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Spatial aspects in ecology/population biology/epidemiology

Species have a spatial range

How to capture this spatial range from a conservation or control
point of view?

Invasions/colonizations

Disease spread
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What are metapopulations?

Metapopulations are populations of populations.

Two types of metapopulation models:

I patch occupancy models. Describe whether a location is
occupied by a species or not. Depends on the occupancy of
neighboring or connected locations. Dynamics describes the
number of occupied locations

I Models with explicit movement. Movement between locations
is described explicitly. In each location, a set of differential
equations describes the dynamics of the populations present

Focus here is on models with explicit movement, although we
briefly discuss the others
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What is a location?

A location is a unit (typically geographical) within which the
population is considered homogeneous

I city

I region

I country

I but also, location where a given species lives (for example,
forest, swamp, etc.)

Locations may or may not overlap
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A model of Richard Levins (1969)

R. Levins. Some Demographic and Genetic Consequences of
Environmental Heterogeneity for Biological Control. Bulletin of the
Entomological Society of America 15(3): 237-240 (1969)

Cited 4,400+ times, numerous higher order “offspring”

Quickly evolved to include prey-predators or competition systems
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The Levins model

Rate of change of # of local populations P:

P ′ = βP

(
1− P

T

)
− µP (1)

β immigration rate between locations, T total number of locations
and µ extinction rate of local populations

Ecologists & mathematicians think of patches differently. For
mathematicians, typically, one place in space. To be clear, in the
remainder of these slides, I will speak of locations
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Metapopulations with implicit movement

Same philosophy as the Levins model

I There is a set P of locations called locations

I Each location p ∈ P has an internal dynamics xp = fp(xp),
where xp ∈ Rnp

+ and fp : Rnp → Rnp

I No flow of individuals between locations

I The influence of location q 6= p on p is described through a
function gqp(xp, xq), where xq ∈ Rnq and
gp : Rnp × Rnq → Rnp

So the population in location p ∈ P has dynamics

x ′p = fp(xp) +
∑
q∈P
q 6=p

gqp(xp, xq) (2)

(I will show a few examples later)
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Levins-type vs Explicit movement

Levins model and its offspring: movement is implicit

P ′ = βP

(
1− P

T

)
− µP

β immigration rate between locations incorporates geography

Sometimes we have explicit movement information or want to
incorporate known spatial information =⇒ models with explicit
movement

Levin (1974)
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Metapopulations with explicit movement

Split continuous space into N discrete geographical locations
(ptatches)

Each location contains compartments (homogeneous groups of
individuals). E.g., preys, predators, etc.

Here, we consider a single compartment, the species of interest,
with no further compartmentalisation

Individuals may move between locations; mqp ≥ 0 rate of
movement of individuals from location p = 1, . . . ,N to location
q = 1, . . . ,N
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Explicit movement (focus on P1)

P1

P2

P3

P4P5
P6

Pk

m21

m31

m51

m61

mk1 m12

m14

m16

m1k

P ′1 =
N∑
j=1
j 6=1

m1jPj−P1

N∑
j=1
j 6=1

mj1

or

P ′1 =
N∑
j=1

m1jPj assuming m11 = −
N∑
j=1
j 6=1

mj1
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Eulerian vs Lagrangian metapopulations

You may encounter this terminology, here is what that means..

I Eulerian metapopulation models are Levins-type

I Lagrangian metapopulation models have explicit movement of
individuals
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title

Make some random graph

P1

P2

P3

P4P5
P6

Pk
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Graph setting

Suppose

I |P| locations, vertices in a (directed) graph G
I Each location contains a certain number of compartments

belonging to a common set C of compartments

I Arcs of G represent the possibility for a given compartment to
move between two locations; any two locations are connected
by a maximum of |C| edges

Graph is a digraph: movement is not always symmetric
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G = (P,A) is multi-digraph, where

I P is the set of vertices (locations)

I A is the set of arcs, i.e., an ordered multiset of pairs of
elements of P

Any two vertices X ,Y ∈ P are connected by at most |C| arcs from
X to Y and at most |C| arcs from Y to X

Because there are |C| compartments and movements are
compartment-specific, we also define, for all c ∈ C, Pc and Ac as
well as the compartment-specific digraphs Gc = (Pc ,Ac)

p. 14 – The general context



Direct access

Define the binary relation Rc by

Rc(X ,Y ) (compartment c has direct access to location Y
from location X ) if, for compartment c ∈ C, there exists
an arc A ∈ A between X and Y

Definition 1 (Direct access)

We write R(X ,Y ), and say that location X has direct access to
location Y or that location Y can be accessed directly from
location X , if there exists c ∈ C such that Rc(X ,Y )

Definition 2 (Full direct access)

We write R(X ,Y ) and say that location X has full direct access
to location Y if Rc(X ,Y ) for all c ∈ C
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Notations

For a given location X , define

Pc
X→ = {Y ∈ P : Rc(X ,Y )}

and
PX→ = {Y ∈ P : ∃c ∈ C such that Rc(X ,Y )},

the sets of locations that can be directly accessed from location X ,
and

Pc
→X = {Y ∈ P : Rc(Y ,X )}

and
P→X = {Y ∈ P : ∃c ∈ C such that Rc(Y ,X )},

sets of locations that have direct access to location X

p. 16 – The general context



Connection matrix

For a given compartment c ∈ C, a connection matrix can be
associated to the digraph Gc

This is the adjacency matrix of Gc , but we emphasize the reason
why we use Gc by using the term connection

Choosing an ordering of elements of P, the (i , j) entry of the
|P| × |P|-matrix Nc = Nc(Gc) is one if Rc(Pi ,Pj) and zero
otherwise, i.e., if Pi has no direct access to Pj

For convenience, the ordering of the locations is generally assumed
the same for all compartments
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Indirect access

Definition 3 (Indirect access for a compartment)

A compartment c ∈ C has indirect access to location Y from
location X if, for compartment c ∈ C, there exists a path from X
to Y in Gc but compartment c does not have direct access from X
to Y

In other words, there exists X1, . . . ,Xn ∈ P such that
Rc(X ,X1)Rc(X1,X2) . . .Rc(Xn,Y ), but Rc(X ,Y ) does not hold

Definition 4 (General indirect access)

Location X has general indirect access to location Y if there
exists X1, . . . ,Xn ∈ P and c1, . . . , cn+1 ∈ C such that

Rc1(X ,X1)Rc2(X1,X2) . . .Rcn+1(Xn,Y )

while X does not have direct access to Y

(Indices used only to indicate the order in which the relations hold)
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Indirect access for compartment c ∈ C can be evaluated using the
connection matrix Nc

Indeed, entries of N 2
c give the paths of length exactly 2 in Gc for

compartment c , and by induction, entries of Ckc give the paths of
length exactly k in G

General indirect access can be evaluated similarly by using the
matrix

N =
∑
c∈C
Nc
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Access

Access = combination of direct and indirect access.

Definition 5 (Access for a compartment)

Compartment c ∈ C in location X has access to location Y if
compartment c has direct or indirect access to location Y from
location X , and location X has access to location Y if it has direct
or indirect access to location Y from location X

Definition 6 (Connected locations)

Two locations X and Y are connected if X can be accessed from
Y and/or Y can be accessed from X

For a given location X , the sets Pc
X→, PX→, Pc

→X and P→X are
as before, but for access instead of direct access
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Example of access

Set P3→

1 2 3

4

5 6

Set P→3

1 2 3

4

5 6

Locations directly connected to 3 are darker gray, indirectly
connected locations are lighter gray. Locations with no access to 3
or that cannot be accessed from 3 are white
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Symmetric multi-digraph

Definition 7 (Graph symmetric for a compartment)

The multi-digraph G(P,A) is symmetric for compartment c ∈ C if
for all X ,Y ∈ P, Rc(X ,Y ) implies Rc(Y ,X ), that is, if the binary
relation Rc is symmetric

Definition 8 (Fully symmetric multi-digraph)

G is fully symmetric if, for all X ,Y ∈ P, R(X ,Y ) implies
R(Y ,X )
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Movement similar for all compartments

Definition 9 (Movement similar for all compartments)

Movement is similar for all compartments if, in the
multi-digraph G, existence of a c ∈ C such that Rc(X ,Y ) implies
that Rc(X ,Y ) for all c ∈ C
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Strongly connected multi-digraph

Definition 10 (Strongly connected components)

For a given compartment s, the strongly connected components
(or strong components, for short) are such that, for all locations
X ,Y in a strong component, compartment s in X has access to Y

Definition 11 (Strong connectedness for a compartment)

The multi-digraph is strongly connected for compartment c if all
locations belong to the same strong component of Gc
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Srong connectedness and irreducibility

Definition 12 (Reducible/irreducible matrix)

A matrix A is reducible if there exists a permutation matrix P
such that PTAP is block upper triangular. A matrix that is not
reducible is irreducible

Matrix A ∈ Fn×n is irreducible if for all i , j = 1, . . . , n, there exists
k such that akij > 0, where akij is the (i , j)-entry in Ak

Theorem 13

Strong connectedness ⇔ irreducibility of the connection matrix Cc
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Finding an ordering for a reducible matrix

Remember Definition 12: A reducible if ∃ permutation matrix P
s.t. PTAP block upper triangular

In practice, P can be hard to find, especially when A becomes large

That’s where the link to strong connectedness comes handy:
Dijkstra’s and similar algorithms are extremely fast at identifying
strong components in digraphs

To decide on irreducibility and reduce in case it doesn’t hold

I Run Dijkstra on G(A)

I If 1 strong component, A is irreducible

I If n > 1 strong components, list first components with > 1
vertex, then those with 1 vertex
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Illustration of the method
Take a simple example (easy to do “by hand” but never mind)

A =

0 1 1
0 1 0
1 1 0

 (3)

V1 V2 V3

Clearly, if we list vertices as V1,V3,V2, we should be good0 1 1
1 0 1
0 0 1
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Programmatically
# Required for graphs

library(igraph)

# Create the matrix

A = matrix(c(0,1,1,

0,1,0,

1,1,0),

nr = 3, byrow = TRUE)

# Create the associated digraph

G = graph_from_adjacency_matrix(A)

# Find the components of G

comp_G = components(G, mode="strong")

We find

> comp_G

$membership

[1] 1 2 1

$csize

[1] 2 1

$no

[1] 2
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Check if the graph is strongly connected (comp G$no==1);
otherwise, sort the components by decreasing size. The order in
which they are listed in comp G$csize needs to be kept, so use
order rather than sort

# Is the graph strongly connected?

if (comp_G$no==1) {

writeLines("Matrix is irreducible")

} else{

# Graph has more than 1 strong component, put the matrix

# in standard form

idx = order(comp_G$csize, decreasing = TRUE)

P = c() # Where we store the rows/columns of P

for (i in idx) {

P = c(P, which(comp_G$membership == i))

}

# The permutation matrix: obtained by applying P to

# columns of the identity matrix

P = diag(dim(A)[1])[,P]

# The reduced matrix

M = t(P)%*%A%*%P

}
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Dynamics of the system:

I dynamics in each location resulting from the interactions of
the various compartments,

I operator describing the movements of individuals between the
locations.
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A very simple example to facilitate ingestion

Suppose an SIS model over a set P of locations. If need be,
choose an order on elements of P and index locations as 1, . . . , |P|

Let Sp and Ip be number of susceptible and infectious individuals
in location p ∈ P, respectively

Then, in location p ∈ P, dynamics governed by

S ′p = bp − βpSpIp + γpIp − dpSp +
∑
q∈P

mSpqSq (4a)

I ′p = βpSpIp − γpIp − dpIp +
∑
q∈P

mIpqIq (4b)

(Don’t worry about why this is a metapopulation model this far)
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Notation

I Ncp(t) number of individuals of compartment c in location p
at time t

(Here and elsewhere: omit dependence on t unless it causes
confusion)

I Nc =
(
Nc1, . . . ,Nc|P|

)T
distribution of individuals of

compartment c ∈ C among the different locations
[E.g., for (4), NS = (S1, . . . ,S|P|)

T ]

I Np =
(
Np

1 , . . . ,N
p
|P|

)T
composition of the population in

location p ∈ P
[E.g., for (4), Np = (Sp, Ip)T ]
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General form of the system
Interaction function f and movement operator M can be
time-dependent (not shown)

I Equation by equation; for all c ∈ C and p ∈ P

d

dt
Ncp = fcp(Np) + Mcp(Ns) (5)

with fcp : R|P| → R and Mcp : R|C| → R
I Compartment by compartment; for all c ∈ C

d

dt
Nc = f p(Np) + Mc(Nc) (6)

with f p : R|P| → R|C| and Mp
s : R|C| → R|C|

I Location by location; for all p = 1, . . . , |P|

d

dt
Np = f p(Np) + Mp(Np) (7)

with f p : R|P| → R|C| and Mp
s : R|C| → R|C|
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Metapopulation models with linear movement

Use a linear autonomous movement operator

Then, for a given compartment c ∈ C and in a given location
p ∈ P

N ′cp = fcp(Np) +
∑
q∈P
q 6=p

mcpqNcq −

∑
q∈P
q 6=p

mcqp

Ncp

where mcpq rate of movement of individuals in compartment c ∈ C
from location q ∈ P to location p ∈ P
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A more compact notation

To make

N ′cp = fcp(Np) +
∑
q∈P
q 6=p

mcpqNcq −

∑
q∈P
q 6=p

mcqp

Ncp

more compact, denote the rate of leaving location p as

mcpp = −
∑
q∈P
q 6=p

mcqp (8)

Then
N ′s = fcp(Np) +

∑
q∈P

mcpqNcq (9)
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Vector form of the system

For compartment c ∈ C,

N ′c = f (N) +McNc (10)

with

Mc =


−
∑
k∈P

mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑
k∈P

mck|P|

 (11)
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Definitions and notation for matrices

I M ∈ Rn×n a square matrix with entries denoted mij

I M ≥ 0 if mij ≥ 0 for all i , j (could be the zero matrix); M > 0
if M ≥ 0 and ∃i , j with mij > 0; M � 0 if mij > 0
∀i , j = 1, . . . , n. Same notation for vectors

I σ(M) = {λ ∈ C;Mλ = λv, v 6= 0} spectrum of M

I ρ(M) = maxλ∈σ(M){|λ|} spectral radius

I s(M) = maxλ∈σ(M){Re (λ)} spectral abscissa (or stability
modulus)

I M is an M-matrix if it is a Z-matrix (mij ≤ 0 for i 6= j) and
M = sI− A, with A ≥ 0 and s ≥ ρ(A)
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The movement matrix

The matrix

Mc =


−
∑
k∈P

mck1 mc12 · · · mc1|P|

mc|P|1 mc|P|2 · · · −
∑
k∈P

mck|P|

 (11)

is the movement matrix

It plays an extremely important role in the analysis of
metapopulation systems, so we’ll spend some time discussing its
properties

Mc describes

I existence of connections

I when they exist, their “intensity”
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Properties of the movement matrix M

First, remark −Mc is a Laplacian matrix (cf. Michael’s course)

Lemma 14

1. 0 ∈ σ(M) corresponding to left e.v. 1T [σ spectrum]

2. −M is a singular M-matrix

3. 0 = s(M) ∈ σ(M) [s spectral abscissa]

4. If M irreducible, then s(M) has multiplicity 1

For complete proof of Lemma 14 and Proposition 15 (next page),
see Arino, Bajeux & Kirkland, BMB 2019
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Proposition 15 (D a diagonal matrix)

1. s(M+ dI) = d , ∀d ∈ R
2. s(M+D) ∈ σ(M+D) associated to v > 0. IfM irreducible,

s(M+ D) has multiplicity 1 and is associated to v� 0

3. If diag(D)� 0, then D −M invertible M-matrix and
(D −M)−1 > 0

4. M irreducible and diag(D) > 0 =⇒ D −M nonsingular
irreducible M-matrix and (D −M)−1 � 0
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Behaviour of the mobility component

Assume no within-location dynamics, just movement. Then (10)
takes the form

N ′c =McNc (12)

Theorem 16

For a given compartment c ∈ C, suppose that the movement
matrix Mc is irreducible. Then for any Nc(0) > 0, (12) satisfies

lim
t→∞

Nc(t) = N?
c � 0

Note that N?
c depends on 1lTNc(0)
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Proof of Theorem 16

System (12) is overdetermined:

1lTN ′c = 1lTMcNc = (0, . . . , 0)TNc = 0

so 1lTNc is constant. To find the equilibrium value N?
c , the system

McNc = 0

must be solved, with Mc a singular matrix

p. 42 – The general context



Consider the augmented system of |P|+ 1 equations in |P|
unknowns (

1lT

Mc

)
Nc =


1lTNc(0)

0
...
0

 (13)

All column sums of the last |P| rows are zero, thus the second
equation (for example) can be eliminated
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Perform column operations cr ← cr − c1 for r = 2, . . . , |P| on the
determinant of the resulting coefficient matrix, reducing it to the
|P| − 1 determinant det(M(1) + T1), where M(1) denotes matrix
Mc with its first row and column deleted, thus

M(1) =


−
∑|P|

q=1 mq2 m23 · · · m2|P|
...

. . .

m|P|2 m|P|3 · · · −
∑|P|

q=1 mq|P|


and T1 = m11l

T
|P|−1 = [−m21, . . . ,−m|P|1]T [1, . . . , 1], where m1 is

the vector formed from the first column of Mc by omitting the
first entry
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Since mpq ≥ 0, −M(1) is a nonsingular M-matrix (it has the
Z-sign pattern and 1lT|P|−1(−M(1)) ≥ 0 and is not the zero vector
by the assumption that Mc is irreducible)

Thus det(−M(1)) > 0 and so detM(1) has sign (−1)|P|+1. Since
T1 has rank 1, it follows from the linearity of the determinant
subject to rank 1 perturbations that

det(M(1) + T1) = detM(1)(1 + 1lT|P|−1M(1)−1m1)

As −M(1) is an M-matrix, (−M(1)−1) ≥ 0, thus M(1)−1 ≤ 0.
But m1 ≤ 0, thus 1 + 1lT|P|−1M(1)−1m1 is positive and so

det(M(1) + T1) has the sign of detM(1), namely (−1)|P|+1
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By Cramer’s Rule,

N1 =
detM(1)N0

det(M(1) + T1)
=

N0

1 + 1lT|P|−1(M(1))−1m1

> 0

Similarly by deleting the (p + 1)st equation in (13),

Np =
detM(p)N0

det(M(p) + Tp)
=

N0

1 + 1lT|P|−1(M(p))−1mp

> 0

where

Tp = mp1l
T
|P|−1

= [−m1p, . . . ,−mp−1,p,−mp+1,p, . . . ,−m|P|p]T1lT|P|−1

for p = 1, . . . , |P|. Here mp is the vector formed from the pth

column of M by omitting the pth entry. Thus given a value of
1lTNc(0), there is a unique positive solution Np = N?

p for
p = 1, . . . , |P|
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Let
d = max

i

∑
k∈P

mcki

Then
Mc + dI

is nonnegative, and the Perron-Frobenius theorem can be used

Since Mc is irreducible, the spectral radius ρ(Mc + dI ) is

I positive

I an eigenvalue of multiplicity one

I the only eigenvalue associated to a nonnegative eigenvector
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Thus
vT (Mc + dI ) = ρ(Mc + dI )vT

with vT � 0, and so vTMc = (λ− d)vT

Since 1lTMc = 0 · 1lT , 0 is the dominant eigenvalue of Mc and is
of multiplicity one. All other eigenvalues have negative real parts

The zero eigenvalue comes from the overdetermination of the
system. Thus the equilibrium is asymptotically stable
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Reduction to total population per location

Let
Tp =

∑
c∈C

Ncp

be the total population in location p

It is often posssible to obtain, in each location p ∈ P, an equation
for the evolution of the total population that takes the form

T ′p = Dp(Tp) +
∑
c∈C

∑
q∈P

mcpqNcq (14)

where Dp(Tp) describes the demography in location p
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Nature of the demography

Most common types of demographic functions

I Dp(Tp) = bp − dpTp (asymptotically constant population)

I Dp(Tp) = bpTp − dpTp

I Dp(Tp) = dpTp − dpTp = 0 (constant population)

I Dp(Tp) = rpTp(1− Tp/Kp) (logistic demography)

In what follows, assume

Dp(Tp) = bp − dpTp (15)
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Vector / matrix form of the equation

Assuming demography is of the form (15), write (14) in vector
form

T′ = b− dT +
∑
c∈C
McNc (16)

where

I b = (b1, . . . , b|P|)
T ∈ R|P|

I T = (T1, . . . ,T|P|)
T ∈ R|P|

I N = (Nc1, . . . ,Nc|P|)
T ∈ R|P|

I d = diag
(
d1, . . . , d|P|

)
∈ R|P|×|P|

I Mc ∈ R|P|×|P|
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The nice case

Suppose movement rates equal for all compartments, i.e.,

Mc ≡M

(stronger than Definition 9, which only requires zero/nonzero
patterns in all Mc , c ∈ C, to be the same)

Then

T′ = b− dT +M
∑
c∈C

Nc

= b− dT +MT (17)
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Equilibria

T′ = 0⇔ b− dT +MT = 0

⇔ (d−M)T = b

⇔ T? = (d−M)−1b

given, of course, that d−M (or, equivalently, M− d) is
invertible..

Is it?
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Nonsingularity of M− d

Using the spectrum shift of Theorem 15(1)

s

(
M−min

p∈P
dp

)
= −min

p∈P
dp

This gives a constraint: for total population to behave well (in
general, we want this), we must assume all death rates are positive

Assume they are (in other words, assume d nonsingular). Then
M− d is nonsingular and T? = (d−M)−1b unique
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Behaviour of the total population
Equal irreducible movement case

T? = (d−M)−1b attracts solutions of

T′ = b− dT +MT =: f (T)

Indeed, we have
Df =M− d

Since we now assume that d is nonsingular, we have by
Theorem 15(1) that s(M−minp∈P dp) = −minp∈P dp < 0

M irreducible → T? � 0 (provided b > 0, of course)
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Behaviour of total population
Equal reducible movement case

Theorem 17

Assume M reducible. Let a be the number of minimal absorbing
sets in the corresponding connection graph G(M). Then

1. The spectral abscissa s(M) = 0 has multiplicity a

2. Associated to s(M) is a nonnegative eigenvector v s.t.
I vi > 0 if i is a vertex in a minimal absorbing set
I vi = 0 if i is a transient vertex

From Foster and Jacquez, Multiple zeros for eigenvalues and the
multiplicity of traps of a linear compartmental system,
Mathematical Biosciences (1975)
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The not-so-nice case

Recall that
T′ = b− dT +

∑
c∈C
McNc

Suppose movement rates similar for all compartments, i.e., the
zero/nonzero patterns in all matrices are the same but not the
entries
Let

M =

[
min

X∈{S,L,I ,R}
mXpq

]
pq,p 6=q

M =

[
max

X∈{S ,L,I ,R}
mXpq

]
pq,p=q

and

M =

[
max

X∈{S,L,I ,R}
mXpq

]
pq,p 6=q

M =

[
min

X∈{S ,L,I ,R}
mXpq

]
pq,p=q
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Cool, no? No!

Then we have

b− dT +MT ≤ T′ ≤ b− dT +MT

Me, roughly every 6 months: Oooh, coooool, a linear differential
inclusion!

Me, roughly 10 minutes after that previous statement: Quel con!

Indeed M and M are are not movement matrices (in particular,
their column sums are not all zero)

So no luck there..

However, we can still do stuff, but more on a case-by-case basis

p. 58 – The general context



A brief history of metapopulations

The general context

A metapopulation of sources and sinks with explicit movement
A few older models
The model
Analysis of the model
A special case

Diseases in metapopulations

Computational considerations



Position of the problem

Assume a metapopulation of locations connected through
transport of individuals between them

Some locations are sources, others are sinks:

I Population tends to persist in sources

I Population tends to vanish in sinks

Ceteris paribus, does there exist a ratio of the number of source to
sink locations s.t. the population of the coupled system persists?

Obvious special cases: all sources should be true, all sinks should
be false..
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Dynamics in sources and sinks

Return to original Levins framework of just one species and assume
that species’ range is a heterogeneous environment:

I sources: conditions favourable to species survival

I sinks: conditions not favourable
(' immigration needed for population to remain present)
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Gyllenberg and Hanski (1997)

Normalise (1) to have P fraction of occupied locations:

P ′ = βP (h − P)− µP

where h is fraction of suitable locations

This exhibits threshold behaviour:

I if h < µ/β, then PFE is globally asymptotically stable (GAS)

I if h > µ/β, then ∃ unique nontrivial GAS equilibrium P∗

G&H consider numerous variations structured w.r.t. habitat quality
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Allen (1987)

Discretise 1D RD equation, giving, for i = 1, . . . ,N,

P ′i = f (Pi )Pi + mi ,i+1(Pi+1 − Pi ) + mi ,i−1(Pi−1 − Pi ) (18)

with zero Dirichlet boundary condition P0 = PN+1 = 0

For all Pi , sup f (Pi ) = r > 0, so all locations except extremities are
sources

Then population goes extinct if

r < 2

(
m + m cos

(
πN

N + 1

))
where 2m = mini{mi ,i+1 + mi ,i−1} and m = maxi{mi ,i+1,mi ,i−1}

Also, ∃ critical location number Nc such that N < Nc

=⇒ population becomes extinct
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Rael & Taylor (2018)

A flow network model for animal movement on a landscape with application to

invasion, Theoretical Ecology

P ′i = PiB(Pi ) +
N∑
j=1

ajiPjm(Pj ,Pi )− Pi

N∑
j=1

aijm(Pi ,Pj)

where

m(Pi ,Pj) =
max{0, π(Pi )− π(Pj)}

dij
π(Pi ) =

Pi

Ki

dij distance from i to j , Ki carrying capacity

B(Pi ) =

ri

(
1− Pi

Ki

)
sources

−ri sinks
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Model for N locations

W.l.o.g.: S ≥ 0 first locations are sources, N − S remaining are
sinks [w.l.o.g. but not that trivial nonetheless]

Sources:

P ′i = riPi

(
1− Pi

Ki

)
+

N∑
j=1

mijPj , i = 1, . . . ,S (19a)

Sinks:

P ′i = −riPi +
N∑
j=1

mijPj , i = S + 1, . . . ,N (19b)

mii = −
N∑
j=1
j 6=i

mji
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Vector form (v1)
P = (P1, . . . ,PN)T

P′ = G(P)P +MP

where

G(P) = diag

(
r1

(
1− P1

K1

)
, . . . , rS

(
1− PS

KS

)
,−rS+1, . . . ,−rN

)

M =



−
N∑
j=1
j 6=1

mj1 m12 · · · m1N

m21 −
N∑
j=1
j 6=2

mj2 · · · m2N

. . .

mN1 mN2 · · · −
N∑
j=1
j 6=N

mjN
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Vector form (v2)

Ps = (P1, . . . ,PS)T (sources), Pt = (PS+1, . . . ,PN) (sinks)

P′s = Gs(Ps)Ps +MsPs +MstPt

P′t = −DtPt +MtsPs +MtPt

where

Gs(Ps) = diag

(
r1

(
1− P1

K1

)
, . . . , rS

(
1− PS

KS

))
Dt = diag (rS+1, . . . , rN)(
Ms Mst

Mts Mt

)
=M
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The population-free equilibrium (PFE)

We find the PFE Ps = Pt = 0

At the PFE,
JSPFE =M+ (Ds ⊕−Dt) (20)

where Ds = Gs(0) = diag(r1, . . . , rS)

The matrix

Ds ⊕−Dt = diag(r1, . . . , rS ,−rS+1, . . . ,−rN)

has S diagonal entries > 0 and N − S diagonal entries < 0
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Mechanism of the existence proof

Start with S = 0 (only sinks)
=⇒ Ds vacuous and Ds ⊕−Dt = diag(−r1, . . . ,−rN)
=⇒ s(JSPFE ) < 0

Finish with S = N (only sources)
=⇒ Dt vacuous and Ds ⊕−Dt = diag(r1, . . . , rN)
=⇒ s(JSPFE ) > 0

Eigenvalues of JSPFE depend continuously of entries of JSPFE, so
s(JSPFE) changes signs, we are done.. if we are happy with a lot of
uncertainty about behaviour of s(JSPFE)
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Continuous perturbation of the spectrum

For S ∈ {0, . . . ,N − 1}

JS ,εPFE =M+ diag(r1, . . . , rS , ε,−rS+2, . . . ,−rN)

where ε ∈ [−rS+1, rS+1] is in (S + 1)th position

For S ∈ [0,N]

JSPFE = Jξ,εPFE, with ξ = bSc, ε = 2(S − bSc)ri − ri (21)

where i = bSc+ 1 if S < N and i = N when S = N

Generally we vary ζ continuously in each [−rS+1, rS+1]

J
S ,−rS+1

PFE = JSPFE and J
S ,rS+1

PFE = JS+1
PFE
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Behaviour of the spectral abscissa s(JSPFE)

Lemma 18

Let r = min
i=1,...,N

{ri}. Then s(J0
PFE) ≤ −r < 0 and s(JNPFE) ≥ r > 0

Proposition 19

M reducible =⇒ s(JSPFE) nondecreasing for S ∈ [0,N]

M irreducible =⇒ s(JSPFE) increasing for S ∈ [0,N]
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I M reducible: ∃Sint ⊂ (0,N) s.t. PFE LAS if S < min(Sint)
and PFE unstable if S > max(Sint)

I M irreducible: ∃Sc ∈ (0,N) s.t. PFE LAS if S < Sc and PFE
unstable if S > Sc

s (J PFE
S )

SN

−r

r

s (J PFE
S )

SN

−r

r
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So..

we are done!

.. Are we? The result is only local, can we go further?
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System (19) is cooperative

Jacobian of (19):

J(Ps ,Pt) =

(
G′s(Ps)Ps + Gs(Ps) +Ms Mst

Mts −Dt +Mt

)
(22)

where

G′s(Ps) = diag

(
− r1
K1
, . . . ,− rS

Ks

)

Thus

J(Ps ,Pt) =M+
(
(G′s(Ps)Ps + Gs(Ps))⊕−Dt

)
with G′s(Ps)Ps + Gs(Ps) and −Dt diagonal

=⇒ system (19) is cooperative
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A theorem of Hirsch

To move forward, the following result of Hirsch looks quite nice

Theorem 20 (Th. 6.1 in Hirsch (1984) – Bull. AMS 11(1))

Let F be a C 1 vector field in Rn with flow φ preserving Rn
+ for

t > 0 and strongly monotone in Rn
+. Suppose that the origin is an

equilibrium and all trajectories in Rn
+ are bounded. Suppose the

matrix-valued map DF : Rn
+ → Rn×n is strictly antimonotone, i.e.,

x > y =⇒ DF(x) < DF(y)

Then either all trajectories in Rn
+ go to the origin, or there exists a

unique equilibrium P? ∈ IntRn
+ and all trajectories in Rn

+ \ {0}
limit to P?
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OK, nice, but..

Take

P1 = (0, . . . , 0, ?, . . . , ?) and P2 = (0, . . . , 0, ?, . . . , ?)

have their first S entries zero, i.e., P1 = (0s ,P1
t ) and

P2 = (0s ,P2
t ); assume P1 > P2, i.e., P1

t > P2
t

Then

J(0s ,P
1
t ) =M+

(
(G′s(0s)0s + Gs(0s))⊕−Dt

)
=M+ (Ds ⊕−Dt)

= J(0s ,P
2
t )

i.e.,
JSP1

= JSP2

=⇒ (19) is not strictly antimonotone
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(non) lasciate ogne sperenza, voi ch’intrate

Except for strict antimonotonicity of F, all hypotheses of [Hirsch
(1984) – Th. 6.1] are satisfied:

I in the case M irreducible, (19) is strongly monotone (by
[Hirsch (1984) – Th. 1.7])

I the origin is an equilibrium

I all solutions of (19) are bounded in RN
+

=⇒ by other results (e.g., Hirsch ibid), there exists P∗ � 0

What is the use of strict antimonotonicity in the proof of [Hirsch
(1984) – Th. 6.1]? .. To show uniqueness of P∗
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More precisely: let z ∈ (0,P∗), where P∗ � 0 is a nontrivial
equilibrium

Strict antimonotonicity =⇒ F(z) > 0, and we can then proceed
with the remainder of the proof of [Hirsch (1984) – Th. 6.1]

Let us show that we indeed have F(z) > 0 for (19), despite the
lack of strict antimonotonicity

As in [Hirsch (1984) – Th. 6.1]: for i = 1, . . . ,N, let

gi : [0, 1]→ R
s 7→ Fi (sP∗)
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Then gi (0) = gi (1) = 0 for i = 1, . . . ,N and, for i = S + 1, . . . ,N
(sinks),

gi (s) = −ri sP∗i +
N∑
j=1

mijsP
∗
j =

riP
∗
i +

N∑
j=1

mijP
∗
j

 s = 0

However, for i = 1, . . . ,S (sources),

gi (s) = ri

(
1−

sP∗i
Ki

)
sP∗i +

N∑
j=1

mijsP
∗
j

Ha!

g ′′i (s) = −
2riP

∗2
i

K
< 0, i = 1, . . . ,S

=⇒ for i = 1, . . . ,S , gi (s) > 0 when s ∈ (0, 1)
=⇒ when S > 0, F(z) > 0, ∀z ∈ (0,P∗)
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And we can then carry on with the remainder of the proof of
[Hirsch (1984) – Th. 6.1]

To finish, the case S = 0 is easy:(
N∑
i=1

Pi

)′
= −

N∑
i=1

riPi < 0

since at least one of the Pi (0) > 0

=⇒
(∑N

i=1 Pi

)
→ 0 =⇒ limt→∞ Pi (t) = 0 for i = 1, . . . ,N

Et hop! �
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To conclude (mathematically)

Theorem 21

There exists a critical interval Sint ⊂ (0,N) ⊂ R s.t.

I S < min(Sint) =⇒ PFE LAS

I S > max(Sint) =⇒ PFE instable

Additionally, if the location digraph is strongly connected, then

I Sint is reduced to a point Sc

I S < Sc =⇒ PFE GAS

I S > Sc =⇒ ∃!P∗ � 0 GAS for RN
+ \ {0}
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An interesting special case

In the 2 figures that follow:

I N = 50

I r = ri , ∀i = 1, . . . ,N

I mij = m, ∀i , j = 1, . . . ,N s.t. mij > 0

I plot is value of Sc as a function of m and r

Figure 1: ring of locations

Figure 2: complete digraph
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Case of complete homogeneous movement

Proposition 22

Suppose that the movement digraph is complete and that mij = m
for i , j = 1, . . . ,N, i 6= j

Suppose that S ∈ {1, . . . ,N − 1}, that for i = 1, . . . ,S , ri = rs
and that for i = S + 1, . . . ,N, ri = rt

Then

Sc =
mNrt − rsrt
m(rs + rt)

(23)

If rs = rt = r , then

Sc =
N

2
− r

2m
(24)
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Proof of Prop 22 uses equitable partitions

Section 9.3 in Algebraic Graph Theory, Godsil & Royle (2013)

An equitable partition π splits a graph X into cells Ci ,
i = 1, . . . , r , s.t. for a vertex u in cell Ci , the number of neighbours
in cell Cj is a constant bij that does not depend on u

⇐⇒ the subgraph of X induced by each cell is regular [vertices
have same degree] and edges joining two distinct cells form a
semiregular bipartite graph [vertices have same degree in each
bipartite component]

The digraph with the r cells of π as vertices and the bij arcs from
the i th to the j th cell of π is the quotient X/π of X on π. The
adjacency matrix of X/π is A(X/π) = [bij ]
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Characterising an equitable partition

Lemma 23 (A friendly characterisation)

X graph, A(X ) its adjacency matrix, π a partition of V (X ) with
characteristic matrix P. Then

π equitable ⇐⇒ column space of P is A-invariant
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Write

JSPFE =

(
mJ− NmI + rsI mJ

mJ mJ− NmI− rtI

)
(25)

with J matrix of all 1’s

Consider (25) as the adjacency matrix of a digraph G

Suppose partition π splits G in two cells, {Si}i=1,...,S (sources) and
{Ti}i=S+1,...,N (sinks)

The characteristic matrix of π is the N × 2-matrix

C =

(
1S 0S

0N−S 1N−S

)
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We have

JSPFE1 = JSPFE

(
1S

1N−S

)
=

(
rs1S

−rt1N−S

)

Thus the column space of C is JSPFE-invariant =⇒ π is equitable
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Properties of equitable partitions

Lemma 24

π equitable partition of graph X with characteristic matrix P, and
B = A(X/π). Then AP = PB and B = (PTP)−1PTAP

Theorem 25

π equitable partition of graph X =⇒ characteristic polynomial of
A(X/π) divides characteristic polynomial of A(X )
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=⇒ the quotient matrix BS
PFE satisfies

BS
PFE = (CTC )−1CT JSPFEC

=⇒ BS
PFE =

(
mS −mN + rs m(N − S)

mS −(mS + rs)

)

And σ(BS
PFE) ⊂ σ(JSPFE)
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BS
PFE essentially nonnegative (and clearly irreducible)

=⇒ ∃!vp � 0 s.t. BS
PFEvp = λpvp = s(BS

PFE)vp

Then JSPFEC = CBS
PFE

So
JSPFECvp = CBS

PFEvp = λpCvp

and Cvp is an eigenvector of JSPFE that is also � 0

As the only eigenvector � 0 of JSPFE corresponds to s(JSPFE), we
have s(JSPFE) = s(BS

PFE)
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To compute Sc , recall Sc is value of S where PFE loses stability

Consider BS
PFE. We have tr(BS

PFE) = −mN + rs − rt and

det(BS
PFE) = −mS(rs + rt)− rsrt + mNrt

One shows easily that det(·) gouverns stability

=⇒ Sc =
mNrt − rsrt
m(rs + rt)
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So..

∃Sint (resp. SC ), threshold interval (resp. number) of number of
source locations s.t.

I Population likely (resp. assured) to go extinct below min(Sint)
(resp. SC )

I Population likely (resp. assured) to persist above max(Sint)
(resp. SC )

Strength of result depends on strong connectedness of location
graph

In case of strong connectedness, there is an R0 type threshold

In case of complete graph with movement equal, we can actually
find explicit expression for SC
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Diseases have been known to be mobile for a while
The plague of Athens of 430 BCE

It first began, it is said, in the parts of Ethiopia
above Egypt, and thence descended into Egypt
and Libya and into most of the [Persian] King’s
country. Suddenly falling upon Athens, it first
attacked the population in Piraeus [..] and af-
terwards appeared in the upper city, when the
deaths became much more frequent.

Thucydides (c. 460 BCE - c. 395 BCE)
History of the Peloponnesian War
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Pathogen spread has evolved with mobility

Pathogens use trade routes

In ancient times, trade routes were “simple”
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Pathogen spread has evolved with mobility

Pathogens use trade routes

With the acceleration and globalization of mobility, things are
changing
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Henri IV
(1553-1610)

King of Navarre (1572-1610)
King of France (1589-1610)

Jeanne d'Albret
(1528-1572)

Queen of Navarre (1555-1572)

Cosy turtle shell crib in Pau
(then capital of Béarn & Navarre)













Scale of modern mobility difficult to apprehend

Working definition

Mobility is the collection of processes through which individuals
change their current location

Takes many different forms

Evolves constantly

Numbers are .. colossal

p. 112 – Diseases in metapopulations
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Why mobility is important in the context of health

All migrants/travellers carry with them their “health history”

I latent and/or active infections (TB, H1N1, polio)

I immunizations (schedules vary by country)

I health/nutrition practices (KJv)

I treatment methods (antivirals)

Pathogens ignore borders and politics

I e.g., antiviral treatment policies for Canada and USA

p. 118 – Diseases in metapopulations



A brief history of metapopulations

The general context

A metapopulation of sources and sinks with explicit movement

Diseases in metapopulations
Mobility and the spatio-temporal spread of pathogens
Why use metapopulation models?
The models considered
Existence of a DFE
Computation of a reproduction number
Global stability of the DFE when R0 < 1
Metapopulation-specific problems
Bounds on R0

To conclude on theory

Computational considerations



Why use metapopulations for disease models?

I Appropriate for the description of spatial spread of some
diseases

I Ease of simulation

I Aggregation of data by governments is most often done at the
jurisdictional level, very easy to reconcile with locations in
metapopulations

p. 119 – Diseases in metapopulations



A few pointers

I JA & PvdD. Disease spread in metapopulations. Fields
Institute Communications 48:1-13 (2006)

I JA. Diseases in metapopulations. In Modeling and Dynamics
of Infectious Diseases, World Scientific (2009)

I JA. Spatio-temporal spread of infectious pathogens of
humans. Infectious Disease Modelling 2(2):218-228 (2017)

p. 120 – Diseases in metapopulations

https://julien-arino.github.io/assets/pdf/papers/2006_ArinoPvdD-FIC48.pdf
https://julien-arino.github.io/assets/pdf/papers/2009_Arino-metapopulations.pdf
https://doi.org/10.1016/j.idm.2017.05.001
https://doi.org/10.1016/j.idm.2017.05.001
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A brief history of metapopulations

The general context

A metapopulation of sources and sinks with explicit movement

Diseases in metapopulations
Mobility and the spatio-temporal spread of pathogens
Why use metapopulation models?
The models considered
Existence of a DFE
Computation of a reproduction number
Global stability of the DFE when R0 < 1
Metapopulation-specific problems
Bounds on R0

To conclude on theory

Computational considerations



The toy SLIRS model in patches

S L I R
B(N) Φ εL γI

νR

dS dL (d + δ)I dR

S ′ = B(N) + νR − Φ− dS (26a)

L′ = Φ− (ε+ d)L (26b)

I ′ = εL− (γ + d + δ)I (26c)

R ′ = γI − (ν + d)R (26d)

Φ force of infection. Depends on S , I , possibly N. In general

Φ = β(N)φ(S , I )

Mass action, Φ = βSI , proportional incidence, Φ = βSI/N
p. 131 – Diseases in metapopulations



|P|-SLIRS model

S ′p = Bp (Np) + νpRp − Φp − dpSp+
∑

q∈PmSpqSq (27a)

L′p = Φp − (εp + dp) Lp+
∑

q∈PmLpqLq (27b)

I ′p = εpLp − (γp + dp)Ip+
∑

q∈PmIpqIq (27c)

R ′p = γpIp − (νp + dp)Rp+
∑

q∈PmRpqRq (27d)

with incidence

Φp = βp
SpIp

N
qp
p
, qp ∈ {0, 1} (27e)

p. 132 – Diseases in metapopulations



|S| |P|-SLIRS (multiple species)

p ∈ P and s ∈ S (a set of species)

S ′sp = Bsp(Nsp) + νspRsp − Φsp − dspSsp+
∑

q∈PmSspqSsq (28a)

L′sp = Φsp − (εsp + dsp)Lsp+
∑

q∈PmLspqLsq (28b)

I ′sp = εspLsp − (γsp + dsp)Isp+
∑

q∈PmIspqIsq (28c)

Rsp = γspIsp − (νsp + dsp)Rsp+
∑

q∈PmRspqRsq (28d)

with incidence

Φsp =
∑
k∈S

βskp
SspIkp

N
qp
p

, qp ∈ {0, 1} (28e)

I JA, Davis, Hartley, Jordan, Miller & PvdD. A multi-species epidemic model with spatial dynamics.
Mathematical Medicine and Biology 22(2):129-142 (2005)

I JA, Jordan & PvdD. Quarantine in a multi-species epidemic model with spatial dynamics. Mathematical
Biosciences 206(1):46-60 (2007)
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|P|2-SLIRS (residents-travellers)

S ′pq =Bpq
(
N r
p

)
+ νpqRpq − Φpq − dpqSpq+

∑
k∈PmSpqkSpk

(29a)

L′pq =Φpq − (εpq + dpq)Lpq+
∑

k∈PmLpqkLpk (29b)

I ′pq =εpqLpq − (γpq + dpq)Ipq+
∑

k∈PmIpqk Ipk (29c)

R ′pq =γpqIpq − (νpq + dpq)Rpq+
∑

k∈PmRpqkRpk (29d)

with incidence

Φpq =
∑
k∈P

βpqk
SpqIkq

N
qq
p

, qq = {0, 1} (29e)

I Sattenspiel & Dietz. A structured epidemic model incorporating geographic mobility among regions (1995)

I JA & PvdD. A multi-city epidemic model. Mathematical Population Studies 10(3):175-193 (2003)

I JA & PvdD. The basic reproduction number in a multi-city compartmental epidemic model. In Positive
Systems (2003)

p. 134 – Diseases in metapopulations

https://doi.org/10.1016/0025-5564(94)00068-B
https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPvdD-MPS10_correct.pdf
https://julien-arino.github.io/assets/pdf/papers/2003_ArinoPvdD-LNCIS294.pdf


Steps for an analysis

Basic steps

1. Well-posedness of the system

2. Existence of disease free equilibria (DFE)

3. Computation of a reproduction number R0, study local
asymptotic stability of DFE

4. If DFE unique, prove global asymptotic stability when R0 < 1

Additional steps

5. Existence of mixed equilibria, with some locations at DFE and
others with disease

6. Computation of some bounds on R0

7. EEP and its LAS & GAS properties

. . .
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Analysis – Toy system

For simplicity, consider |P|-SLIRS with Bp(Np) = Bp

S ′p = Bp − Φp − dpSp + νpRp +
∑

q∈PmSpqSq (30a)

L′p = Φp − (εp + dp) Lp +
∑

q∈PmLpqLq (30b)

I ′p = εpLp − (γp + dp)Ip +
∑

q∈PmIpqIq (30c)

R ′p = γpIp − (νp + dp)Rp +
∑

q∈PmRpqRq (30d)

with incidence

Φp = βp
SpIp

N
qp
p
, qp ∈ {0, 1} (30e)

System of 4|P| equations
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Don’t panic: size is not that bad..

System of 4|P| equations !!!

However, a lot of structure:

I |P| copies of individual units, each comprising 4 equations

I Dynamics of individual units well understood

I Coupling is linear

=⇒ Good case of large-scale system

(matrix analysis is your friend)
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Existence and uniqueness

I Existence and uniqueness of solutions classic, assured by good
choice of birth and force of infection functions

I In the cases treated later, the birth function is either constant
or a linear combination of state variables

I May exist problems at the origin, if the force of infection is
not defined there

I Assumption form now on: existence and uniqueness
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Other basic stuff

Skipped until I homogeneise notation

Not complicated but sometimes tedious

Easy if it has been proved for the constituting units
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Disease free equilibrium

The model is at equilibrium if the time derivatives are zero

Definition 26 (Metapopulation DFE)

In the case of system (30), location p ∈ P is at a disease-free
equilibrium (DFE) if Lp = Ip = 0, and the |P|-location model is at
a metapopulation DFE if Lp = Ip = 0 for all p ∈ P

Here, we want to find the DFE for the |P|-location model. Later,
the existence of mixed equilibria, with some locations at the DFE
and others at an endemic equilibrium, is considered

(For (28), replace Lp with Lsp and Ip with Isp, for (29), replace Lp
by Lpp and Ip by Ipp. To simplify notation, we could write L• and
I•)
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Assume (30) at metapopulation DFE. Then Φp = 0 and

0 = Bp − dpSp + νpRp +
∑

q∈PmSpqSq

0 = − (νp + dp)Rp +
∑

q∈PmRpqRq

Want to solve for Sp,Rp. Here, it is best (crucial in fact) to
remember some linear algebra. Write system in vector form:

0 = b− dS + νR +MSS

0 = − (ν + d) R +MRR

where S,R,b ∈ R|P|, d, ν,MS ,MR |P| × |P|-matrices (d, ν
diagonal)
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R at DFE

Recall second equation:

0 = − (ν + d) R +MRR⇔ (MR − ν − d)R = 0

So unique solution R = 0 if MR − ν − d invertible Is it?

We have been here before!

From spectrum shift, s(MR − ν − d) = −minp∈P(νp + dp) < 0

So, given L = I = 0, R = 0 is the unique equilibrium and

lim
t→∞

R(t) = 0

=⇒ DFE has L = I = R = 0
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S at the DFE

DFE has L = I = R = 0 and b− dS +MSS = 0, i.e.,

S = (d−MS)−1b

Recall: −MS singular M-matrix. From previous reasoning,
d−MS has instability modulus shifted right by minp∈P dp. So:

I d−MS invertible

I d−MS nonsingular M-matrix

Second point =⇒ (d−MS)−1 > 0 =⇒ (d−MS)−1b > 0
(would have � 0 if MS irreducible)

So DFE makes sense with

(S,L, I,R) =
(

(d−MS)−1b, 0, 0, 0
)
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I Linear stability of the disease free equilibrium can be
investigated by using the next generation matrix

I In general, R0 depends on the demographic, disease and
mobility parameters
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Computing the basic reproduction number R0

Use next generation method with Ξ = {L1, . . . , L|P|, I1, . . . , I|P|},
Ξ′ = F − V

F =
(
Φ1, . . . ,Φ|P|, 0, . . . , 0

)T

V =



(ε1 + d1) L1 −
∑
q∈P

mL1qLq

...(
ε|P| + d|P|

)
L|P| −

∑
q∈P

mL|P|qLq

−ε1L1 + (γ1 + d1)I1 −
∑
q∈P

mI1qIq

...
−ε|P|L|P| + (γ|P| + d|P|)I|P| −

∑
q∈P

mI |P|qIq
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Differentiate w.r.t. Ξ:

DF =



∂Φ1

∂L1
· · · ∂Φ1

∂L|P|

∂Φ1

∂I1
· · · ∂Φ1

∂I|P|
...

...
...

...
∂Φ|P|
∂L1

· · ·
∂Φ|P|
∂L|P|

∂Φ|P|
∂I1

· · ·
∂Φ|P|
∂I|P|

0 · · · 0 0 · · · 0
...

...
...

...
0 · · · 0 0 · · · 0



p. 146 – Diseases in metapopulations



Note that
∂Φp

∂Lk
=
∂Φp

∂Ik
= 0

whenever k 6= p, so

DF =

(
diag

(
∂Φ1
∂L1

, . . . ,
∂Φ|P|
∂L|P|

)
diag

(
∂Φ1
∂I1
, . . . ,

∂Φ|P|
∂I|P|

)
0 0

)
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Evaluate DF at DFE

If Φp = βpSpIp, then

I
∂Φp

∂Lp
= 0

I
∂Φp

∂Ip
= βpSp

If Φp = βp
SpIp
Np

, then

I
∂Φp

∂Lp
= βp

SpIp
N2
p

= 0 at

DFE

I
∂Φp

∂Ip
= βp

Sp
Np

at DFE

In both cases, ∂/∂L block is zero so

F = DF(DFE ) =

(
0 diag

(
∂Φ1
∂I1
, . . . ,

∂Φ|P|
∂I|P|

)
0 0

)
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Compute DV and evaluate at DFE

V =

(
diagp(εp + dp)−ML 0

−diagp(εp) diagp(γp + dp)−MI

)
where diagp(zp) := diag(z1, . . . , z|P|)

Inverse of V easy (2× 2 block lower triangular):

V−1 =

((
diagp(εp + dp)−ML

)−1
0

Ṽ−1
21

(
diagp(γp + dp)−MI

)−1

)

where

Ṽ−1
21 =

(
diagp(εp + dp)−ML

)−1

diagp(εp)
(

diagp(γp + dp)−MI
)−1
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R0 as ρ(FV−1)

Next generation matrix

FV−1 =

(
0 F12

0 0

)(
Ṽ−1

11 0

Ṽ−1
21 Ṽ−1

22

)
=

(
F12Ṽ

−1
21 F12Ṽ

−1
22

0 0

)
where Ṽ−1

ij is block ij in V−1. So

R0 = ρ
(
F12Ṽ

−1
21

)
i.e.,

R0 = ρ

(
diag

(
∂Φ1

∂I1
, . . . ,

∂Φ|P|
∂I|P|

)(
diagp(εp + dp)−ML

)−1

diagp(εp)
(

diagp(γp + dp)−MI
)−1

)
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Local asymptotic stability of the DFE

Theorem 27

Define R0 for the |P|-SLIRS as

R0 = ρ

(
diag

(
∂Φ1

∂I1
, . . . ,

∂Φ|P|
∂I|P|

)(
diagp(εp + dp)−ML

)−1

diagp(εp)
(

diagp(γp + dp)−MI
)−1

)

Then the DFE

(S,L, I,R) =
(

(d−MS)−1b, 0, 0, 0
)

is locally asymptotically stable if R0 < 1 and unstable if R0 > 1

From PvdD & Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models

of disease transmission, Bulletin of Mathematical Biology 180(1-2): 29-48 (2002)
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Some remarks about R0

The expression for R0 in Theorem 27 is exact

However, unless you consider a very small set of locations, you will
not get a closed form expression

Indeed, by Theorem 15(3) and more importantly (often M is
irreducible), Theorem 15(4), the two inverses in R0 are likely
crowded (� 0 in the irreducible case)

However, numerically, this works easy unless conditioning is bad
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Do not in R0 put all your .. interpretation?
An urban centre and satellite cities

Winnipeg as urban centre and 3 smaller satellite cities: Portage la
Prairie, Selkirk and Steinbach

I population density low to very low outside of Winnipeg

I MB road network well studied by MB Infrastructure Traffic
Engineering Branch

JA & S Portet. Epidemiological implications of mobility between a
large urban centre and smaller satellite cities. Journal of
Mathematical Biology 71(5):1243-1265 (2015)
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Known and estimated quantities

City Pop. (2014) Pop. (now) Dist. Avg. trips/day

Winnipeg (W) 663,617 749,607 - -
Portage la Prairie (1) 12,996 13,270 88 4,115

Selkirk (2) 9,834 10,504 34 7,983
Steinbach (3) 13,524 17,806 66 7,505
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Estimating movement rates

Assume myx movement rate from city x to city y . *Ceteris
paribus*, N ′x = −myxNx , so Nx(t) = Nx(0)e−myx t . Therefore,
after one day, Nx(1) = Nx(0)e−myx , i.e.,

myx = − ln

(
Nx(1)

Nx(0)

)
Now, Nx(1) = Nx(0)−Tyx , where Tyx number of individuals going
from x to y / day. So

myx = − ln

(
1− Tyx

Nx(0)

)
Computed for all pairs (W , i) and (i ,W ) of cities

p. 157 – Diseases in metapopulations



Sensitivity of R0 to variations of Rx
0 ∈ [0.5, 3]

with disease: Rx
0 = 1.5; without disease: Rx

0 = 0.5. Each box and
corresponding whiskers are 10,000 simulations
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Lower connectivity can drive R0

PLP and Steinbach have comparable populations but with
parameters used, only PLP can cause the general R0 to take
values larger than 1 when RW

0 < 1

This is due to the movement rate: if M = 0, then

R0 = max{RW
0 ,R1

0,R2
0,R3

0},

since FV−1 is then block diagonal

Movement rates to and from PLP are lower → situation closer to
uncoupled case and R1

0 has more impact on the general R0
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R0 does not tell the whole story!

Plots as functions of R1
0 in PLP and the reduction of movement

between Winnipeg and PLP. Left: general R0. Right: Attack rate
in Winnipeg
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The toy |P|-SLIRS

LAS results for R0 < 1 can sometimes be strengthened to GAS.
One class of models where this works often is when the population
is either constant or asymptotically constant and incidence is
standard

Theorem 28

Let R0 be defined as in Theorem 27 and use proportional incidence
Φp = βpSpIp/Np. If R0 < 1, then the DFE of system (30) is
globally asymptotically stable
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Proof

Since Si ≤ Ni , Φi ≤ βiNi Ii/Ni , and equation (30b) gives the
inequality

L′p ≤ βpIp − (εp + dp)Lp +
∑
q∈P

mLpqLq (31)

For comparison, define a linear system given by (31) with equality
and equation (30c), namely

L′p = βpIp − (εp + dp)Lp +
∑
q∈P

mLpqLq

I ′p = εpLp − (γp + dp + δp)Ip +
∑
q∈P

mIpqIq
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I This system linear has coefficient matrix F − V , and so by the
argument in the proof of Theorem 27, satisfies lim

t→∞
Lp = 0

and lim
t→∞

Ip = 0 for R0 = ρ(FV−1) < 1

I Using a comparison theorem and noting (31), it follows that
these limits also hold for the nonlinear system (30b) and (30c)

I That lim
t→∞

Ri = 0 and lim
t→∞

Si = N?
i follow from (30d) and

(30a)

Thus for R0 < 1, the disease free equilibrium is globally
asymptotically stable and the disease dies out
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|S| |P|-SLIRS with multiple species

In the case in which movement is equal for all compartments and
there is no disease death, a comparison theorem argument can be
used as in Theorem 28 to show that if R0 < 1, then the DFE of
the |S| |P|-SLIRS (28) is globally asymptotically stable.

Theorem 29

For system (28) with |S| species and |P| locations, with movement
equal for all compartments, define R0 appropriately and use
proportional incidence. If R0 < 1, then the DFE is globally
asymptotically stable
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Proof of Theorem 29

To establish the global stability of the DFE, consider the
nonautonomous system consisting of (28b)-(28d), with (28b)
written as

L′sp =
∑
j∈S

βsjp(Nsp − Lsp − Isp − Rsp)
Ijp
Njp

− (dsp + εsp)Lsp +
∑
q∈P

mspqLsq

(32)

in which Ssp has been replaced by Nsp − Lsp − Isp − Rsp, and Nsp is
a solution of (??) (dynamics of Nsp)
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Write this system as the nonautonomous system

x ′ = f (t, x) (33)

where x is the 3|C||P| dimensional vector consisting of the Lsp, Isp
and Rsp

The DFE of (28) corresponds to the equilibrium x = 0 in (33)

System (??) can be solved for Nsp(t) independently of the
epidemic variables, and Theorem ?? implies that the time
dependent functions Nsp(t)→ N∗sp as t →∞
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Substituting this large time limit value N?
sp for Nsp in (32) gives

L′sp =
s∑

j=1

βsjp(N∗sp − Lsp − Isp − Rsp)
Ijp
N∗jp

− (dsp + εsp)Lsp +
∑
q∈P

mspqLsq

(34)

Therefore, system (33) is asymptotically autonomous, with limit
equation

x ′ = g(x) (35)
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To show that 0 is a globally asymptotically stable equilibrium for
the limit system (35), consider the linear system

x ′ = Lx (36)

where x is the 3|S||P| dimensional vector consisting of the Lsp, Isp
and Rsp. In L, we replace Ssp/Njp with N?

sp/N
?
jp. Equations (28c)

and (28d) are not affected by this transformation, whereas (28b)
takes the form

L′sp =
∑
j∈S

βsjp
N?
sp

N?
jp

Ijp − (dsp + εsp)Lsp +
∑
q∈P

mspqLsq (37)

Comparing (34) and (37), we note that

∀x ∈ R3|S| |P|
+ , g(x) ≤ Lx
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In system (36), equations for Lsp and Isp do not involve Rsp

Let x̃ be the part of the vector x corresponding to the variables Lsp
and Isp, and L̃ be the corresponding submatrix of L

The method of proof used to prove LAS can also be applied to
study the stability of the x̃ = 0 equilibrium of the subsystem
x̃ ′ = L̃x̃ , with L̃ = F − V

Therefore, if R0 < 1, then the equilibrium x̃ = 0 of the subsystem
x̃ ′ = L̃x̃ is stable. When x̃ = 0, (28d) takes the form

R ′s = (Ms − Ds)Rs

with Rs = (Rs1, . . . ,Rs|P|)
T and Ds is the diagonal matrix with

pth diagonal entry equal to dsp
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We know from Lemma 14 and Proposition 15:

I −Ms is a singular M-matrix

I −Ms + Ds is a nonsingular M-matrix for each Ds

Thus the equilibrium Rs = 0 of this linear system in Rs is stable

As a consequence, the equilibrium x = 0 of (36) is stable when
R0 < 1

Using a standard comparison theorem, it follows that 0 is a
globally asymptotically stable equilibrium of (35)
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For R0 < 1, the linear system (37) and (28c) has a unique
equilibrium (the DFE) since its coefficient matrix F − V is
nonsingular

The proof of global stability is completed using results on
asymptotically autonomous equations
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Metapopulation-specific problems – Two main types

I Inheritance problems – Which of the properties of the
constituting units are inherited by the metapopulation?

I Metapopulation-specific behaviours – Are there dynamic
behaviours observed in a metapopulation not observed in the
constituting units?
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Inherited dynamical properties (a.k.a. I am lazy)
Given

s ′kp = fkp(Sp, Ip) (38a)

i ′`p = g`p(Sp, Ip) (38b)

with known properties, what is known of

s ′kp = fkp(Sp, Ip) +
∑

q∈Pmkpqskq (39a)

i ′`p = g`p(Sp, Ip) +
∑

q∈Pm`pq i`q (39b)

I Existence and uniqueness X
I Invariance of R•+ under the flow X
I Boundedness X
I Location of individual R0i and general R0 ?

I GAS ?

-
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An inheritance problem – Backward bifurcations

I Suppose a model that, isolated in a single patch, undergoes
so-called backward bifurcations

I This means the model admits subthreshold endemic equilibria

I What happens when you couple many such consistuting units?

YES, coupling together backward bifurcating units can lead to a
system-level backward bifurcation

JA, Ducrot & Zongo. A metapopulation model for malaria with
transmission-blocking partial immunity in hosts. Journal of
Mathematical Biology 64(3):423-448 (2012)
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Metapopulation-induced behaviours ?

“Converse” problem to inheritance problem. Given

s ′kp = fkp(Sp, Ip) (9a)

i ′`p = g`p(Sp, Ip) (9b)

with known properties, does

s ′kp = fkp(Sp, Ip) +
∑

q∈Pmkpqskq (10a)

i ′`p = g`p(Sp, Ip) +
∑

q∈Pm`pq i`q (10b)

exhibit some behaviours not observed in the uncoupled system?
E.g.: units have {R0 < 1 =⇒ DFE GAS, R0 > 1 =⇒ 1 GAS
EEP} behaviour, metapopulation has periodic solutions
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Mixed equilibria

Can there be situations where some locations are at the DFE and
others at an EEP?

This is the problem of mixed equilibria

This is a metapopulation-specific problem, not one of inheritance
of dynamical properties!
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Types of equilibria

Definition 30 (Location level EP)

Location p ∈ P at equilibrium is empty if X ?
p = 0, at the

disease-free equilibrium if X ?
p = (s?k1p

, . . . , s?kup, 0, . . . , 0), where
k1, . . . , ku are some indices with 1 ≤ u ≤ |U| and s?k1p

, . . . , s?kup are
positive, and at an endemic equilibrium if Xp � 0

Definition 31 (Metapopulation level EP)

A population-free equilibrium has all locations empty. A
metapopulation disease-free equilibrium has all locations at the
disease-free equilibrium for the same compartments. A
metapopulation endemic equilibrium has all locations at an
endemic equilibrium
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Mixed equilibria

Definition 32

A mixed equilibrium is an equilibrium such that

I all locations are at a disease-free equilibrium but the system is
not at a metapopulation disease-free equilibrium

I or, there are at least two locations that have different types of
location-level equilibrium (empty, disease-free or endemic)

E.g.,
((S1, I1,R1), (S2, I2,R2)) = ((+, 0, 0), (+,+,+))

is mixed and so is

((S1, I1,R1), (S2, I2,R2)) = ((+, 0, 0), (+, 0,+))
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Theorem 33

Suppose that movement is similar for all compartments (MSAC)
and that the system is at equilibrium

I If patch p ∈ P is empty, then all patches in A(p) are empty

I If patch p ∈ P is at a disease free equilibrium, then the
subsystem consisting of all patches in {p,A(p)} is at a
metapopulation disease free equilibrium

I If patch p ∈ P is at an endemic equilibrium, then all patches
in D(p) are also at an endemic equilibrium

I If Gc is strongly connected for some compartment c ∈ C, then
there does not exist mixed equilibria

Note that MSAC =⇒ Ac = A and Dc = D for all c ∈ C
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SEIRS with residency location

For convenience, write

∂ΦD
ik

∂Ijk
:=

∂Φik

∂Ijk

∣∣∣∣
DFE

.

Theorem 34

Let v−1
m and v−1

M be the minimum and maximum column sums of

the (2,1) block
⊕|P|

p=1(ApC
−1
p Bp) in matrix V−1 defined by (??).

Then there holds that

|P|
(

min
i ,j ,k=1,...,|P|

∂ΦD
ik

∂Ijk

)
v−1
m ≤ R0 ≤ |P|

(
max

i ,j ,k=1,...,|P|

∂ΦD
ik

∂Ijk

)
v−1
M .

(40)
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Proof

The i , j block of G
(
⊕(ApC

−1
p Bp)−1

)
is Gij(AjC

−1
j Bj)

−1 for all i , j .

As Gij is diagonal, left multiplication with (AjC
−1
j Bj)

−1 amounts

to multiplying row q = 1, . . . , |P| of (AjC
−1
j Bj)

−1 by the qth

diagonal entry of Gij , that is, ∂ΦD
iq/∂Ijq. Let v−1

kl (j) denote the

(k , l) entry of (AjC
−1
j Bj)

−1, for k , l = 1, . . . , |P|. Then a given

block Gij(AjC
−1
j Bj)

−1 takes the form
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Thus, for the whole matrix,

1lTG
(
⊕(ApC

−1
p Bp)−1

)
=

 |P|∑
i=1

|P|∑
k=1

∂ΦD
ik

∂I1k
v−1
k1 (1), . . . ,

|P|∑
i=1

|P|∑
k=1

∂ΦD
ik

∂I|P|k
v−1
k|P|(|P|)

 .

(41)
Define

∂ΦD
imkm

∂Ijmkm
= min

i ,j ,k=1,...,|P|

∂ΦD
ik

∂Ijk

and
∂ΦD

iMkM

∂IjMkM

= max
i ,j ,k=1,...,|P|

∂ΦD
ik

∂Ijk
.

p. 182 – Diseases in metapopulations



Then, for any column c in the j th block of columns, there holds

|P|∑
i=1

|P|∑
k=1

∂ΦD
imkm

∂Ijmkm
v−1
kc (j) ≤

|P|∑
i=1

|P|∑
k=1

∂ΦD
ik

∂Ijk
v−1
kc (j) ≤

|P|∑
i=1

|P|∑
k=1

∂ΦD
iMkM

∂IjMkM

v−1
kc (j)

⇔
∂ΦD

imkm

∂Ijmkm

|P|∑
i=1

|P|∑
k=1

v−1
kc (j) ≤

|P|∑
i=1

|P|∑
k=1

∂ΦD
ik

∂Ijk
v−1
kc (j) ≤

∂ΦD
iMkM

∂IjMkM

|P|∑
i=1

|P|∑
k=1

v−1
kc (j)

⇔ |P|
∂ΦD

imkm

∂Ijmkm

|P|∑
k=1

v−1
kc (j) ≤

|P|∑
i=1

|P|∑
k=1

∂ΦD
ik

∂Ijk
v−1
kc (j) ≤ |P|

∂ΦD
iMkM

∂IjMkM

|P|∑
k=1

v−1
kc (j).

(42)
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Defining v−1
m and v−1

M as in the theorem, it follows that for all
c , j = 1, . . . , |P|,

|P|
∂ΦD

imkm

∂Ijmkm
v−1
m ≤

|P|∑
i=1

|P|∑
k=1

∂ΦD
ik

∂Ijk
v−1
kc (j) ≤ |P|

∂ΦD
iMkM

∂IjMkM

v−1
M ,

and thus

|P|
∂ΦD

imkm

∂Ijmkm
v−1
m ≤ 1lTG

(
⊕(ApC

−1
p Bp)−1

)
≤ |P|

∂ΦD
iMkM

∂IjMkM

v−1
M .

Using a standard result on the localization of the dominant
eigenvalue of a nonnegative matrix, which states that the
dominant eigenvalue of a nonnegative matrix is bounded below and
above by the minimum and maximum of its column sums, the
result then follows.
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Interesting (IMHO) problems

More is needed on inheritance problem, in particular GAS part (Li,
Shuai, Kamgang, Sallet, and older stuff: Michel & Miller, Šiljak)

Incorporate travel time (delay) and events (infection, recovery,
death ..) during travel

What is the minimum complexity of the movement functions m
below

s ′kp = fkp(Sp, Ip) +
∑

q∈Pmkpq(S , I )skq

i ′`p = g`p(Sp, Ip) +
∑

q∈Pm`pq(S , I )i`q

required to observe a metapopulation-induced behaviour?
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I JA. Spatio-temporal spread of infectious pathogens of
humans. Infectious Disease Modelling 2(2):218-228 (2017)

I JA. Mathematical epidemiology in a data-rich world.
Infectious Disease Modelling 5:161-188 (2020)

I github repo modelling-with-data
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Not very difficult

As for the mathematical analysis: if you do things carefully and
think about things a bit, numerics are not hard. Well: not harder
than numerics in low-D

Exploit vector structure
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Set up parameters

pop = c(34.017, 1348.932, 1224.614, 173.593, 93.261) * 1e+06

countries = c("Canada", "China", "India", "Pakistan", "

Philippines")

T = matrix(data =

c(0, 1268, 900, 489, 200,

1274, 0, 678, 859, 150,

985, 703, 0, 148, 58,

515, 893, 144, 0, 9,

209, 174, 90, 2, 0),

nrow = 5, ncol = 5, byrow = TRUE)
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Work out movement matrix

p = list()

# Use the approximation explained in Arino & Portet (JMB 2015)

p$M = mat.or.vec(nr = dim(T)[1], nc = dim(T)[2])

for (from in 1:5) {

for (to in 1:5) {

p$M[to, from] = -log(1 - T[from, to]/pop[from])

}

p$M[from, from] = 0

}

p$M = p$M - diag(colSums(p$M))
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p$P = dim(p$M)[1]

p$eta = rep(0.3, p$P)

p$epsilon = rep((1/1.5), p$P)

p$pi = rep(0.7, p$P)

p$gammaI = rep((1/5), p$P)

p$gammaA = rep((1/3), p$P)

# The desired values for R_0

R_0 = rep(1.5, p$P)
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Write down indices of the different state variable types

Save index of state variable types in state variables vector (we have
to use a vector and thus, for instance, the name “S” needs to be
defined)

p$idx_S = 1:p$P

p$idx_L = (p$P+1):(2*p$P)

p$idx_I = (2*p$P+1):(3*p$P)

p$idx_A = (3*p$P+1):(4*p$P)

p$idx_R = (4*p$P+1):(5*p$P)
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Set up IC and time

# Set initial conditions. For example, we start with 2

# infectious individuals in Canada.

L0 = mat.or.vec(p$P, 1)

I0 = mat.or.vec(p$P, 1)

A0 = mat.or.vec(p$P, 1)

R0 = mat.or.vec(p$P, 1)

I0[1] = 2

S0 = pop - (L0 + I0 + A0 + R0)

# Vector of initial conditions to be passed to ODE solver.

IC = c(S = S0, L = L0, I = I0, A = A0, R = R0)

# Time span of the simulation (5 years here)

tspan = seq(from = 0, to = 5 * 365.25, by = 0.1)
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Set up β to avoid blow up

Let us take R0 = 1.5 for patches in isolation. Solve R0 for β

β =
R0

S(0)

(
1− πp
γIp

+
πpηp
γAp

)−1

for (i in 1:p$P) {

p$beta[i] =

R_0[i] / S0[i] * 1/((1 - p$pi[i])/p$gammaI[i] + p$pi[i] *

p$eta[i]/p$gammaA[i])

}
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Define the vector field

SLIAR_metapop_rhs <- function(t, x, p) {

with(as.list(p), {

S = x[idx_S]

L = x[idx_L]

I = x[idx_I]

A = x[idx_A]

R = x[idx_R]

N = S + L + I + A + R

Phi = beta * S * (I + eta * A) / N

dS = - Phi + MS \%*\% S

dL = Phi - epsilon * L + p$ML \%*\% L

dI = (1 - pi) * epsilon * L - gammaI * I + MI \%*\% I

dA = pi * epsilon * L - gammaA * A + MA \%*\% A

dR = gammaI * I + gammaA * A + MR \%*\% R

dx = list(c(dS, dL, dI, dA, dR))

return(dx)

})

}
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And now call the solver

# Call the ODE solver

sol <- ode(y = IC,

times = tspan,

func = SLIAR_metapop_rhs,

parms = p,

method = "ode45")
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One little trick (case with demography)

Suppose demographic EP is N? = (d−M)−1b
Want to maintain N(t) = N? for all t to ignore convergence to
demographic EP. Think in terms of b:

N′ = 0 ⇐⇒ b− dN +MN = 0 ⇐⇒ b = (d−M)N

So take b = (d−M)N?

Then
N′ = (d−M)N? − dN +MN

and thus if N(0) = N?, then N′(0) = 0 and thus N′ = 0 for all
t ≥ 0, i.e., N(t) = N? for all t ≥ 0
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Word of warning about that trick, though..

b = (d−M)N?

d−M has nonnegative (typically positive) diagonal entries and
nonpositive off-diagonal entries
Easy to think of situations where the diagonal will be dominated
by the off-diagonal, so b could have negative entries
=⇒ use this for numerics, not for the mathematical analysis
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