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Introduction

o Delay Differential Equations (DDEs) are a class of differential
equations that involve delays or memory effects in their formulations.
Something like

X'(t) = f(x(t),x(t —71), - ,,x(t — Tm))

with all 7; being positive.

@ The presence of the terms x(t — 7;) indicates that the state of the
system at time t depends on its state at some previous times t — 7;.
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7; is the delay and it can be constant, we call such equation DDE
with discrete delays.

If 7; depends on time, 7; = 7j(t), we are talking abut DDEs with
time-dependent delays.

If 7; depends on x(t), 7j = 7j(x(t)), we are talking abut DDEs with
state-dependent delays.

There are other types of DDEs (such DDEs with distributed delays
etc, DDEs of neutral type, etc...)
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@ DDEs have been widely used in modeling physical and biological
phenomena that exhibit time delays in their dynamics.

@ For instance, DDEs are commonly used to model the dynamics of
populations with time delays in their reproduction, the spread of
infectious diseases with incubation periods, and the synchronization of
coupled oscillators with delayed interactions.
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Early Developments

@ In 1908, during the international conference of mathematicians,
Picard emphasized the significance of accounting for hereditary effects
when constructing models of physical systems with the following

statement:
Les équations différentielles de la mécanique classique sont telles

qu'il en résulte que le mouvement est déterminé par la simple
connaissance des positions et des vitesses, c'est-a-dire par I'état
a un instant donné et a l'instant infiniment voison. Les états
antérieurs n'y intervenant pas, ['hérédité y est un vain mot.
L'application de ces équations ou le passé ne se distingue pas

de I'avenir,... sont donc inapplicables aux étres vivants .

Nous pouvons réver d’équations fonctionnelles plus compliquées
que les équations classiques parce qu’elles renfermeront en outre
des intégrales prises entre un temps passe trés éloigné et le temps
actuel, qui apporteront la part de I'hérédité.
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Early Developments

@ In 1931, Volterra wrote a fundamental book on the role of hereditary
effects on models for the interaction of species.

@ DDEs gained much traction after 1940 driven by problems in
engineering and control.

@ During the 1950's, there was considerable activity in the subject which
led to important publications by Myshkis (1951), Krasovskii (1959),

@ In the 1960's, Bellman and Cooke (1963), Halanay (1966). These
books give a clear picture of the subject up to the early 1960's.
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Modern Developments

@ In the 1970s and 1980s, DDEs were used to model the immune
response to infections and the spread of epidemics. They were also
used to describe the interaction between HIV and the immune system.

@ In the 1990s and 2000s, DDEs were applied to a wide range of
biological systems, including gene regulatory networks, cell signaling
pathways, and neuronal networks.

@ At the present time, much of the subject can be considered as well
developed as ordinary differential equations (ODE).
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Applications of DDEs

@ DDEs have been used to model various biological systems, such as
the regulation of hormone levels, the dynamics of populations, and
the spread of diseases

@ In economics, DDEs have been used to model the dynamics of
markets, the effects of taxation, and the behavior of consumers and
firms

@ In engineering, DDEs have been used to model the dynamics of
control systems, the stability of mechanical structures, and the
behavior of materials

@ DDEs have also been used in other fields, such as physics, chemistry,
and neuroscience
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Conclusion

@ Delay differential equations have a rich history and have found
numerous applications in various fields

@ The development of numerical methods for solving DDEs has made it
possible to simulate and analyze complex systems that exhibit time
delays

@ DDEs continue to be an active area of research, with new applications
and theoretical results being discovered all the time
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Delayed Malthusian Models

The familiar Malthusian Model describing the growth of a single
population is given by

dN
— = bN(t) — uN(t) = rN(t)

dt

where r > 0 is the growth rate.

This model predicts exponential growth or exponential decline.

We will present here two delayed version of this model:
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Delayed Malthusian Model 1:

To account for the influence of the past on the present population, we
consider the following DDE:

dN
= m(t—7) (2)

@ The term rN(t — 7) represents the population growth rate at time t,
which depends on the population size N(t — 7) at a previous time
t—T.

@ Here 7 is the delay and it accounts for the time it takes for changes in
resource availability to affect population growth.
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Question:

What would be a suitable Initial Value Problem (IVP) associated with this
equation?

To answer this question, we first note that knowing the value of N at

t = 0 is not enough to calculate the values of N(t) for t > 0.

@ This can be seen by integrating (2), we obtain the following integral
equation:
N(t) = N(to) + [, rN(s —7)ds
(3)
= N(to) +ft T rN(s)ds.

@ This integral representation suggests that if, in addition to N(0), the
values of N(0) for 6 € [—7,0] are also know, then one can find the
values N(t) for all t > 0 using the following method of steps:
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© Assume that N(0) = ¢(0) for 6 € [—,0].
@ For all t € [0, 7], we integrate (2) on the interval [0, t] leading to

N(t) = N(0)+ [T rN(s)ds
0)+ [* 7 ro(s)ds (4)
= Nl(t).

© We repeat this same step to find the values of N(t) on the interval
[1,27].

N(t) + [y TrN
— /\/1 + [T
= Ng(t).

© We repeat the steps above to find the values of N(t) on the intervals
[(k - 1)T7 kT]a
t—71
M(®) = Nea(k = 17) [ Nia(s)dsik =34,
(k—=2)7
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For an illustration of the above process, we consider the following problem

N'(t) = rN(t — 1),
{ N(B) = 1,6 € [-7,0]. (5)

The method of steps gives the foIIowing:

@ Fort €[0,7], Ni(t) = ¢ +ft7Trg0 s)ds=1+r["Tds=1+rt.
@ For t € [r,27], Na(t) +f " rNy(s)ds =
e

Ltrrdrfy " 1+rs)ds—1+rt+r 5

© Ni(t) can be calculated in the same way on the intervals
[(k—1)r k7], k=3, -
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The solutions obtained using the approach above are plotted in figure (1).
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Figure: Plot of exact solution of (5) for 7 = 1 using the method of steps. When
r = —1 the solution displays some damping oscillations that converge to 0. When

r= 5 the solution is periodic. We note that the magnitude of the oscillations

decrease with the values r. For small values of r, we observe no oscillations.
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It is worth Noting that, unlike its ODE version, the delayed Malthusian

model exhibits the following:

@ There is NO exponential Growth or Decline.

@ There is an oscillatory behavior.

© The model has a periodic solution.
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Delayed Malthusian Model 2:

Another of Malthus Model consists in categorizing the population into
adults and juveniles. At time t, let N(t) represent the density of adults.
Assuming that each individual goes through a juvenile period of exact
duration 7 units of time, the model assumes that adults produce offspring
at a rate of b per capita and die at a rate of d. Moreover, it is assumed
that newborns survive to adulthood at a rate of p. With these
assumptions, the dynamics of the adult population can be described using

the following differential equation:
N(t
cgt) = bpN(t — 7) — uN(t)

The first term of this equation contains a delay term which represents the
time needed for newborns to become adults provided that they survive the
juvenile period.
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© Ideally, it would be preferable to incorporate an equation that
characterizes the population of juveniles. However, in cases where the
main emphasis is on the adult population and there is insufficient
data to validate our assumption regarding the juvenile population, a
delay differential equation can be used to effectively model the
behavior of the adult population. This would necessitate the inclusion
of a single extra parameter T, which can be directly or indirectly
estimated using data on the adult population.

@ The TB modeling case, when to include or not a delay...
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The Delayed Logistic Model:

@ The familiar logistic equation describing the growth of a single
population is given by

o = (1- ) (6)

where r, K and 7 are positive constants.

@ To take into account the regulatory influence of the population from
a preceding time, t — 7, Hutchinson proposed the following delayed
logistic equation

% — N(t) (1 _ N(tK_T)> (7)
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The following points are worth noting:

o

Despite its simple look, the delayed logistic model is more complex.
For instance, computing the solution for t > 0 requires the knowledge
of N(t) forall t € [-7,0].

Nevertheless, the DDE shares certain characteristics with its ODE
version. Notably, the constant functions N(t) =0 and N(t) = K
continue to be equilibrium points.

We cannot generally obtain explicit expressions for the solutions of
this DDE.

Fortunately, we can employ the method of steps to convert this
equation into an ODE.

However, it is not always possible to construct explicit solutions for
the resulting ODE.
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Using the Method of Steps

@ Assume that N(0) = ¢(0) for 6 € [—7,0].
@ For all t € [0, 7], we have

© We denote by Nj(t) the solution of the above ODE on the interval

[0, 7].
© We repeat this same step on the interval |7, 27] by solving
dN Ny(t — 1)

leading to the solution Np(t).
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It is important to note that using the method of steps for this DDE is
quite demanding in terms of algebraic manipulations.

One can use matlab solver dde23 to solve the logistic DDE numerically
(see Figure 4).

NP gwW*MMMMMMMMN

t t

Figure: Plot of the solutions of the Delay Logistic Model (7). Solutions solutions
converge to the equilibrium point K for 7 < /2 (left) or to a periodic solution
T > /2 (right).
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It is worth Noting that, unlike its ODE version, the delayed logistic model

exhibits the following:
@ The model oscillates around K.

@ The model has a periodic solution.
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SIR Model:

An SIR epidemic model is given by

S'(t) =X —pBS(t)I(t) — puS
I'(t) = BSI —~yI(t) — ul (10)
R'(t) =~I(t) — uR

S denotes susceptible individuals, | denotes infectives, and R recovereds. In
this model, it is assumed that individuals who get infected at time t
become immediately infectious at rate 5 and move to the class I.
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Delayed SIR Model:

Assume that individuals who get infected at time t become infectious at
time t + 7.

Which one of the following models is biologically correct:

° S'(t)=A—pBS(t+1)I(t+7)—uS
{ I'(t) = BS(t+7)I(t + 1) — yI(t) — pul (11)
R(t) = vI(t) — uR

I'(t) = BS(t —7)I(t —7) — yI(t) — pul (12)

{ S(t)y=A—=pBS(t—7)I(t—7)— uS
R'(t) =~I(t) — uR
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Delayed SIR Model Contd:

° S'(t)y=X—=pS(t—7)I(t—7)—uS
{ I'(t) = BS()I(t) —7I(t) — pl (13)
R'(t) = 7I(t) — uR

I'(t)=pS(t—7)I(t —7)—~I(t) — ul (14)

{ S'(t) = A= BS(t)I(t) — uS
R'(t) = 7I(t) — uR
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@ The presence of the term —[S(t)I(t) in the first equation means
that individuals in class S move out of this class immediately, as they
are no longer susceptible. This is the ne that makes biological sense.
The others, NOOO

o If instead, we use the term —[3S(t + 7)I(t + T) does not make any
biological sense.

o Using the term —S(t — 7)I(t — 7) does not make any biological
sense, and the model not well posed (the solutions may become
negative).

o Regarding the second equation, the terms 5S(t — 7)I(t — 7) makes
sense.
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Delayed SIRS Model:

An SIR epidemic model with fixed period of temporary immunity was
proposed by Brauer and Castillo-Chavez, it is given by

S'(t) = ~BS(8)I(e) + i(t - 7)
I'(t) = BS(H)I(t) —y1(t) (15)
RI(t) = 71(t) — (¢ — 7)

S denotes susceptible individuals, | denotes infectives, and R recovereds. In
this model, we assume that an individual remains in the R class precisely 7
units of time.
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One needs to handle this system with caution to avoid getting a negative
value for R.

For example, since R does not interact with the other variables, one can
remove its equation from the system. This leads to

{ S'(t) = =BS()I(t) +~I(t —T) (16)
I'(t) = BS(£)I(t) —~I(t)

where

R(t):/ti vl(x)dx

Prof. R. Ouifki DDE & Applications 3MC, March 2021 30/80



SEI Model vs Delayed SI:

o Consider a population that we want to model by SEI or Delayed SI

models.
SEI model:
S’ = —pBSI Delayed SI model:
E' = —j3Sl — pE S'=-pSI
I' = pE I"=pBS(t—7)I(t —7)
@ The population is given by
N=S+E+1 N =S5+ 1+ E?If yes, what is E?
Prof. R. Ouifki
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Mass-action force of infection: S/

© The exposed class, is given by

t
E(t) :/ BS(x)1(x)dx
t—7
@ Note that differentiating E(t) gives:

E'(t) = BS(t)I(t) — BS(t — 7)I(t — 7)

© There is no need to include the expression or derivative of E(t) in the
model, since E(t) does not affect the other variables.
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Standard force of infection:

o_ _BSl

I/ 65{\/ t_T

t'—T)

where N =S + E + |.
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© The exposed class, is given by
t
BS(x)!(x)
E(t) = / Bol)IX)
( ) t—T7 N(X)

@ Note that differentiating E(t) gives:

E(1) = AS(e)(0) - LT =)

© Here, one must include the expression or derivative of E(t) in the
model, as it appears in the model (in the variable N ).
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Delayed SI with vital dynamics

The SIR epidemic model with vital dynamics is:

S'= - BSI -
{ /' = BS(t — 7)I(t—7) =l (17)

The exposed class for the delayed model with vital dynamics is:
t
E(t) = / e MBS (x)1(x) dx,
t—T1
Differentiating w.r.t. t leads to

E' = BS(8)I(t) - BS(t - 7)I(t uf et 85 (x) (x) o
_ B(8)1(e) — BS(t — )I(t - )f
(18)
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Basic Mathematical Properties of DDEs:

Non-uniqueness of solutions of DDEs

1 1
The functions sin <72T <t + 2)) and cos (;T <t + 2)) both satisfy the

following problem
xX'(t) = —7m/2x(t — 1)
LX) = s (9)
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General Form of DDEs

@ Question:
Is there a way to group all the previous DDEs under the same
class/notation that looks similar to the x’(t) = f(t, x(t)) for ODEs.

o "It took considerable time to take an idea from ODE and to find the
appropriate way to express this idea in FDE [DDE] - - -
A new approach was necessary to obtain results which were difficult
if not impossible to obtain in the classical way”. J.K Hale, 2006.
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Let 7 > 0 be a given constant, and denote by C = C([—7, 0], R") the ste of
countinuous functions defined from [—7,0] to R".

Definition (Shift function)

Letc €R, 0 >0andlet x:[oc — 7,0 +0] —R", § >0. For any
t € [0,0 + ], we denote by x; the function defined by

x¢(0) = x(t +0),0 € [-7,0]

One can prove that the function t — x; a continuous on [0, 0 + ¢]
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Definition (DDE IVP)
Let f: R x C — R" be a given function

@ A Delayed Differential Equation is defined by the relation

dx

E = f(t,Xt) (20)

e Given a function ¢ € C, the initial value problem (IVP) associated
with this delay equation is

dt (21)

{ o f(t,x¢), fort > o
X =, i.e. x(o+0) = ¢(0)
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@ This notation, referred to as the modern notation, was essentially
due to Krasovskii in 1956, where he used the notation f(x(t + 0)).

@ The notation f(x;) was introduced by Hale in 1963.
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Existence, Uniqueness and Continuous Dependence

Definition
A solution of the IVP (21) is defined by a function x(t) defined on
[0 — 7,0+ 9), for some 6 > 0, such that:

© x(t) has a continuous derivative on (o — 7,0 + J), a right hand
derivative at t = o and satisfies the DDE (20) for t € [0, 0 + §),

@ x, = ¢, that is x(o + 0) = ¢(0),0 € [~T,0].
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© Results concerning existence, uniqueness and continuation of
solutions, as well as the dependence on parameters, are essentially the
same as for ODE.

@ However, there are a few additional technicalites due to the infinite
dimensional character of the problem, due to f being a functional
defined on a Banach space of continuous functions,

C = C([—,0],R"), instead of R".

Prof. R. Ouifki DDE & Applications 3MC, March 2021 42 /80



If f is continuous, then there is (at least) one solution x(t, ) of the
IVP (21) which exists on a maximal interval [0 — T, a).

If, in addition, f is locally Lipschitzian w.r.t. ¢, then the solution is
unique.

If ap, < 00, then the solution becomes unbounded as t — co.
Iff isCk, t = x(t,¢)) is C<t1 on [0, ) and ¢ — x(t, ) is C¥ on C.
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Stability and Bifurcation

Assume that x* is an equilibrium point of (20), i.e. f(t,x*) =0 for all t.
x* is said to be:

@ Stable if, for any 0 € R,e > 0, there is a § = d(e,0) > 0 such that:
for any ¢ € C with || — x*|| < 0, we have ||x(t,¢) — x*|| < & for all
t>o.

@ Asymptotically stable if it is stable and there is b > 0 such that
llp — x*|| < b implies that ||x(t, ) — x*|| — 0 as t — oco.

© A local attractor if there is a neighborhood U of x* such that
lim;_, 00 dist(x(t, U), x*) = 0.
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Frechet derivatives

Definition

Let (X, ||.]lx) and (Y, ].|ly) be Banach spaces and let £(X, Y) denote
the space of continuous linear operators from X to Y.

Suppose x € X and let U be an open neighborhood of x.

A function F : U — Y is Frechet differentiable if there exists an operator
A€ L(X,Y) such that

[F(x + h) = F(x) — Ahlly

i = 0.
[y —+0 1Al x

The operator A is called the Frechet derivative of F at x and is denoted by
DF(x).
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Q Iff(¢)=¢(a), then
Df, () = (a) .
@ Moreover, if f (¢) =g (v (a1), -+ ,¢(am)), then

Df, () = Dig(p(a1), ¢ (am)) ¥ (a))-

=
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Q If f(¢) = ¢(a), then
Flp+9) = fp) = (v +v)(a) - ¢(a) = ¥ (a), implying that

et - -v@le _,
lplle—0 1l '

Hence Df (@) v = (a).
Q If f(¢) =g (v (a1), - ¢ (am)), then

f ()= (goh)(p)

where
h: C([-7,0],R") - R"x--- xR"
———

m times (22)
P — ((,0(31),"' 790(‘9"7))
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We have

m
o Dg(Xla"' aXm)(ula"' 7um): Z ng(Xl,"' ,Xm)Uj
j=1

e Dhy (¥) = (¥ (a1), -, ¥ (am))

Therefore, by using the chain rule, we have

Df, () = Dg(h(¢))Dh, (1)
= De((e(@), @ (am)) (4 (@), v (am)

= ZDJg (a1),- o (am)) ¥ (3))
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Linearization of DDEs

Let f : C — R and consider the following DDE
X' = f(xt)

Assume that f is C! and that there is x* such that f (x*) = 0.
The linear part of this DDE is given

/
x = Lx;

where L = Df (x*) is the Frechet derivative of the function f at the
"constant” function x*.
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Examples: DDE with multiple discrete delays

Consider the following equation

X' =gx(t),x(t—=m11), - ,x(t—7m))
where g i R" x --- x R" — R" is C! and has an equilibrium point
| ——
m+1 times
X = (x5, X{ e xm) €RTx - x R
To linearize this equation around x*, we written it as

X' = f(x)

where f (¢) =g (¢(0),0(—71), -, (—Tm))-
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Examples: Linear DDE with multiple discrete delays

We know that

Dfp () = Dig (#(0), ¢(=71), -+, p(=7m)) ¥(0)

23
+ .Zleﬂg(czﬁ(O),sO(—ﬁ)w' o) o). (B
J:
Then, the linear part of the DDE is
Lx; = Dfes (%) = Dig (x*) x (t) + Z Dj1g (X" )x(t—1).  (24)
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Examples: DDE with one discrete delay

We can apply the above to the following examples:

@ Consider the following equation

X' =g(x(t—1))
where g : R” — R" is C! and has an equilibrium point x* € R".

Then
Lx; = Dg (x*)x (t — 7).
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@ Consider the following equation

xX'=g(x(t),x(t—7))
where g : R” x R” — R" is C! and has an equilibrium point
x* € R" x R",
Then
Lx; = Dig (x") x (t) + Dog (x*) x (t — 7)
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Stability Properties

For linear DDEs, there is a solution of the form ce*t for some nonzero
n-vector c if and only if A satisfies the characteristic equation

det (A()\) - Le’\'l,,) ~0 (25)

A is called an eigenvalue of the linear equation.

© If all eigenvalues of (25) have negative real parts then 0 is
asymptotically stable.

@ If at least one eigenvalue has a positive real part, then O is unstable.
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Stability and Bifurcation: Malthusian DDE

To account for the influence of the past on the present population, we
consider the following DDE:

dN
o = MN(E-7) (26)
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Stability: DDE Malthusian Model N* =0

The characteristic equation at N* = 0 is det(A/ — re™*") = 0. that is
A —re M =0. (27)

When 7 = 0 equation (32) has only one root A = r. Hence we discuss two
cases:

QO r<o
Q@ r>0
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DDE Malthusian: r < 0

@ Case r <0:
In this case, N* = 0 is locally asymptotically stable for 7 = 0.
By continuity, as 7 increases, the stability of N* = 0 may change if
the real part of one of the eigenvalues crosses the imaginary axis
from left to right.
This occurs if, for some value of 7, say 79, equation (32) has a pair of
imaginary roots A = %iw, i.e.

iw—re”"™ =0
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Clearly w # 0 (otherwise 0 — re® = 0). Let us then assume, without loss of
generality that w > 0. Thus

rcos(ﬂ.,u) =0 (28)
w + rsin(tw) = 0.
Then w = —r and we have the following values for 7
2k
= = 28 k=01,
2r r
In particular, when 79 = —21 equation (32) has a pair of purely imaginary
r

roots +ir, which are simple and all other roots have negative real parts.
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DDE Malthusian: r < 0

Therefore, when 0 < 7 < —21, all roots of (32) have strictly negative real
r
parts. Denote A(7) = a(7) + ib(7) the root of equation (32) satisfying

a(tx) =0,b(1x) =w,k=0,1,--- (29)

To find out if the eigenvalue A(7) crosses the imaginary axis, we calculate

the %;\(T). For instance if %ﬁ‘(ﬂ > 0, then the eigenvalue \(7) crosses

the imaginary axis from left to right.
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DDE Malthusian: r < 0

Since A — re ™" =0, then 2 = —re™*" (A + 792) | implying that
dr A
dr 4+ e’

at 7 = 7, we obtain

d riw
fwTk
dr|._,, rTi + e
which by e'™“ = —X "implies that
w
d riw fwTk 1
- ir — .2 1 2 1
d7|r—r Me+ =y Tkt Ttz
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DDE Malthusian: r < 0

Thus
dRe )\

dr

dA 1
T=T dr T=T T + w2

This implies that the branchs of eigenvalues A(7) crosse, at 7 = 7, the
imaginary axis and that the crossings are from left to right.
This also proves the existence of a branch of periodic solutions that emerge
. . . 2t 2w
from x* = 0 at 7 = 79. The period of this solutionis T = — = —.
w r
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DDE Malthusian: r > 0

e Caser >0:
In this case, N* = 0 is unstable for 7 = 0.
We saw in the previous case that if the eigenvalues cross the
imaginary axis, then te crossing if from left to right. This means that
the number of eigenvalues with positive real parts does not decrease
implying that N* = 0 remains unstable for 7 > 0.
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Proposition

@ Ifr >0, then N* = 0 is unstable for all = > 0.
e Ifr <0, then

o If0<T< —%, then N* = 0 is asymptotically stable.

o IfT > —%, then N* = 0 is unstable.

T . . . ..
o Whent =1y := —5, a Hopf bifurcation occurs at 1y, that is, periodic
r

. . .. . . 7T
solutions bifurcate from 0. The periodic solutions exist for T > ——
and are stable.
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10t r=lr=a2 r=-l,7=7/4

r=-1,7=n/2 %107 r=-1,7=3a2

Nty
N(t)

0 5 10 15 20 0 20 40 60 80 100
t t

Figure: Plot of the solutions of the Delay Malthusian Model (26). Solutions blow
up when r > 0 and converge to the equilibrium point 0 when r < 0,7 < 7/2.
Periodic solutions exist when r < 0,7 = 7/2 with period of the periodic solution
is 27r/r = 2m. The solutions display a chaotic behaviour for 7 > 7/2.
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Stability and Bifurcation: Logistic DDE

Consider Hutchinson's model (7)

% = rN(t) <1 _ N T)> (30)

This equation can be writtens as
X'(t) = f(xt) (31)

where

@) =0 (1- “C7) =2 006 (-1)

with g (x,y) =rx (1 - %) .
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We have

Ju

xl<

XV.

{ Dlg(x,y) (U, V) = r
D2g(x,y) (U, V) = -

X~

Therefore, the Frechet differential of the function f at ¢ is given by

DEL(W) = Dig((¢(0),0(~7)) ¥ (0) + Dog (¢ (0) 0 (~7) ¥ (~7)
- r<1—“”(;7))w(0)—;so(ow(—f).

Replacing ¢ by N* and v by N; leads to

Dy (N;) = r (1 - ')i) N, (0) — %N*Nt (—7).
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Thus

© The linearized equation around N* = 0 is
N’ (t) = rN (t)

@ The linearized equation around N* = K is

N (t)=—rN(t—T)
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Stability: N* =0

The characteristic equation at N* = 0 is det(\ — Le*) = 0. That is
det(M — re*®) = X\ — r = 0. This implies that A = r. Hence

Proposition

e Ifr <0, then 0 is locally asymptotically stable.
@ Ifr >0, then 0 is unstable.
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Stability: N* = K

The characteristic equation at N* = K is det(\ + re ") = 0. Thus
A4 re” T =0. (32)
This equation is similar to the charecteristic eugation of the Malthusian

model (32) provided that r is replaced by —r.
Thus we have the following results;
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Proposition

e Ifr <0, then N* =0 is locally asymptotically stable and N* = K is
unstable for all T > 0.

o Ifr >0, then N* =0 becomes unstable and

o If0<T< % then N* = K is asymptotically stable.

o IfT > 21 then N* = K is unstable.
r

™ . . . ..
o Whent = 5 a Hopf bifurcation occurs at 7; that is, periodic
r
solutions bifurcate from K. -
The periodic solutions exist for T > — and are stable.
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K=500,r=-1,7=m/2 K=1000,r=1, 7= /4

0 5 10 15 20 0 20 40 60 80 100

x10° K=500,r=1,7=37/2

9980 9985 9990 9995 10000 0 50 100 150 200
t t

Figure: Plot of the solutions of the Delay Logistic Model (7). Solutions converge
to the equilibrium point 0 for negative r, and converge to K for positive r and

7 < /2 (UP). Periodic solutions exist for positive r and 7 > g (Down). Note

2
that when 7 = g, the period of the periodic solution is T o
r
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In the last two examples, we investigate the roots of the characteristic
equation of the delayed Malthusian and Logistic Models.

However, such investigation has been performed in more detail for a more
general class of equations, by H.l. Freedman & Y. Kuang, in 1991. This
will be presented in the next slides.
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First order Neutral Delay Equation

Consider the following Linear First order Neutral Delay Equation
X' (t)+ax' (t —7)+ bx (t) + cx(t —7) = 0.
The coresponding characteristic equation is

A+ axe™ +b+ce M =0.
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Theorem (H.l. Freedman & Y. Kuang, 1991)

Assume that |a| # 1, then the following statements hold:
Q If|a| > 1, then 0 is unstable for all positive delay .

Q If|a] <1, c® < b? or c = b # 0, then increasing T does not change

the stability of 0.
Q If|a| <1, c® > b? and
@ b+ c <O, then 0 is unstable for all positive delay T.

@ b+ c>0, then 0 is stable when T < 1y and unstable when ™ > 7,

where 19 = %, and

- 2_p?
W= 1—2a?
2
_ _ aw’+bc
0 = arccot ( w(c_ab))
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Stability of the Delayed S| with vital dynamics

The SIR epidemic model with vital dynamics is:

S'=X—p8SI—uS
I"=p8S(t—71)I(t—7)— pl
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To analyse the stability behaviour of this DDE, we write it as:
s S S(t—1)
s () ])

where
[ b—pBSI—dS
£ | —dl
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We have

(| 7)) =07 %]
(7)) =15 s
Hence, the linearized system at the DFE £ = (£,0) , is
R IR R (H Iy
S e R ey

which we write as
S'=—dS -5
I'=Bb1(t—7)—di
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The characteristic equation can be obtained by finding solutions of this

0
linear system that take the form et [ “70 ] . This leads to

AeM SO — _gertso %e)\tlo
Ae [0 — %e)\(t—r)lo — dert]0

Therefore b
N So
o 0 BbeM g lo
Hence
det ( A/ —d -7 0
t — =
e< [ 0 %"e”—d])
that is

(d+)) (d)\ +d? - bﬁe—”) ~0.
This leads to A = —d, or
d? + d\ — bBe ™ =0.
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This equation can be analyzed using the Theorem above (H.l. Freedman &
Y. Kuang, 1991).
The same can be done for the EEP.
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Summary

In these notes, we covered the following:

o
2]
o

A brief historical overview and applications of DDEs
Some Models that contain delay(s)

Some qualitative properties of solutions of DDEs such as damped and
periodic oscillations.

The general form of DDEs x’ = f(t,x;) and how useful it is in
drawing parallels between the theory of DDEs and that of ODEs.

A very brief overview of some standard properties of DDEs

Stability and Bifurcation of the DDE Malthusian and DDE Logistic
Models

Stability and Bifurcation of a General First order Linear Neutral DDE.
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Softwares for Numerical Solutions, Stability and
Bifurcation of DDEs

A list of softwares for numerically solving and studying DDEs can be found
in http://twr.cs.kuleuven.be/research /software/delay/software.shtml.
Special attention to be made to the following ones:

@ The matlab solver dde23 which can be used to solve DDEs with
discrete delays. For more details and examples on this solver, see
http://www.runet.edu/ thompson/webddes/

@ Also, check the MATLAB package DDE-BIFTOOL for bifurcation
analysis of delay differential equations. For documentation and
tutorials on the tool, see
https://twr.cs.kuleuven.be/research /software/delay/ddebiftool.shtml.

© The sofware XPP can also be used to numerically solve DDEs with
discrete delays. XPPAUT can be used to numericaly explore their
stability and bifurcation. The link to both XPP and XPPAUT is:
https://sites.pitt.edu/ phase/bard/bardware/xpp/xpp.html
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