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Outline

I Epidemic Diseases and Endemic Diseases?

I Mathematical Theories of Models of Epidemic Diseases

I Modeling Endemic Diseases: R0 and the Threshold Theorem

I Parameter Estimation by Fitting Models to Data (Model Training)

I Why Modeling Epidemics Is Difficult: An Classical Example of
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Materials in this lecture are taken from Michael Li, “An Introduction to
Mathematical Modeling of Infectious Diseases”, Springer, 2018.



Difference between an Epidemic and an Endemic Disease

Three temporal-spatial forms of infectious diseases:

I An outbreak: sudden increase of number of disease cases in a
small community.

I An epidemic: when an outbreak spreads to a larger area, infects
large number of people and terminates in a short time, such as
SARS-1 in 2003, seasonal influenza, a single wave of COVID-19, etc.
When an outbreak spreads to multiple continents, it becomes an
pandemic, Spanish flu, H1N1 pandemic in 2009, COVID-19 2020-23.

I Endemic diseases: when an outbreak spread and persists for a very
long time (years, decades), such as HIV, TB, Malaria, etc.

Mathematical theory of infectious diseases focuses more on
endemic diseases and little on epidemics

The result is modelers faced huge problems in modeling COVID-19
epidemics.



Do We Know an Epidemic When We See One?
Annual data for Foot, Hand and Mouth Disease (FHMD) in a country:

Source: WHO

I Is this an epidemic disease or an endemic disease?

I If it is endemic, what is the best way to model it?
I For mathematical purposes (mechanisms for long-time periodic

patterns)
I For public health purposes (annual epidemics, how long does it last,

when does it peak, and how high is the peak?)



Is It Endemic or Epidemic?

For public health purposes, this disease maybe better modelled as an
annual epidemic, to address more relevant public health concerns:

I the severity of the epidemic this year?

I when will the peak number of (case, hospitalizations, etc) occur?

I how high will the peak numbers be?

These questions are critical for health systems planning and resources
allocations.

Some of the standard tools for infectious disease models:

I Computing R0 using next generation matrix

I Equilibria and stability analysis

I Bifurcation analysis

I Simulations

These are designed for asymptotic (long-time) behaviours of endemic
diseases, rather than accurate predictions of the time course of a
finite-time epidemic.



Part I: The Mathematical Theory of Epidemics

We use a simple SIR model to explain the theory.

S(t) : # of susceptible people at time t

I (t) : # of infected people at time t

R(t) : # of recovered people at time t

S ′ = −βIS
I ′ = βIS − γI − dI

R ′ = γI

initial conditions: S(0) = S0 >
0, I (0) = I0 > 0, R(0) = R0 ≥ 0.

An important assumption: Natural birth and natural death are
negligible. (This captures the characteristics of an epidemic that it does
not last forever).



Basic Reproduction Number and Critical Community Size

The basic reproduction number is the average number of secondary
infections caused by a single infected during the infectious period within
a susceptible population.

R0 =
β

γ + d
S0 =

S0

ρ

where
ρ =

γ

β + d

is the critical community size to sustain an epidemic:

I if S0 > ρ (or R0 > 1), an outbreak can occur

I if S0 < ρ (or R0 < 1), an outbreak will not occur

This follows from

I ′(t) = (γ + d)
(S(t)

ρ
− 1
)
I (t).



Should we Use R0 or Rt?

Let

Rt =
β

γ + d
S(t) =

S(t)

ρ

Then from

I ′(t) = (γ + d)
(S(t)

ρ
− 1
)
I (t).

we know Rt satisfies:

I if S(t) > ρ (or Rt > 1), I (t) increases

I if S(t) < ρ (or Rt < 1), I (t) decreases

I when S(t) = ρ (or Rt = 1), I (t) peaks

Differences between R0 and Rt?

I The value of R0 impacts the dynamics at the beginning of an
epidemic.

I The value of Rt reflects later phases of an epidemic.



More Properties of Epidemic Models

Property 1. limt→∞(S(t), I (t),R(t)) = (S(∞), I (∞),R(∞)) exists.

From the S equation

S ′(t) = −βI (t)S(t) ≤ 0.

Therefore, S(t) is decreasing and bounded below by 0, and S(∞) ≥ 0
exists (Monotone Convergence Theorem).

Similarly,
R ′(t) = γI (t) ≥ 0

and R(t) is increasing and bounded above by N0. Therefore, R(∞) ≥ 0
exists.

From
I (t) = N0 − S(t)− R(t)

we know that I (∞) = N0 − S(∞)− R(∞) ≥ 0 exists.



More Properties of Epidemic Models

Property 2. S0 > 0 and I0 > 0 imply 0 < S(∞) < S0 and I (∞) = 0.

Biologically, this says that

I An epidemic will terminate (I (∞) = 0).

I At the end of an epidemic, there are individuals who escape the
infection (S(∞) > 0), namely, an epidemic will not infect everyone
in the population. The limit S∞ = S(∞) is called the final size of
the epidemic.

Assume that S0 > 0, I0 > 0,R0 ≥ 0. Then S(t) > 0, I (t) > 0,R(t) > 0.

Dividing the equations for S and R, we obtain

dS

dR
= −β

γ
S .

Solving this equation for S as a function R, we obtain

S(R) = S0e
− β

γ R ≥ S0e
− β

γ N0 > 0. (1)

Therefore, S(t) ≥ S0e
− β

γ N0 for t > 0 and thus S(∞) ≥ S0e
− β

γ N0 > 0.



More Properties of Models of Epidemics

Next, we show that limt→∞ I (t) = I (∞) = 0.

Since S(∞) and I (∞) exist, we know from the S equation

lim
t→∞

S ′(t) = lim
t→∞

(−βS(t)I (t)) = −βI (∞)S(∞) ≤ 0 exists.

We claim that limt→∞ S ′(t) = 0.

Otherwise, if limt→∞ S ′(t) = α < 0, then S ′(t) < α/2 < 0 for t ≥ T , for
sufficiently large time T , and thus

S(t) < S(T ) +
α

2
(t − T ) < 0 for t > min{T ,T − 2S(T )

α
}.

This contradicts S(t) > 0 for all t > 0. Therefore limt→∞ S ′(t) = 0.

Then S(∞)I (∞) = 0. Since S(∞) > 0, we know I (∞) = 0.



First Integral and Global Phase Portrait of SIR Model

Phase Portrait: Sketches of representative trajectories of solutions in
the phase space.

First Integral: A scalar-valued function V (x) such that V (x(t)) is
constant along a solution x(t) of the ODE x ′ = f (x).

An Example: for a conservative mechanical system, the total energy is a
constant along any trajectory. So the total energy is a first integral for
the system.

What do we use first integrals for? Dimension reduction. For a first
integral V (x) of an n-dimensional ODE x ′ = f (x), the surface V (x) = c
is an invariant surface of dimension n− 1, namely, trajectories starting on
this surface remain on this surface. We only need to study trajectories on
a n − 1 dimensional invariant surface.



A First Integral for the SIR Model

Dividing the S , I equations we obtain

dI

dS
= −1 +

γ + d

β

1

S
= −1 +

ρ

S
, (2)

where ρ = (γ + d)/β. Integrating (2) we obtain

I = −S + ρ log S + c , for all t > 0,

or
φ(S , I ) = I + S − ρ log S = c , for all t > 0, (3)

where c is an arbitrary integration constant.

The function φ(S , I ) = I + S − ρ log S is a first integral of the SIR
model. We can also verify this by

d

dt
φ(S(t), I (t)) = I ′(t) + S ′(t)− ρS

′(t)

S(t)
= −(γ + d)I (t) + ρβI (t) = 0

for all t.



Global Phase Portrait of the SIR Model
Using the first integral φ(S , I ) = I + S − ρ log S , the equation

I + S − ρ log S = c (4)

defines an invariant curve in the phase plane (SI -plane) for each c .

Plot the curves defined by equation (4) for all real numbers c , we obtain
a family of trajectories, which gives us the global phase portrait.

ρ S

I

Imaxmax

N0

N0



Epidemic Curves and Their Characteristics

From the phase portrait, we observe the following:

I S0 = ρ is the critical community size (R0 = 1 is a threshold value)

I Larger populations (S0) have a larger epidemic (for similar I0)

I The larger the population, the smaller the final size S∞.

I For the same population (S0), larger I0 produces a larger epidemic

I All epidemics peak at a time t when S(t) = ρ.

The decline of S(t) determines the rise, peaking, and fall of an
epidemic.

We will see later that this does not agree well with real-world epidemics.



The Final Size Formula

Number of people infected during the epidemic: S0 − S∞

Proportion of infected population: x = 1− S∞
S0

.

From the first integral φ(S , I ) = S − ρlogS + I , we obtain

S(t)− ρ log S(t) + I (t) = S0 − ρ log S0 + I0.

Assuming I0 ≈ 0, and letting t →∞, we obtain

S∞ − ρ log S∞ = S0 − ρ log S0.

and thus

S0 − S∞ = ρ log
S0

S∞
,

or in term of x = S∞/S0, using R0 = S0/ρ:

R0(1− x) + log x = 0.



Threshold Theorem for Endemic Diseases
An endemic disease lasts a very long time (years), and the natural birth
and death cannot be ignored.

For illustration, we use an SIR model with birth and death to model an
endemic disease

S ′ = Λ− βIS − d1S

I ′ = βIS − γI − d2I

R ′ = γI − d3R

initial conditions: S(0) = S0 > 0, I (0) = I0 > 0, R(0) = R0 = 0.

R0 =
β

γ + d2

Λ

d1
= β · 1

γ + d2
· Λ

d1
.

Two possible disease outcomes:
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Threshold Theorem for Endemic Diseases
Threshold Theorem
I If R0 ≤ 1, then the disease-free equilibrium P0 = (S̄ , 0, 0) is globally

asymptotically stable, and the disease always dies out irrespective of
the initial number I0.

I If R0 > 1, then P0 becomes unstable and a unique endemic
(positive) equilibrium P∗ = (S∗, I ∗,R∗) comes to existence and is
always globally asymptotically stable irrespective of the initial
number I0.

Here S̄ = Λ
d1
, I ∗ = 1− 1

R0
.

The Threshold Theorem can be illustrated by the bifurcation diagram:
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Figure: Bifurcation diagram for a model with demorgraph



Proof I: Using the Poincaré-Bendixson Theorem

Proof 1 Write S and I sub-system

S ′ = Λ− βIS − d1S

I ′ = βIS − γI − d2I
(5)

as
S ′ = P(S , I )

I ′ = Q(S , I ).
(6)

We want to verify the Bendixson-Dulac condition

∂

∂S
(αP) +

∂

∂I
(αQ) < 0 in R2

+.

Let α(S , I ) = 1
I be a Dulac multiplier. Then

∂

∂S
(αP) +

∂

∂I
(αQ) =

∂

∂S

(b
I
− βS − bS

I

)
+

∂

∂I
(βS − b − γ)

= −β − b

I
< 0, in R2

+.



Proof II: Using the Method of Lyapunov Functions

For proof of GAS of the disease-free equilibrium P0, we will see that our
first integral φ(S , I ) for models of epidemics becomes an Lyapunov
function for models of endemic diseases:

V (S , I ) = S − ρ log S + I , ρ =
γ + d2

β
.

d

dt
V (S(t), I (t)) = S ′(t)− ρS

′(t)

S(t)
+ I ′(t)

= Λ− βS(t)I (t)− d1S(t)− ρ

S(t)
(Λ− βS(t)I (t)− d1S(t))

+ βS(t)I (t)− (γ + d2)I

= Λ− 2d1ρ−
Λρ

S
+ I (βρ− (γ + d2))

= 2d1ρ− d1ρ−
d1ρ

S
= d1ρ(2− S

ρ
− ρ

S
) ≤ 0.

Therefore, d
dtV (S(t), I (t)) ≤ 0, and we proved global stability of P0.



Some Examples of More Complex Epidemic Models
I. SEIR Models for diseases with latency:

bN // S
λIS //

d1S

��

E
εE //

d2E

��

I
γI //

d3I

��

R

d4R

��

II. SEIAR Models for diseases with latency and asymptomatic state:

bN // S
λ1IS+λ1AS // E

pεE //

(1−p)εE
%%KK

KKK
KKK

KKK
KK I

γ1I // R

A

γ2A

99sssssssssssss



Some Examples of More Complex Epidemic Models
III. Stated Progression Models for diseases with long infectious period:

Λ // S
λS //

d0S

��

I1

δ1I1 **

d1I1

��

I2

δ2I2 ++

γ2I2

jj

d2I2

��

· · ·
γ3I3

jj

δn−1In−1
**
In

δnIn //

γnIn

kk

dnIn

��

R

dRR

��

IV. Multi-group Models for diseases in heterogeneous population:
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Some Examples of More Complex Epidemic Models

V. Age-Group Models Incorporating age-structure in diseases
transmission: Divide the population into n discrete age groups: for each
1 ≤ k ≤ n:



Some Examples of More Complex Epidemic Models

VI. Multi-City Models incorporating spatial movement in disease
transmission. An example of such a model is:



Parameter Estimation
I Model projections critically depend on the values of parameters

I Parameters for epidemic models include both the rate constants and
initial conditions (which are typically unknown).

I Values of some parameters can be estimated directly from data:
I Natural death rate can be estimated as 1/L, where L is the life

expectancy
I Recovery rate can be estimated as 1/D, where D is the mean

infectious period

I Values of some key parameters such as transmission coefficient (β)
and initial conditions are difficult to estimate directly from data.

I The values of these parameters need to be estimated by fitting
model output to known data

I Several model fitting approaches exist, e.g. least squares method,
maximum likelihood method, Bayesian inference-based Monte Carlo
Markov chain (MCMC) method, and others

I Model fitting methods are similar to methods of regression for
Statistical models, and model training for Machine Learning models

I To demonstrate principles of model fitting, we will demonstrate the
Least Squares method.



Parameter Estimation for Epidemic Models

Suppose that our epidemic model is described by the initial value problem
of a system of differential equations:

x ′ = f (x , θ), x ∈ Rd , t ∈ [0, tmax],

x(0) = x0.
(7)

I θ ∈ Rm is an m-dimensional parameter

I [0, tmax] is the time interval in which we investigate the epidemic.

I x0 is the initial conditions (some components are often unknown)

The disease data is often given at discrete observation time points
t1, t2, · · · , tp ∈ [0, tmax] in the form

(t1, g(x (1))), (t2, g(x (2))), · · · , (tp, g(x (p))). (8)

Not all states in the model are directly measurable. The function
g(x) : Rd → Rn represents measurable quantities of the state variable x ,
also called the output function.



Matching Model Outputs with the Corresponding Data

To fit with data, it is natural that we only consider values of the solution
x(t, θ) at the observational time points:

x(t, θ) ≈ (x(t1, θ), x(t2, θ), · · · , x(tp, θ))T .

and match the observable model outputs:

g(x(t, θ)) ≈ g((x(t1, θ)), g(x(t2, θ)), · · · , g(x(tp, θ))T .

with the observed data points:

y = (g(x (1)), g(x (2)), · · · , g(x (p)))T ,

We can form the squared sum of errors (SSE) between the observable
parts of the solution and data:

SSE(θ) = ||g(x(t, θ))− y ||2 =

p∑
i=1

||g(x(ti , θ))− g(x (i))||2. (9)

where || · || is any vector norm of Rn.



Initial Conditions as Parameters
I In our discussion, we consider that the initial conditions are known

and fixed.

I In reality, some components of the initial conditions are unknown
(e.g. I (0))

I In practice, unknown initial conditions are also considered as
parameters and will be estimated from fitting model to data.

Compare Apples to Apples, Oranges to Oranges: When forming the
SSE, it is crucial to measure differences in quantities of the same type.
Mismatching model output with data is a common mistake people makes.

The Nonlinear Least Squares Fitting: We look for a value θ̂ of model
parameter θ such that SSE(θ) is the minimum.

SSE(θ̂) = min{SSE(θ) : θ ∈ G ⊂ Rp}.

Such a problem is a nonlinear least-squares problem, since the
dependence of a solution x(t, θ) on the parameter θ is through a highly
nonlinear system of differential equations.



Matlab Functions for Nonlinear Least Squares

Several Matlab functions can be used for parameter estimation.

I lsqcurvefit requires the following inputs: the model equation, an
initial guess for the parameters to be fitted, and the time points and
data points. It then solves the nonlinear least-squares problem
directly.

I nlinfit is another nonlinear regression routine that uses an iterative
least-squares estimation with an initial value for the parameters.

I fminsearch is used to minimizes SSE(θ). The fminsearch takes
SSE(θ) and an initial guess θ0 of the parameter value, and uses a
direct search routine to find a minimum value of SSE. Each step
involves numerically solving the ODE model with a new set of
parameter values. To ensure the minimum value returned by
fminsearch is not just a local minimum, the process can be repeated
with several choices of initial guess.



An Epidemic Model Example

We use the Kermack-McKendrick SIR model for demonstration:

S ′ = −λIS
I ′ = λIS − γI
R ′ = γI .

(10)

Our objective is to estimate the parameters λ and γ by fitting the model
to disease data.

Our data is on the number of infected I (t) and total population N(t).



Step I: Codes for Solving ODE Models
1. Define a function f that
takes three inputs.

1 function f=SIRmodel(t,

y,par)

2 % Label the

parameters and state

variables

3 lambda = par (1);

4 gamma = par(2);

5 S=y(1);

6 I=y(2);

7 R=y(3);

8 N=S+I+R;

9 % Input the

differential

equations

10 Sdot=-lambda*I*S;

11 Idot=lambda*I*S-

gamma*I;

12 Rdot=gamma*I;

13 f=[Sdot Idot Rdot]’;

14 end

2. Use the ODE solver
ODE45.

1 function sol=SIRSol(

par ,IC ,t)

2 % disp(num2str(par))

3 DeHandle=@(t,y)

SIRModel(t,y,par);

4 [~, Y]= ode45(

DeHandle ,t,IC);

5 sol=Y’;

6 end



Step II: Format Data

I For demonstration purpose, we will artificially generate data at 20
time points

I Data is generated from the model with prescribed values for λ, γ.
I Random noise is added to the generated data.
I We will be able to compare the best-fit values λ̂, γ̂ to the prescribed

values.

This the data we generated
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Step II: Generating Data

1. First take 20 randomly
chosen time points:

1 numpts =20;

2 tdata =[0 sort (20* rand

(1,numpts))];

2. Then we generate normally
distributed noise:

1 width =0.1;

2 ndataSIR =20*[ 0

normrnd(0,width ,[1,

numpts ]);

3 0 normrnd(0,

width ,[1, numpts ]);

4 0 normrnd(0,

width ,[1, numpts ])];

3. Add the noise term to the
model outputs with λ = 0.01
and γ = 0.1 and initial con-
ditions S(0) = 50, I (0) = 1,
and R(0) = 0 to produce a
set of artificial data:

1 numpts =20;

2 tdata =[0 sort (20* rand

(1,numpts))];

4. Generate data for I (t) and
N(t):

1 SIRData =[0 1 0 ; 1 1

1]* SIRData;



Step III: Define SSE and Call fminsearch

1. Define SSE:

1 SIRparSol= @(par ,t) [0 1 0 ; 1 1 1]* SIRSol ([par (1) par(2)

], IC, t);

2 SumSquaresSIR = @(par) sum(sum(( SIRparSol(par ,tdata)-

SIRData).^2));

2. Call fminsearch with an initial guess for the parameter values
λ = 8, γ = 0.02:

1 [SIRtheta ,fval ,exitflag] = fminsearch(SumSquaresSIR ,[8

0.02]);

2 SIRsol=SIRparSol(SIRtheta ,tsol);

3. Plot the solutions in comparison to data

1 figure;

2 plot(tdata ,SIRData ,’.’);

3 hold on;

4 plot(tsol ,SIRsol ,’--’);



Fitting Result

The best-fit values are λ = 0.0099658 and γ = 0.10063, which are very
close to the pre-assigned values λ = 0.01 and γ = 0.1.

Visualization of the fitting results:
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(b) Solutions with Best-fit parameter
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Matlab Codes for the fitting is available.



Challenges in Parameter Estimation of Epidemic Models

I In the the standard text of epidemic modeling and research
literature, it is has been a standard practice to assume that we can
directly observe the infected I (t).

I In Public Health practices, disease data are reported cases.

I An infectious disease case is an individual who is infected, has
taken a diagnostic test, and has a positive test result, and the result
has be recorded, and entered into the public health data system.

I Any of the above step break down, the infected individual is not part
of the case data.

I A case has a very strict case definition. When cases definition
changes, the recorded data also changes.

I Disease cases is a (often small) fraction of the infected population.



A Classic Example of Mis-Fitting

Modeling a flu epidemic in a boy’s boarding school in the UK in 1978.



A Classic Example of Mis-Fitting



The Original Source - Paper in the BMJ, 1978



What Did the Original Source Say About the Epidemic?



How to Correctly Interpret the Data?

From the source article we know the following

I The curve show the daily number of boys who were sick and were
confined to bed in the infirmary.

I During any particular day, there are infected boys in the infirmary,
but also infected boys who are going about in the school with not
apparent symptoms, but may be infectious.

I the curve is a standard epidemic curve: curve of daily new
identified cases.

I In our lectures, we have been calling I (t) the epidemic curves, but in
reality, it is a curve of new cases.

I We should not fit I (t) to the epidemic curve.

I Which term in the SIR model should we fit to the epidemic curve?

I Some people fit the βIS term to the epidemic curve, since they both
represent “incidence”.



Our SIR Model Does Not Predict Cases!

Our SIR model:
S ′ = −βIS
I ′ = βIS − γI
R ′ = γI .

(11)

Terms in the model:

I βIS : Incidence of infection. Different from incidence of cases (daily
new case reports) in epidemiology

I I (t): Prevalence of infection (# of people living with the infection).
Different from prevalence of cases (cumulative number of cases) in
epidemiology

Our SIR model predict infections, not identified cases!



What is Actually Wrong in the Example? Model Validation

Question: If we ignore the mis-matching in the example (we shouldn’t),
and assume that the fitting allowed an accurate description of I (t), would
that be enough?
The answer: No.

Important: Fitting between model output and data is only model
training. Another important part of modeling is model validation.

Methods of Model Validation

I Method of Cross-Validation: split the data into two parts: training
data and validation data. Use training data for model training, and
validate the model using validation data.

I Using data that is independent of training data for validation

For the example, we know the final size of the epidemic: 512 (67%) of
the students are infected. From the plot, we see that total number of
infected students predicted by the model is 730 (96%)

While the model “accurately” describe the I (t), but it seriously
over-predicted the final size.


