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Principle

I One main chamber (vessel), in which some microorganisms
(bacteria, plankton), typically unicellular, are put, together
with liquid and one or several limiting nutrients

I Contents are stirred, so nutrient and organisms are well-mixed

I Organisms consume nutrient, grow, multiply

I Two major modes of operation:
I Batch mode: let the whole thing sit.
I Continuous flow mode: there is an input of fresh water and

nutrient, and an outflow the comprises water, nutrient and
organisms, to keep the volume constant

p. 1 – The chemostat
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A popular artificial ecosystem

I Popularised by Jacques Monod (1910-1976, 1965 Nobel Prize
in Physiology and Medicine)

I Study of the growth of micro-organisms as a function of
nutrient, in a very controlled setting

I Very good reproducibility of experiments

I Used in all sorts of settings: fundamental science, but also,
production or degradation of products (simplest example of
bioreactor)

p. 7 – The chemostat

https://en.wikipedia.org/wiki/Jacques_Monod


One remark – Biology is hard work

Never forget that producing the data you may be using in your
models can be highly nontrivial

I Monod carried out hundreds of experiments during his PhD to
obtain the curve that bears his name (see later)

I Not easy per se, but add a bit more context: thesis defended
in Paris in 1941, while Monod had joined the Résistance in
1940 and had already once narrowly evaded capture by the
Gestapo

I Better conditions (remember the pictures earlier ..), but still,
remember that chemostat?

p. 8 – The chemostat
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Modelling principles – Batch mode

I Organism biomass x in the vessel

I Limiting substrate has concentration S in the vessel

I No inflow or outflow, just let everything sit in the vessel

I Homogeneous mixing. Remember, there is continuous stirrer,
so that’s a very reasonable assumption

I Organisms uptake nutrient at the rate µ(S), a function of the
concentration of nutrient around them

I Suppose for simplicity that things are scaled so that
uptake=growth

p. 13 – Batch mode
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Model for batch mode – No organism death

First, assume no death of organisms. Model is

S ′ = −µ(S)x (1a)

x ′ = µ(S)x (1b)

with initial conditions S(0) ≥ 0 and x(0) > 0, and where µ(S) is
such that

I µ(0) = 0 (no substrate, no growth)

I µ(S) ≥ 0 for all S ≥ 0

I µ(S) bounded for S ≥ 0

p. 14 – Batch mode



The Monod curve

Typical form for µ(S) is the Monod curve (called this in the
chemostat world instead of Michaelis-Menten or Holling type II)

µ(S) = µmax
S

KS + S
(2)

I µmax maximal growth rate

I KS half-saturation constant
(µ(KS) = µmax/2)
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From now on, assume Monod function

p. 15 – Batch mode



Equilibria

To compute the equilibria, suppose S ′ = x ′ = 0, giving

µ(S)x = −µ(S)x = 0

This implies µ(S) = 0 or x = 0. Note that µ(S) = 0⇔ S = 0, so
the system is at equilibrium if S = 0 or x = 0

This is a complicated situation, as it implies that there are lines of
equilibria (S = 0 and any x , and x = 0 and any S), so that the
equilibria are not isolated

p. 16 – Batch mode



Non-isolated equilibria

Michael Li has mentioned several times the epidemic versus
endemic model distinction. One of the issues that arise with
epidemic models also arises here in the case of batch culture

Remark

In presence of a continuum of equilibria, things (read LAS) go bad

In words: arbitrarily small neighborhoods of one equilibrium
contain other equilibria, and therefore, LAS is not possible

p. 17 – Batch mode



Consider the IVP

x ′ = f (x), x(t0) = x0 (3)

and denote x(t, x0) the solution to (3) at time t ≥ t0 through the
initial condition (t0, x0)

x? is an equilibrium point of (3) if f (x?) = 0

x? is locally asymptotically stable (LAS) if ∃S 3 x? open in the
domain of f s.t. for all x0 ∈ S, x(t, x0) ∈ S for all t ≥ 0 (stability)
and furthermore, limt→∞ x(t, x0) = x? (asymptotic convergence)

p. 18 – Batch mode



If there is a continuum of equilibria, then x? ∈ C, where C is some
curve in the domain of f s.t.

f (y?) = 0 for all y? ∈ C

We say x? is not isolated

But then any open neighbourhood of x? contains elements of C
and taking x0 ∈ C, x0 6= x?, implies that limt→∞ x(t, x0) = x0 6= x?

x? is locally stable but not locally asymptotically stable !

p. 19 – Batch mode



Also, think back about Michael Li’s Lecture 2 and the Lyapunov
Stability Theorem (here)

Theorems 1 should hold true and Theorem 2 should not

p. 20 – Batch mode

https://julien-arino.github.io/3MC-mathematical-modelling-in-biology/MLi-3MC-Lecture2.pdf#page=7


Here, some analysis is however possible (closely mimicking KMK
SIR). Consider

dx

dS
=

dx

dt

dt

dS
= −µ(S)x

µ(S)x
= −1

This implies that we can find the solution

x(S) = C − S

or, supposing the initial condition is (S(0), x(0)) = (S0, x0), that
is, x(S0) = x0,

x(S) = S0 + x0 − S

p. 21 – Batch mode
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Model for batch mode – Organism death

Assume death of organisms at per capita rate d

Model becomes

S ′ = −µ(S)x (4a)

x ′ = µ(S)x − dx (4b)

p. 23 – Batch mode



Equilibria

S ′ = 0⇔ µ(S)x = 0

x ′ = 0⇔ (µ(S)− d)x = 0

So we have x = 0 or µ(S) = d . So x = 0 and any value of S , and
S such that µ(S) = d and x = 0. One such particular value is
(S , x) = (0, 0)

This is once again a complicated situation, since there are lines of
equilibria. Intuitively, most solutions will go to (0, 0). This is
indeed the case (we will not show it)

p. 24 – Batch mode
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Modelling principles – Continuous flow mode

I Organism biomass x in the vessel

I Limiting substrate has concentration S in the vessel

I Limiting substrate flows into vessel at rate D and
concentration S0

I There is an outflow of both nutrient and organisms (at same
rate D as input)

I Homogeneous mixing

I Residence time in device is assumed small compared to
lifetime (or time to division) ⇒ no death considered

p. 25 – Continous flow mode



Schematic representation
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V
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p. 26 – Continous flow mode



Model for continuous flow mode

Model is

S ′ = D(S0 − S)− µmax
S

KS + S
x (5a)

x ′ = µmax
S

KS + S
x − Dx (5b)

with initial conditions S(0) ≥ 0 and x(0) ≥ 0, and D,S0 > 0

p. 27 – Continous flow mode
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Seeking equilibria

Setting S ′ = x ′ = 0, we get

0 = D(S0 − S)− µmax
S

KS + S
x (6a)

0 =

(
µmax

S

KS + S
− D

)
x (6b)

p. 28 – Continous flow mode



Phase plane analysis
I In R2, nullclines are curves and union of curves

I Nullclines are the level set 0 of the vector field. If we have

x ′1 = f1(x1, x2)

x ′2 = f2(x1, x2)

then the nullcline for x1 is the curve defined by

{(x1, x2) ∈ R2 : f1(x1, x2) = 0}

that for x2 is

{(x1, x2) ∈ R2 : f2(x1, x2) = 0}

I On the nullcline associated to one state variable, this state
variable has zero derivative

I Equilibria lie at the intersections of nullclines for both state
variables (in R2)

p. 29 – Continous flow mode



Nullcline for x

Nullcline is given by (6b) in (6), i.e.,

0 =

(
µmax

S

KS + S
− D

)
x (6b)

From (6b), nullcline for x is union of x = 0 and

µmax
S

KS + S
− D = 0

Write the latter as

µmax
S

KS + S
− D = 0⇔ µmaxS = D(KS + S)

⇔ (µmax − D)S = DKS

⇔ S =
DKS

µmax − D

p. 30 – Continous flow mode



Nullcline for x

So, for x , there are two parts to the nullcline:

I the line x = 0

I the line S =
DKS

µmax − D

From the line S = DKS/(µmax − D), we deduce a condition:

I If µmax − D > 0, that is, if µmax > D, i.e., the maximal
growth rate of the cells is larger than the rate at which they
leave the chemostat due to washout, then the nullcline
intersects the first quadrant

I If µmax < D, then the nullcline does not intersect the first
quadrant

p. 31 – Continous flow mode



Summary – Nullcline for x

S

x

S

x

µmax < D µmax > D

p. 32 – Continous flow mode



Nullcline for S

Nullcline is given by (6a) in (6), i.e.,

0 = D(S0 − S)− µmax
S

KS + S
x (6a)

Rewrite (6a):

D(S0 − S)− µmax
S

KS + S
x = 0⇔ µmaxSx = D(S0 − S)(KS + S)

⇔ x =
D(S0 − S)(KS + S)

µmaxS

p. 33 – Continous flow mode



Nullcline for S : S intercept

The equation for the nullcline for S is

x = Γ(S)
∆
=

D

µmax

(
S0K

S
− S + S0 − K

)
We look for the intercepts. First, S intercept:

Γ(S) = 0⇔ S0KS

S
− S + S0 − KS = 0

⇔ S0K

S
= S − S0 + K

⇔ S0KS = S2 + (KS − S0)S

⇔ S2 + (K − S0)S − S0KS = 0

Roots of this degree 2 polynomial are −KS (< 0) and S0

p. 34 – Continous flow mode



Nullcline for S : x intercept

x intercept is found at Γ(0). But this is not defined (division by
S = 0), so consider

lim
S→0+

Γ(S) = lim
S→0+

D

µmax

(
S0K

S
− S + S0 − K

)
=

D

µmax

(
lim

S→0+

S0K

S
− S + S0 − K

)
=

D

µmax

(
lim

S→0+

(
S0K

S

)
+ lim

S→0+

(
−S + S0 − K

))
=

D

µmax

(
+∞+ S0 − K

)
= +∞

p. 35 – Continous flow mode



The nullcline for S

S

x

p. 36 – Continous flow mode



Putting things together – Equilibria

S

x

�

(S0, 0)

S

x

�

�

(S?, I ?)

(S0, 0)

µmax < D µmax > D

So depending on sgn(µmax − D), we have one or two EP

p. 37 – Continous flow mode
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Conservation of mass

Summing the equations in (5), we get

(S + x)′ = D
(
S0 − (S + x)

)
Denote M = S + x the total organic mass in the chemostat. Then

M ′ = D(S0 −M)

This is a linear equation in M. Solving it (e.g., integrating factor),
we find

M(t) = S0 − e−Dt
(
S0 −M(0)

)
and so

lim
t→∞

M(t) = S0

This is called the mass conservation principle

p. 38 – Continous flow mode



Implication of mass conservation

(Bio)mass is asymptotically constant

We can use the theory of asymptotically autonomous DE

In short: it is often allowed to use the limit of a variable rather
than the variable itself, provided you know that convergence occurs

So here, e.g., study S with x = S0 − S

S ′ = D(S0 − S)− µmax
S

KS + S
(S0 − S)

=

(
D − µmax

S

KS + S

)
(S0 − S)

p. 39 – Continous flow mode



The 1-D system

S ′ =

(
D − µmax

S

KS + S

)
(S0 − S) (7)

Two easy EPs: S = S0 and λ, solution to

D − µmax
S

KS + S
= 0

i.e.,

λ =
DKS

µmax − D
(8)

which is only biologically relevant when µmax > D

p. 40 – Continous flow mode
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Uptake 6= growth

In the Monod model, we assumed that with some proper
renormalisation, uptake and growth can be expressed using the
same function

Let us look at a more general version

J. Arino, S.S. Pilyugin & G.S.K. Wolkowicz. Considerations on
yield, nutrient uptake, cellular growth, and competition in
chemostat models. Canadian Applied Mathematics Quarterly
11(2), 2003; pdf here

p. 43 – Role of uptake and growth functions

https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPilyuginWolkowicz-CAMQ11.pdf


The model

S ′ = D(S0 − S)− u(S)x (9a)

x ′ = (g(S)− D1)x (9b)

Differences from before:

I D1 in (9b) is 6= D in (9a). D1 can be sum of D and specific
death rate

I uptake u(S) in (9a) is 6= growth g(S) in (9b)

I u, g continuously differentiable, u(0) = g(0) = 0,
u(S), g(S) > 0 for S > 0, u, g increasing or unimodal

p. 44 – Role of uptake and growth functions
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Local analysis

Washout EP E0 ≡ (S0, 0) always exists

Lemma 1

E ? ≡ (S?, x?) =
(
S?, D(S0−S?)

u(S?)

)
, where S? is any solution of

g(S) = D1 (10)

is a feasible positive equilibrium ⇐⇒ S? < S0

p. 45 – Role of uptake and growth functions



Since u, g increasing or unimodal, define λ, µ ∈ R̄ with λ < µ,
with µ =∞ if (10)has only one solution and λ = µ =∞ if (10)
has no solution

When λ or µ <∞, denote E ?λ or E ?µ , respectively

p. 46 – Role of uptake and growth functions



Jacobian at arbitrary (S , x) is(
−D − u′(S)x −u(S)

g ′(S)x g(S)− D1

)
(11)

Thus, at E0 = (S0, 0), (
−D −u(S0)

0 g(S0)− D1

)

Lemma 2

The washout equilibrium E0 is LAS if g(S0)− D1 < 0

p. 47 – Role of uptake and growth functions



Feasible positive EP E ?

Lemma 3

E ? � 0 LAS if, simultaneously,

g ′(S?) > 0 and u′(S?) > − u(S?)

S0 − S?
(12)

Lemma 4

The linearisation of (9) about E ? � 0 has complex eigenvalues
⇐⇒

(D + u′(S?)x?)2 < 4u(S?)g ′(S?)x?

( =⇒ if g ′(S?) < 0 there are no oscillations in a neighbourhood of
E ?)

p. 48 – Role of uptake and growth functions



Lemma 5

The linearisation of (9) about E ? � 0 has purely imaginary
eigenvalues ⇐⇒

g ′(S?) > 0 and u′(S?) = − u(S?)

S0 − S?
(13)

( =⇒ Hopf bifurcation, if any, can only occur at E ?λ since g must
be increasing at S?)

You see where we’re going..?

p. 49 – Role of uptake and growth functions



Theorem 6

Assume ∃α = αC s.t. x?αC
u′(λαC

) + D = 0. System (9) undergoes
a Hopf bifurcation at E ?λαC

if g ′(λαC
) > 0 and

d

dα

(
−Dx?(α)u′(S?(α))

)∣∣
α=αC

6= 0 (14)

This bifurcation is supercritical if CH < 0 and subcritical if CH > 0,
where

CH ≡ −u(λαC
)g ′(λαC

)u′′′(λαC
)

+ u′′(λαC
)(u′(λαC

)g ′(λαC
) + u(λαC

)g ′′(λαC
))

p. 50 – Role of uptake and growth functions
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Lemma 7

Both the nonnegative cone and the interior of the nonnegative
cone are positively invariant under the flow of (9)

Lemma 8

Solutions of (9) are defined and remain bounded for all t ≥ 0

Lemma 9

For any ε > 0, ∃Tε ≥ 0 s.t. S(t) ≤ S0 + ε for all t ≥ Tε. If, in
addition, λ < S0, g(S) > D1 for S ∈ (λ,S0] and x(0) > 0, then
∃T s.t. S(t) < S0 for all t > T

p. 51 – Role of uptake and growth functions



Theorem 10

If S0 ≤ λ, then the washout equilibrium E0 of (9) is GAS

Theorem 11

If λ < S0, g ′(λ) > 0, g(S0) > D1, u′(λ) > −u(λ)/(S0 − λ) and
1− u(S)(S0− λ)/((u(λ)(S0− λ))) has exactly one sign change for
S ∈ (0, S0), then E ?λ is GAS w.r.t. the interior of the positive cone

p. 52 – Role of uptake and growth functions



Elements of the proof of Theorem 11

Won’t show much, just the Lyapunov function used. . . We define

V (S , x) =

∫ S

λ

(g(ξ)− D1)(S0 − λ)

u(λ)(S0 − ξ)
dξ + x − x?λ ln

(
x

x?λ

)
(15)

Let

Ψ(S) =
u(S)

S0 − S
(16)

Then

V ′ = x(g(S)− D1)

(
1− Ψ(S)

Ψ(λ)

)
with V ′ = 0 iff S = λ or x = 0 or S = µ = S0. With some work,
get a Lyapunov function (of the type requiring LaSalle’s extension)

p. 53 – Role of uptake and growth functions
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S ′ = D(S0 − S)−
n∑

i=1

ui (S)xi (17a)

x ′i = (gi (S)− Di )xi , i = 1, . . . , n (17b)

Define per-species break-even concentrations λi , µi as before

We obtain a few results related to coexistence (won’t detail here)

p. 54 – Role of uptake and growth functions



A simple case – 2 species with yield in the uptake

Rescale x , y , S and time t so that D = S0 = 1. Model becomes

S ′ = 1− S − p1(S)

γ1(S)
x − p2(S)

γ2
y (18a)

x ′ = (p1(S)− 1)x (18b)

y ′ = (p2(S)− 1)y (18c)

where pi are Monod functions

pi (S) = mi
S

ai + S
, i = 1, 2

and
γ1(S) = b1 + c1S

n

b1, c1 > 0 and n ∈ N+ \ {0}

p. 55 – Role of uptake and growth functions



We get some pretty complicated dynamics

p. 56 – Role of uptake and growth functions







A simple case – 3 species with yield in growth

Consider (17) with 3 species and

gi (S) = Yi (S)ui (S), i = 1, 2, 3

allowing the efficacy of the uptake-to-growth process to depend on
substrate concentration

Specifically, take Y2(S) ≡ Y2 and Y3(S) ≡ Y3 to be constants and
only let Y1(S) vary

p. 59 – Role of uptake and growth functions



Interesting dynamics again

Without variable yield (i.e., gi (S) = kigi (S)), competitive
exclusion holds

Here:

I Under some conditions, coexistence of the three species
happens

I Under other conditions, removing one species leads to
competitive exclusion among the remaining two, showing
competitor mediated coexistence

p. 60 – Role of uptake and growth functions
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Importance of size-structure

Models this far assume x is the total concentration/biomass of the
organism

Typically, data is acquired using a particle counter, which has
information about the distribution of cell sizes

J. Arino, J.-L. Gouzé, A. Sciandra. A discrete, size-structured
model of phytoplankton growth in the chemostat – Introduction of
inhomogeneous cell division size. Journal of Mathematical Biology
45 (2002); pdf file

p. 61 – A size-structured model in discrete-time

https://julien-arino.github.io/assets/pdf/papers/2002_ArinoGouzeSciandra-JMB45.pdf
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Biological hypotheses

Original model (Gage et al revisited by H.L. Smith)

I (H1) In a constant environment (i.e., if the concentration of
limiting nutrient is constant and high), the growth of a cell is
exponential

I (H2) Cells are born with a biomass b, they grow, then divide
when they reach a biomass 2b

I (H3) When a cell divides, it divides into two daughter cells,
whose individual biomass is exactly one half of the biomass of
the original cell

We replace (H2) with

I (H2’) The division biomass 2b (accordingly, the birth biomass
b) is not a constant. There exists a distribution of division
biomass, describing the individual cellular division biomass

p. 63 – A size-structured model in discrete-time



Biomass is in [bmin, bmax ], r biomass classes,
xt = (x1(t), . . . , xr (t))T the total biomass in each biomass class at
time t

Ut = 1lT xt the total biomass in the system at time t, where
1lT = (1, . . . , 1)

r = rb + rg + rd , with rb = rd , rb birth classes, rg growth classes
and rd division classes

p. 64 – A size-structured model in discrete-time





Describing exponential growth

Use a constant M representing the size increment for a cell moving
from class i to class i + 1

To fulfill (H1), M must account for exponential growth of cells
when nutrient is abundant

Suppose cell growing exponentially from biomass b to biomass 2b.
To track along, say, n classes, then using M = 21/n works: if
M i−1b is biomass of cell in class i , then a cell progressing from one
class to the next each time step grows exponentially

To allow more than doubling, we need M > 21/r so that
M rbmin > 2bmin. But we also want each division class to
correspond to a unique birth class

p. 66 – A size-structured model in discrete-time



Let dr be the (division class relative) index of a division class (e.g.,
3rd division class). For the correspondance to hold, the division of
a cell in class dr must be two cells in birth class k = dr (relative to
birth classes this time)

Thus there must hold that, for all dr = 1, . . . , rd

MM rb+rg+dr−1bmin = 2Mdr−1bmin

(LHS: we make the hypothesis that division follows growth)

Must be true for dr = 1, so

M = 21/(rb+rg+1)

and the mean biomass of cells in class i is M i−1bmin
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Describing nutrient limited growth

So far, we have assumed unlimited growth (S = +∞), but the
substrate is limiting

The model is discrete ⇒ need to determine proportion of cells in
one size class which that move to the next size class, given current
substrate concentration

Lengthy mechanistic derivation, but for short: proportion of cells in
class i moving to class i + 1 is

Pt =
f (St)

M − 1
(19)

where f (S) uptake and growth function, s.t., f (0) = 0, f ′(S) > 0
and f ′′(S) < 0. (Define m = limS→∞ f (S), maximal growth rate
per iteration period)
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Describing cell division

Model of Gage et al. assumes rb = rd = 1, we want division (and
consequently, birth) to occur for a range of sizes

Let Di (S) be proportion of cells in division class i = 1, . . . , rd
which undergo mitosis

For i = 1, . . . , rd −1 and all S ∈ R+, assume 0 ≤ Di (S) ≤ 1, where
both inequalities have to be strict for some S ; further assume that
all cells in the last division class divide, i.e., Drd (S) ≡ 1
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The model

Let E be the fraction of cells and substrate washed out at each
iteration (equiv. D in the continous time models), then the model
takes the form

xt+1 = (1− E )A(St)xt (20a)

St+1 = (1− E )[St − f (St)Ut ] + ES0 (20b)

where xt ∈ Rr
+,St ∈ R+ and A(St) is an r × r transition matrix

(next page), in which Pt = f (St)(M − 1)−1 and Di = Di (St)

Note that there are constraints to satisfy on the time step to
ensure Pt ∈ [0, 1]..
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Mass conservation principle

We have

1lTA(S) = (1 + (M − 1)Pt)1l
T = (1 + f (St))1lT

(i.e., 1 + f (St) eigenvalue of A(St) associated to left e-vector 1lT )

=⇒

Ut+1 = 1lT xt+1 = 1lTA(St)xt = (1− E )(1 + f (St))Ut

=⇒
Ut+1 + St+1 = (1− E )(Ut + St) + ES0

So (asymptotic) mass conservation holds
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Consequences of mass conservation

I Mass conservation ⇒ total “mass” contained in the
chemostat tends to S0

I ⇒ dynamics studied on the invariant set U + S = S0, where
the system reduces to a 1-D system

I On U + S = S0, Smith showed that under certain conditions,
there exists a GS equilibrium; this works here as well

I ⇒ global dynamics of the 2-D system in substrate and total
biomass can be deduced: it admits, under the same conditions
as 1-D system, a GS non trivial equilibrium

I Finally, using the Fundamental Theorem of Demography, the
distribution of biomass in each one of the size classes is
deduced
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A few of the results

From the mass conservation relation

Ut+1 + St+1 = (1− E )(Ut + St) + ES0

it follows that

Ut+1 + St+1 = S0 − (S0 − U0 − S0)(1− E )t , t ≥ 1

Define Γ, positive bounded set, as

Γ =
{

(x ,S) ∈ Rr+1
+ : 1lT x + S ≤W

}
where W is a constant derived from constraints time step and
system state
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Proposition 12

If (x0,S0) ∈ Γ, then (xt ,St) ∈ Γ for t ≥ 1, St − Ut f (St) > 0 for
t ≥ 1 and

St + Ut → S0, t →∞

So now consider system restricted to positively invariant set

{(U,S) ∈ R2
+ : U + S = S0}

On this set, (20) reduces to

Ut+1 = (1− E )(1 + f (S0 − Ut))Ut (21)
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Proposition 13

If (1− E )(1 + f (S0)) ≤ 1, then limt→∞ Ut = 0 for all solutions of
(21) with U0 ∈ [0, S0]
If (1− E )(1 + f (S0)) > 1, then limt→∞ Ut = Ũ for all solutions of
(21) with U0 ∈ [0, S0]

The limiting value Ũ is the positive fixed point of

F (U) = (1− E )(1 + f (S0 − U))U

Define λ = f −1((1− E )−1 − 1). Recall that m = f (∞) is the
maximal growth rate, then λ <∞ if (1− E )−1 − 1 < m and
λ =∞ otherwise. (Classic chemostat behaviour: dilution rate E
too high ⇒ washout). If λ < S0, then Ũ = S0 − λ

p. 77 – A size-structured model in discrete-time



Moving to 2-D
Let now

Ω = {(U,S) ∈ R2
+ : U + S <W }

and consider

Ut+1 = (1− E )(1 + f (S0 − Ut))Ut (22a)

St+1 = (1− E )(St − f (St)Ut) + ES0 (22b)

Theorem 14

If (1− E )(1 + f (S0)) < 1, then for all solutions of (22a) s.t.
(U0, S0) ∈ Ω

(Ut ,St)→ (0,S0), t →∞

If (1− E )(1 + f (S0)) > 1, then there exists a nonzero steady state
and for all solutions of (22a) s.t. (U0,S0) ∈ Ω

(Ut ,St)→ (S0 − λ, λ), t →∞
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Moving to (r + 1)− D

To do this, we need the Fundamental Theorem of Demography
(recall Jacek Banasiak’s course yesterday). This version is by
Golubitsky, Keener and Rotschild (JTB 1975)

Theorem 15

Suppose that Tk is a sequence of nonnegative primitive matrices,
and that Tk → T as k →∞, where T is also nonnegative and
primitive. If e is the Perron-Frobenius eigenvector of T satisfying
1lT e = 1 and ξk+1 = Tkξk is a sequence starting with ξ0 ≥ 0 and
ξ0 6= 0, then

ξk

1lT ξk
→ e, k →∞
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Theorem 16

Let e be the Perron-Frobenius eigenvector of (1− E )A(λ)
satisfying 1lT e = 1. If (1−E )(1 + f (S0)) > 1, x0 6= 0 and λ ∈ Sint ,
then (20) admits one GAS nontrivial equilibrium (x̃ , S̃), where

x̃

Ũ
= e

Sint is a (potentially disconnected) set defined to ensure that the
requirement that 0 ≤ Di (S) ≤ 1 be strict for at least one S (on
both sides): Sint ⊂ R+, Sint 6= {0}, defined by

Sint = {s̄ ∈ R+ : ∀i < rd ,Di (s̄) ∈ (0, 1)}
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Why do we need Sint?
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Why we need Sint

A sufficient condition for a matrix to be primitive is for it to be
irreducible (i.e., with strongly connected associated digraph) with
at least one positive diagonal entry

I Positive diagonal X

I Irreducible ?
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Why we need Sint

A sufficient condition for a matrix to be primitive is for it to be
irreducible (i.e., with strongly connected associated digraph) with
at least one positive diagonal entry

I Positive diagonal X

I Irreducible X if λ ∈ Sint
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The Perron-Frobenius eigenvector

The PF eigenvalue is (1− E )(1− P + MP) = (1− E )(1 + f (S̃))
and the associated PF eigenvector is

e =
1

r



D1(S̃)
...

1−
∏rb−1

k=1 (1− Dk(S̃))
1

1lTrg
1

1− D1(S̃)
...∏rd−1

k=1 (1− Dk(S̃))
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