (positive I equilibria, denoted by I ⋆) can
be obtained analytically from the quadratic equation

P(I ) = AI 2 + BI + C = 0

where

A = −σβ

B = σ(β − (d + γ))− (d + θ + σϕ)

C = (d + γ)(d + θ + ϕ)(Rv − 1)/β

with

Rv = R0
d + θ + σϕ− α(1− σ)d

d + θ + ϕ

from (34).
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Backward bifurcation leading to two endemic equilibria occurs for σ > 0 if
P ′(0) = B > 0, P(0) = C < 0 and B2 > 4AC (we always have P(1) < 0)

▶ On an (Rv , I ) bifurcation diagram, this occurs for Rc < Rv < 1, where Rc is the
value of Rv at the saddle node bifurcation point where the two values of I coincide,
i.e., I = Ic = B/(−2A)

▶ For Rv < Rc , there is no endemic equilibrium (EEP). For Rv > 1, the constant
term C > 0, and there is a unique EEP

▶ In the case of forward bifurcation, Rc = 1; this is the case in particular if the
vaccine is totally effective (σ = 0)
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By standard planar ODE arguments the following can be shown

Theorem 17

For the ODE system (35) with V (0) ≥ 0, I (0) > 0, and R0 > 1

(i) if Rv < Rc , then the disease dies out,

(ii) if Rc < Rv < 1, then the EEP with larger I is l.a.s., and the EEP with smaller I is
unstable

(iii) if Rv > 1, then the unique EEP is globally asymptotically stable in D − {I = 0}
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Pertussis:

▶ 3 week average disease duration (γ = 0.04762)

▶ Average lifetime 75 years (d = 3.6530E − 05)

▶ Average number of adequate contacts per infective per day is estimated at 0.4
(β = 0.4)

▶ Most newborns are vaccinated in the first few months of life (α = 0.9)

▶ Vaccine is effective, σ = 0.1 (90% effective vaccine).

▶ Pertussis vaccine begins to wane after about 3 years and the average waning time
of the vaccine 1/θ is assumed to be 5 years, giving θ = 5.4794E − 04

With these parameter values, there is backward bifurcation for a range of ϕ values
given by 0.0254 ≤ ϕ ≤ 0.1506
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With the above parameter values, R0 = 8.3936 and Rv (ϕ) = 0.8807 for ϕ = 0.1,
which is in the range of backward bifurcation since the critical value
Rc(ϕ) = 0.8669 < Rv (ϕ) < 1
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Step function case: a delay integral model

Suppose that

P(v) =

{
1 if v ∈ [0, ω]
0 otherwise

Since V0(t) = 0 for t > ω, with S = 1− I − V the integral equation (30b) becomes,
for t > ω

V (t) =

∫ t

t−ω
(ϕ(1− I (u)− V (u)) + αd)e−d(t−u)e−σβ

∫ t
u I (x)dxdu (36)
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Differentiating (36) (see equation (33)) gives the model as the two dimensional
system, for t > ω

d

dt
I (t) = β(1− I (t)− (1− σ)V (t))I (t)− (d + γ)I (t) (37a)

d

dt
V (t) = ϕ(1− I (t)− V (t)) (37b)

− ϕ(1− I (t − ω)− V (t − ω))e−dωe−σβ
∫ t
t−ω I (x)dx

− σβIV − dV + αd
(
1− e−dωe−σβ

∫ t
t−ω I (x)dx

)
Hereafter, shift time by ω so that these equations hold for t > 0
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The well posedness of the problem follows from Theorem 15 and from the fact that
solutions of (30) exist and are unique. For a constant waning period, the basic
reproduction number from (34) is

Rv = R0
d + (σϕ− α(1− σ)d)(1− e−dω)

d + ϕ(1− e−dω)
(38)

With IDF = 0, from Theorem 16

VDF =
(ϕ+ αd)(1− e−dω)

d + ϕ(1− e−dω)
, SDF =

d − αd(1− e−dω)

d + ϕ(1− e−dω)
(39)
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Finding the EEP’s

From nullclines, there exists one (or more) endemic equilbria (EEP) iff there exists
0 < I ⋆ ≤ 1 such that

V ⋆ = f (I ⋆) = g(I ⋆) (40)

where

f (I ) =
1− 1/R0 − I

1− σ
(41)

for σ < 1, and

g(I ) =
(ϕ(1− I ) + αd)(1− e−dω−σβωI )

ϕ(1− e−dω−σβωI ) + d + σβI
(42)
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Visualising and locating the bifurcation

From the nullcline equations, an EEP exists iff there exists an I ⋆ ∈ (0, 1] such that
equations (40)-(42) hold. So we study the zeros of

H(I ) =
1− 1/R0 − I

1− σ
− (ϕ(1− I ) + αd)(1− e−dω−σβωI )

ϕ(1− e−dω−σβωI ) + d + σβI

To state the problem in a formal way, let A = {α, β, γ, ω, ϕ, σ} be the set of
parameters of interest, and denote

H(I ,A) = f (I )− g(I ) (43)

to show the dependence on these parameters.
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We proceed as follows.

1. Choose a parameter ai ∈ A.

2. Fix all other aj ’s (j ̸= i).

3. Choose ai ,min, ai ,max and ∆ai for ai .

4. For all ai ,k = ai ,min + k∆ai (k such that ai ,k ≤ ai ,max), compute I ⋆ such that
H(I ⋆, ai ,k) = 0.

Step 4 is carried out using the MatLab fzero function.
Further precision can be gained by showing that

H(0) =
Rv − 1

(1− σ)R0

and that, for σ < 1

H(1) = − 1

(1− σ)R0
− αd(1− e−dω−σβω)

ϕ(1− e−dω−σβω) + d + σβ
< 0
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Define Rc as previously. For R0 > 1 and Rv < 1, there are several possibilities.

▶ If Rv < Rc , then there is no EEP. H(0) and H(1) are strictly negative, and
numerical simulations seem to indicate that H has no roots in (0, 1] (i.e., that
H < 0 on this interval).

▶ If Rc < Rv < 1, then there are endemic equilibria. Here, since H(0) and H(1) are
strictly negative, the only possibility is thus to have an even number of zeros of H.
Numerical simulations appear to indicate that the number of endemic equilibria is
2.

In between these two situations Rv = Rc and there is one endemic equilibrium I ⋆.
Using the same procedure as for the visualisation of the bifurcation, it is possible to
compute Rc by finding the value I ⋆ such that H(I ⋆,A) = 0 and H ′(I ⋆,A) = 0, for a
given parameter ai ∈ A.
If Rv > 1 then H(0) > 0 and so there is an odd number of endemic equilibria.
Numerical simulations indicate that there is a unique EEP.
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Numerical bifurcation analysis

Same parameter values as in ODE case, except that the constant waning time (the
delay) ω has to be substituted for θ. We take ω = 1825, i.e., corresponding to a 5
years waning time

These parameters give R0 = 8.3936 and Rv (ϕ) = 0.8819, which is in the range of the
backward bifurcation since (using the above method) Rc(ϕ) = 0.8675

The bifurcation diagram is very like that depicted in earlier for the ODE. Numerical
simulations of the DDE model (using dde23) indicate that there are no additional
bifurcations; solutions either go to the DFE or to the (larger) EEP
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(a) Values of I ⋆ as a function of ω by solving H(I ,A) = 0 with ai = ω. (b) Value of
I (t) versus time, obtained by numerical integration of system (37) with initial data
I (t) = c , for t ∈ [−ω, 0], ω = 1825, c varying from 0 to 1 by steps of 0.02
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Age of infection

We have seen that infinite dimensionality could result from a detailed description (or
an unspecified one) of the sojourn time in compartments

We used age of vaccination to find the initial condition of system (30)

Here we take a closer look at this type of model

Originally, age of infection was introduced to account for differences in infectivity
depending on the time since an individual became infected

For instance, it is known that infectiousness of HIV positive patients vary as a function
of time
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Age structure

Taking into account age can be important in some cases

▶ Demographic characteristics vary with age

▶ Interactions are in general more frequent between people of a similar age. They
are also more frequent in younger individuals

▶ Some diseases attack preferentially younger individuals

▶ The immunity of individuals changes with age, so for instance, older people may
be more susceptible to some diseases than younger people

This is based on courses given by Jia Li during a Banff summer school in 2004
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Note on age

Chronological age, as a structuring variable, is “easier” than other structuring
variables

Indeed, if a is (chronological) age, then

d

dt
a = 1
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Formulation of an SIR model

Let a be the age. Assume that natural death and recovery occur at the rates µ and γ,
respectively, both dependent on a

When an individual is sick, they are subject to disease-induced death at the rate δ(a)

Governing equations are

(∂t + ∂a)S(t, a) = Λ(a)− (µ(a) + λ(t, a))S(t, a) (44a)

(∂t + ∂a)I (t, a) = −(µ(a) + γ(a) + δ(a))I (t, a) + λ(t, a)S(t, a) (44b)

(∂t + ∂a)R(t, a) = γ(a)I (t, a) (44c)
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Boundary conditions are

S(t, a0) = B (44d)

I (t, a0) = 0 (44e)

R(t, a0) = 0 (44f)

while initial conditions take the form

S(0, a) = Φ(a) (44g)

I (0, a) = Ψ(a) (44h)

R(0, a) = 0 (44i)
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Force of infection

Transmission λ(t, a) of the disease takes the form

λ(t, a) = r(a)

∫ ∞

a0

β(a, s)ρ(a, s)
I (t, s)

N(t, s)
ds

where

▶ r(a) is the number of contacts by individuals of age a per unit time

▶ β(a, s) is the probability of disease transmission to a susceptible of age a by an
infectious of age s

▶ ρ(a, s) is the meeting rate between people of age a and people of age s

▶ N(t, a) = S(t, a) + I (t, a) + R(t, a) is the distribution of total population
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To simplify, assume that β(a, s) is separable

β(a, s) = f (a)g(s)

where f (a) is the susceptibility of individuals aged a and g(s) is the force of infection
of individuals aged s

Then

λ(t, a) = r(a)f (a)

∫ ∞

a0

g(s)ρ(a, s)
I (t, s)

N(t, s)
ds (45)
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Analysis of the SIR model

We seek the DFE by setting I = 0

We find (S , I ,R) = (S0(a), 0, 0) with

S0(a) = Be−M(a) + e−M(a)

∫ a

a0

eM(x)Λ(x)dx

where

M(a) =

∫ a

a0

µ(s)ds
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Consider the perturbed solution u(t, a) = S(t, a)− S0(a). Assume that the meeting
rate ρ is also separable,

ρ(a, s) = p1(a)p2(s)

Then

λ̃(t, a) := r(a)f (a)p1(a)

∫ ∞

a0

g(s)p2(s)

S0(s)
I (t, s)ds ≃ λ(t, a)

and we obtain the linearisation

(∂t + ∂a)u = −µ(a)u − λ̃(t, a)S0(a)

(∂t + ∂a)I = −(µ(a) + γ(a) + δ(a))I + λ̃(t, a)S0(a)

(∂t + ∂a)R = γ(a)I
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Let
u(t, a) = ũ(a)ec(t−a) I (t, a) = Ĩ (a)ec(t−a)

and denote

b(a) = S0(a)r(a)f (a)p1(a) W =

∫ ∞

a0

g(s)p2(s)

S0(s)
e−cs Ĩ (s)ds
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Then

dũ(a)

da
= −µ(a)ũ(a)− b(a)ecaW

dĨ (a)

da
= −(µ(a) + γ(a))Ĩ (a) + b(a)ecaW

Ĩ (a) = We−M(a)−Γ(a)

∫ ∞

a0

eM(s)+Γ(s)b(s)ecsds

where Γ(a) =
∫ a
a0
γ(s)ds

Therefore

W = W

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds
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Let then

H(c) :=

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−c(s−v)dvds

We seek roots of the characteristic equation H(c) = 1

We have

dH(c)

dc
= −

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

(s − v)eM(v)+Γ(v)b(v)e−c(s−v)dvds < 0

implying that H(c) is a decreasing function

p. 164 – Structuration in age



▶ Let c⋆ be a real solution to H(c) = 1. If H(0) > 1, then c > 0, whereas if
H(0) < 1, c < 0

▶ Suppose that c⋆ = α+ iβ is a complex root of H(c) = 1. Then

Re H(c) =

∫ ∞

a0

g(s)p2(s)

S0(s)
e−M(s)−Γ(s)

∫ s

a0

eM(v)+Γ(v)b(v)e−α(s−v) cosβ(s − v)dvds

As a consequence, H(0) < 1 =⇒ α < 0

So H(0) = 1 is a threshold and we take R0 = H(0)
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Analysis using semigroups: SIA model

To illustrate the use of the semigroup method in this context, we consider an SIA
model describing the evolution of HIV/AIDS

The model is almost equivalent to (44), with a few differences

The I compartment contains inviduals bearing HIV, but not yet in the AIDS stage

The rate γ(a) represents the progression towards the AIDS stage

The AIDS stage is represented by compartment A, where individuals are subject to a
specific mortality rate
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(∂t + ∂a)S(t, a) = Λ(a)− (d(a) + λ(t, a))S(t, a) (46a)

(∂t + ∂a)I (t, a) = −(d(a) + γ(a))I (t, a) + λ(t, a)S(t, a) (46b)

(∂t + ∂a)A(t, a) = γ(a)A(t, a)− (d(a) + δ(a))A(t, a) (46c)

Assume

λ(t, a) = h(a)

∫ ∞

a0

ρ(a, a′)
I (t, a′)

T (t, a′)
da′ (46d)

where T (t, a′) = S(t, a′) + I (t, a′)
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An individual in AIDS stage no longer has contacts. Therefore the dynamics of S and I
do not depend on the dynamics of A, and we consider the system consisting of the first
two variables

Let ω be the maximum age. The system in proportions takes the form

x :=
S

T
y :=

I

T

As we are only considering S and I , we have x + y = 1 and the system reads

(∂t + ∂a)y(t, a) = (1− y)(−γ(a)y + λ(t, a)) (47a)

λ(t, a) = h(a)

∫ ω

0
p(a, a′)y(t, a′)da′ (47b)
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Let X = {f ∈ L1(0, ω)}. Define

(Af )(a) := − d

da
f (a), f ∈ D(A)

with D(a) = {f ∈ X , f is absolutely continuous, f (0) = 0}, and

F (f )(a) ≡ (1− f (a))

(
−γ(a)f (a) + h(a)

∫ ω

0
p(a, a′)f (a′)da′

)
an operator from X → X

Let Ω = {f ∈ X , 0 ≤ f ≤ 1 a.e.}. Then (47) takes the form

dy

dt
= Ay + F (y)

y(0) = y0 ∈ Ω
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Let

(Bf )(a) = −df (a)

da
− γ(a)f (a) (Pf )(a) = h(a)

∫ ω

0
p(a, a′)f (a′)da′

We have

(∂t + ∂a)y = −γ(a)y + h(a)

∫ ω

0
ρ(a, a′)y(t, a′)da′ ⇔ dy

dt
= (B + P)y

B +P generates a C0-semigroup T (t), t ≥ 0, which is eventually uniformly continuous
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The resolvant of B + P is

R(λ;B + P) = (Sλ − I )−1G

with

(Gf )(a) =

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
f (σ)dσ

(Sλf )(a) =

∫ ω

0

∫ a

0
e−λ(a−σ) Γ(a)

Γ(σ)
ρ(σ, ξ)dσf (ξ)dξ

where we denoted

Γ(a) = exp

(
−
∫ a

0
γ(a′)da′

)
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R0

R0 is the spectral radius of the operator

(Sf )(a) =

∫ ω

0

∫ a

0

Γ(a)

Γ(σ)
h(σ)p(σ, ξ)dσf (ξ)dξ
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Pair formation

ρ(t, a, a′) proportion of partners of an individual aged a who are aged a′

r(t, a) mean number of partners of an individual aged a

T (t, a) total number of individuals aged a

The following conditions must hold

▶ 0 ≤ ρ ≤ 1

▶
∫∞
0 ρ(t, a, a′)da′ = 1

▶ ρ(t, a, a′)r(t, a)T (t, a) = ρ(t, a′, a)r(t, a′)T (t, a′)

▶ r(t, a)T (t, a)r(t, a′)T (t, a′) = 0 ⇒ ρ(t, a, a′) = 0
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# From https://stackoverflow.com/questions/36868287/purl-within-knit-duplicate-label-error

rmd_chunks_to_r_temp <- function(file){
callr::r(function(file, temp){
out_file = sprintf("../CODE/%s", gsub(".Rnw", ".R", file))

knitr::purl(file, output = out_file, documentation = 1)

}, args = list(file))

}
rmd_chunks_to_r_temp("course-02-metapopulations-and-advanced-models.Rnw")

## [1] "../CODE/course-02-metapopulations-and-advanced-models.R"
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