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Unstructured models.

If we take the census of adults in a population in fixed time

interval, then it is natural to describe the population as the

sequence of numbers

P(0),P(1), . . . ,P(k)

where P(k) is the number of adults in the k-th breeding season.

This approach makes sense if, e.g., the population has well defined

breeding seasons.
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The simplest assumption to make is that there is a functional

dependence between subsequent generations

P(n + 1) = r(P(n))P(n), n = 0, 1, . . . , (1)

where r(P(n)) is the (density dependent) net growth rate. The

case of (1) is

P(n + 1) = rP(n), n = 0, 1, . . . , (2)

The exponential (or Malthusian) equation (2) describes well

population which are completely homogeneous, with characteristics

of the environment and individual members constant over time.
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More specifically, :

Each member of the population produces on average the same

number of offspring;

Each member has an equal chance of dying (or surviving)

before the next breeding season;

The ratio of females to males remains the same in each

breeding season.

We also assume

Age differences between members of the population can be

ignored;

The population is isolated - there is no immigration or

emigration.
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The net growth rate is given as

r = 1 + β − µ.

Here β is an average (constant) number of offspring each member

of the population gives birth to each season; it is called the

per-capita birth rate. The constant µ is the probability that an

individual will die before the next breeding season and is called the

per-capita death rate.
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Thus, (2) can be written as

P(k + 1) = P(k) + βP(k)− µP(k), (3)

which expresses the basic principle of population modelling in

discrete time:
The number of individuals in the k + 1th census equals

the population in the kth census + the total number of

births in the population between the censuses − the total

number of deaths in the population between the censuses.

Changes due to migrations can be incorporated, but the structure

of the equation may not persist — e.g., immigration not

necessarily is proportional to the total population.
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Clearly,

P(k) = rkP(0), k = 0, 1, 2 . . . (4)

and if r < 1, then the population decreases towards extinction, but

with r > 1 it grows indefinitely. Such behaviour over long periods

of time is not observed in any population so it is clear that the

model is over-simplified and requires corrections. However, it is

usually valid over short time intervals and can bring some

demographical insights.
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The death rate µ and the average lifespan of an individual

The average lifespan L is the expected duration of life, which is

L =
∞∑
k=1

kp(k),

where p(k) the probability that an individual, born at k = 0 dies

exactly at age k .

How to find it?
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First, we find the probability that an individual, born at k = 0, is

alive at age k . In order to be alive at time k , it had to be alive at

time k − 1 and could not die between k − 1 and k . Assuming that

the probability of dying is constant in time and using the

conditional probability formula we arrive at

π(k) = (1− µ)π(k − 1), p(0) = 1,

that is,

π(k) = (1− µ)k . (5)
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To find L, we observe that to die at age k an individual must be

alive at age k − 1 and die in the interval (k − 1, k] which occurs

with probability µp(k − 1) = µ(1− µ)k−1. It also can be explained

as follows: after the first year a proportion µ of the population dies

and 1− µ survives, then after the second year a proportion µ of

them die; that is µ(1− µ) fraction of the initial population lives

exactly 2 years and (1− µ)2 survives the second birthday, etc.
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Thus, the average life span is found to be

L = µ

∞∑
k=1

k(1− µ)k−1 = −µ d

dµ

1− µ

1− (1− µ)
=

1

µ
,

where we used

∞∑
k=1

kzk−1 =
d

dz

∞∑
k=1

zk =
d

dz

z

1− z

for z = 1− µ.
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Introducing structure.

The Malthusian model clearly is hugely oversimplified and its

improvements may go into many directions. One could stay with

global aggregated description and but introduce variable and and

nonlinear coefficients. Another option is to consider a relevant

internal structure of the population. This could be age and related

with it differentiation in birth and death rates. Other possibilities

include size or geographical structure which also may impact on

death and birth rates. Let us start with revisiting the classical

Fibonacci’s problem of rabbits.
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Fibonacci’s rabbits. In his famous book, Liber abaci, published in

1202, Leonardo de Pisa, called Fibonacci, formulated the following

problem:
A certain man put a pair of rabbits in a place surrounded

on all sides by a wall. How many rabbits can be produced

from that pair in a year if it is supposed that every month

each pair begets a new pair which from the second month

on becomes productive?
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To fix attention, we assume that we take monthly census just after

the births for this month take place and the rabbits were newly

born at the beginning of the experiment. Usually the problem is

modelled as the initial value problem for a second order difference

equation

v(k + 2) = v(k + 1) + v(k), v(0) = 1 , v(1) = 1. (6)
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Example 1

It is clear that (6) as a model describing a population of rabbits is

oversimplified: rabbits do not die, they are always fertile as soon as

they are mature, etc. However, there are biological phenomena for

which (6) provides an exact fit. One of them is family tree of

honeybees. Honeybees live in colonies and one of the unusual

features of them is that not every bee has two parents. First, in

any colony there is one special female called the queen. Further,

there are worker bees who are female but they produce no eggs.

Finally, there are drones, who are male and do no work, but

fertilize the queen’s eggs.
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Example 2

Drones are borne from the queen’s unfertilised eggs and thus they

have a mother but no father. The females are born when the

queen has mated with a male and so have two parents.

Figure: The family tree of a drone

We see that the number of ancestors kth generations earlier

exactly satisfies (6).
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Matrix description. Fibonacci model is an example of an

age-structured population model: in this particular case each

month the population is represented by two classes of rabbits,

adults v1(k) and juveniles v0(k). Thus the state of the population

is described by the vector

v(k) =

 v0(k)

v1(k)

 .

Since the number of juvenile (one-month old) pairs in month k + 1

is equal to the number of adults in the month k and the number of

adults is the number of adults from the previous month and the

number of juveniles from the previous month (who became adults),
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we obtain

v0(k + 1) = v1(k),

v1(k + 1) = v1(k) + v0(k),

or, in a more compact form,

v(k + 1) = Lv(k) :=

 0 1

1 1

 v(k). (7)

The solution can be found by iterations

v(k + 1) = Lv(k) = Lk+1v(0).
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Leslie matrices. How do we generalize this? Assume that

• we are tracking only females and not pairs,

• the census is taken immediately after the reproductive period

(the length of which is negligible),

• there is an oldest age class n,

• no individual can stay in any age class for more than one time

period (which is not the case for Fibonacci rabbits, where we

allowed adults to stay adults forever).
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We introduce

• the year-to-year survival probability si ,

• the age dependent maternity function mi .

Thus, say, in the kth breeding season, we have vi (k) individuals of

age i , si of them survive to the (k + 1)th breeding season, that is,

to age i + 1, and produce on average

fivi (k) := mi+1sivi (k)

offspring (fi is the effective birth rate of age i individuals).
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In this case, the evolution of the population can be described by

the difference system

v(k + 1) = Lv(k),

where L is the n × n matrix

L :=



f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn−2 0


. (8)

The matrix of the form (8) is referred to as a Leslie matrix.
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A generalization of the Leslie matrix can be obtained by assuming

that a fraction τi of i-th population stays in the same population.

This gives the matrix

L :=



f0 + τ0 f1 · · · fn−2 fn−1

s0 τ1 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn−2 τn−1


, (9)

Such matrices are called Usher matrices. We note that the matrix

of the Fibonacci process is an Usher matrix.

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



In most cases fi ̸= 0 only if α ≤ i ≤ β, where [α, β] is the fertile

period. For example, for a typical mammal population we have

three stages: immature (pre-breeding), breeding and post-breeding.

If we perform census every year, then naturally a fraction of each

class remains in the same class. Thus, the transition matrix in this

case is given by

L :=


τ0 f1 0

s0 τ1 0

0 s1 τ2

 . (10)

On the other hand, in many insect populations, reproduction

occurs only in the final stage of life and in such a case fi = 0

unless i = n.
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Projection matrices. Leslie matrices fit into a more general

mathematical structure describing evolution of populations divided

into states, or subpopulations, not necessarily related to age.

Matrices resulting from such a modelling, that is, describing

changes of a structured populations from one generation to another

due to migrations between structural states and (generalized) birth

processes are called projection, or transition, matrices.
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For example, we can consider

• clusters of cells divided into classes with respect to their size,

• cancer cells divided into classes based on the number of copies of

a particular gene responsible for its drug resistance,

• or a population divided into subpopulations depending on the

geographical patch they occupy in a particular moment of time.
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Let us suppose we have n states. Each individual in a given state j

contributes on average, say, aij individuals to state i (in a unit

time). Typically, this is due to a state j individual:

migrating to i-th subpopulation with probability pij ;

contributing to a birth of an individual in i-th subpopulation

with probability bij ;

dying with probability dj , that is, surviving with probability

1− dj .

Other choices and interpretations are, however, also possible.
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For instance, if we consider size structured population of clusters

of cells divided into subpopulations according to their size i , a

j-cluster can split into several smaller clusters, contributing thus to

the ’births’ of clusters in subpopulations indexed by i < j . Hence,

here aij are non-negative but otherwise arbitrary numbers,

satisfying only aij = 0 for i ≥ j .
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In general, denoting, as before, by vi (k) the number of individuals

at time k in state i , with v(k) = (v1(k), . . . , vn(k)), we have

v(k + 1) = Av(k), (11)

where

A :=


a11 a12 · · · a1 n−1 a1n

a21 a22 · · · a2 n−1 a2n
...

... · · ·
...

...

an1 an2 · · · an n−1 ann

 . (12)

Thus

vk = Ak v̊ ,

where v̊ is the initial distribution of the population between the

subpopulations.
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Example 3

Any chromosome ends with a telomer which protects it agains

damage during the DNA replication process. Recurring divisions of

cells can shorten the length of telomers and this process is

considered to be responsible for cell’s aging. If telomer is too

short, the cell cannot divide which explains why many cell types

can undergo only a finite number of divisions. Let us consider a

simplified model of telomer shortening. The length of a telomer is

a natural number from 0 to n, so cells with telomer of length i are

in subpopulation i . A cell from subpopulation i can die with

probability µi and divide (into 2 daughters).
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Figure: Shortening of telomers

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



Example 4

Any daughter can have a telomer of length i with probability ai and

of length i − 1 with probability 1− ai . Cells of 0 length telomer

cannot divide and thus will die some time later. To find coefficients

of the transition matrix, we see that the average production of

offspring with telomer of length i by a parent of the same class is

2a2i + 2ai (1− ai ) = 2ai ,

(2 daughters with telomer of length i produced with probability a2i

and 1 daughter with telomer of length i − 1 produced with

probability 2ai (1− ai )).
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Example 5

Similarly, average production of daughters with length i − 1

telomer is 2(1− ai ). However, to have offspring, the cell must have

survived from one census to another which happens with

probability 1− µi . Hence, defining ri = 2ai (1− µi ) and

di = 2(1− ai )(1− µi ), we have

A :=


0 d1 0 · · · 0

0 r1 d2 · · · 0
...

...
... · · ·

...

0 0 0 · · · rn

 . (13)
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Markov matrices. A particular version of (12) is obtained when we

assume that the total population has constant size so that no

individual dies and no new individual can appear, so that the only

changes occur due to migration between states. In other words,

bij = dj = 0 for any 1 ≤ i , j ≤ n and thus aij = pij is the fraction

of the j-th subpopulation which, on average, moves to the i-th

subpopulation or, using a probabilistic language, the probabilities

of such a migration.
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Then, in addition to the constraint pij ≥ 0, we must have pij ≤ 1

and, since the total number of individuals contributed by the state

j to all other states must equal the number of individuals in this

state, we must have

vj =
∑

1≤i≤n

pijvj .

This implies ∑
1≤i≤n

pij = 1,

which is the expression of the law of total probability, that is, of

the fact that each individual must be in one of the n states at any

time.

Matrices of this form are called Markov matrices.
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We can check that, indeed, this condition ensures that the size of

the population is constant. Indeed, the size of the population at

time k is N(k) = v1(k) + . . .+ vn(k) so that

N(k + 1) =
∑

1≤i≤n

vi (k + 1) =
∑

1≤i≤n

 ∑
1≤j≤n

pijvj(k)


=
∑

1≤j≤n

vj(k)

 ∑
1≤i≤n

pij

 =
∑

1≤j≤n

vj(k) = N(k).
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Long time behaviour of structured population models.

The main interest in population theory is to determine the long

time structure of the population.

Before we embark on mathematical analysis, let us consider two

numerical examples which indicate what we should expect from the

models. Let us consider a population divided into three classes,

evolution of which is modelled by the Leslie matrix

L =


2 1 1

0.5 0 0

0 0.4 0

 , (14)
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so that the population v = (v1, v2, v3) evolves according to

v(k + 1) = Lv(k), k = 0, 1, 2 . . . ,

with v(0) =: v̊ , or

v(k) = Lk v̊ .
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Figure: Evolution of v1(k) (squares), v2(k) (circles) and v3(k) (triangles)

for the initial distribution v̊ = (1, 0, 3) and k = 1, . . . , 10.

We observe that each component grows very fast with k.
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However, if we compare growth of v1(k) with v2(k) and of v2(k)

with v3(k) we see that the ratios stabilize quickly around 4.5 in the

first case and around 5.62 in the second case.
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Figure: Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the

initial distribution v̊ = (1, 0, 3) and k = 1, . . . , 10.
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This suggests that there is a scalar function f (k) and a vector e

(here e = (e1, e2, e3) = (25.29, 5.62, 1)) such that for large k

v(k) ≈ f (k)e(v̊). (15)
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Let us consider another initial condition, say, v̊ = (2, 1, 4) and do

the same comparison.
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Figure: Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the

initial distribution v̊ = (2, 1, 4) and k = 1, . . . , 10.
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It turns out that the ratios stabilize at the same level, which

further suggest that e does not depend on the initial condition so

that (78) can be refined to

v(k) ≈ f1(k)g(v̊)e, k → ∞, (16)

where g is a linear function. Anticipating the development of the

theory, it can be proved that f1(k) = λkm where λ is the largest

eigenvalue of L, e is the eigenvector corresponding to λm and

g(x) = ⟨g , x⟩, with g being the eigenvector of the transpose

matrix corresponding to λm.
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In our case, λm ≈ 2.26035 and the ratios vi (k)/λ
k
m stabilize as

seen below.
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Figure: Evolution of v1(k)/λ
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m (squares), v2(k)/λ

k
m (circles)and v3(k)/λ
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m

(triangles) for the initial distribution v̊ = (1, 0, 3) and k = 1, . . . , 10.
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The situation in which the structure of the population after long

time does not depend on the initial condition but only on the

intrinsic properties of the model (here the leading eigenvalue) is

called the asynchronous exponential growth (AEG) property.
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Unfortunately, not all Leslie matrices enjoy this property.

Consider now a Leslie matrix given by

L =


0 0 3

0.5 0 0

0 0.4 0


and a population evolving according to

v(k) = Lk v̊

with v̊ = (2, 3, 4).
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Figure: Evolution of v1(k) (top) and v2(k) (middle) and v3(k) (bottom)

for the initial distribution v̊ = (2, 3, 4) and k = 1, . . . , 20.
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The picture is completely different from that obtained before. We

observe some pattern, the ratios, however, do not tend to a fixed

limit but oscillate, as shown below.
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Figure: Evolution of v1(k)/v2(k) (top) and v2(k)/v3(k) (bottom) for the

initial distribution
◦
v = (2, 3, 4) and k = 1, . . . , 20.
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This also can be explained using the eigenvalues. Indeed, the

eigenvalues are given by λ1 = 0.843433, λ2 =

−0.421716 + 0.730434i , λ2 = −0.421716− 0.730434i and we can

check that |λ1| = |λ2| = |λ3| = 0.843433 and thus we do not have

the dominant eigenvalue.

The question we will try to answer in the next lecture is what

features of the population are responsible for such behaviour.
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Spectral properties of a matrix and Perron–Frobenius theory.

We are interested in solving

x(k + 1) = Ax(k), x(0) = x̊ (17)

where A is an n × n matrix A = {aij}1≤i ,j≤n, that is

A =


a11 . . . a1n
...

...

an1 . . . ann

 ,

and x(k) = (x1(k), . . . , xn(k)).

The solution to (17) is given by

x(k) = Ak x̊ , k = 1, 2, . . . . (18)

It is rather difficult to give an explicit form of Ak .
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Since Rn is n-dimensional, it is enough to find n linearly

independent vectors v i , i = 1, . . . , n, for which Akv i can be easily

evaluated. Assume for a moment that such vectors have been

found. Then, for arbitrary x̊ ∈ Rn we can find constants c1, . . . , cn

such that

x̊ = c1v
1 + . . .+ cnv

n.
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Precisely, let V be the matrix having vectors v i as its columns

V =


| . . . |

v1 . . . vn

| . . . |

 . (19)

Note, that V is invertible as the vectors v i are linearly

independent. Denoting c = (c1, . . . , cn), we obtain

c = V−1x̊ . (20)

Thus, for an arbitrary x̊ we have

Anx̊ = An(c1v
1 + . . .+ c2v

n) = c1A
nv1 + . . .+ ckA

nvn. (21)
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Now, if we denote by

Ak =


| . . . |

Akv1 . . . Akvn

| . . . |

 , (22)

then

Ak x̊ = Anc = AkV
−1x̊ . (23)

Hence, the problem is to find linearly independent vectors v i ,

i = 1, . . . , n, on which the powers of A can be easily evaluated.
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We shall use eigenvalues and eigenvectors for this purpose. Firstly,

note that if v1 is an eigenvector of A corresponding to an

eigenvalue λ1, that is, Av1 = λ1v
1, then, by induction,

Akv1 = λk1v
1.

Therefore, if we have n linearly independent eigenvectors

v1, . . . , vn corresponding to eigenvalues λ1, . . . , λn (not necessarily

distinct), then from (21) we obtain

Ak x̊ = c1λ
k
1v

1 + . . .+ cnλ
k
nv

n.

with c1, . . . , cn given by (20),
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or

Ak x̊ =


| . . . |

λk1v
1 . . . λknv

n

| . . . |

V−1x̊ . (24)

What to do, if we do not have sufficiently many eigenvectors?
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Eigenvalues, eigenvectors and associated eigenvectors.

Let A be an n × n matrix. We say that a number λ (real or

complex) is an eigenvalue of A is there exist a non-zero solution of

the equation

Av = λv . (25)

Such a solution is called an eigenvector of A. Eq. (25) is

equivalent to the homogeneous system (A − λI)v = 0, thus λ is

an eigenvalue of A if and only if the determinant of A satisfies

pA(λ) = det(A − λI) =

∣∣∣∣∣∣∣∣∣
a11 − λ . . . a1n

...
...

an1 . . . ann − λ

∣∣∣∣∣∣∣∣∣ = 0. (26)
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pA(λ) is called the characteristic polynomial of the matrix A that

factorizes into

pA(λ) = (λ1 − λ)n1 · . . . · (λk − λ)nk , (27)

with n1 + . . .+ nk = n. Thus, eigenvalues are the roots of the

characteristic polynomial of A. The set of eigenvalues of A is

called the spectrum of A and denoted σ(A).

• The exponent ni appearing in the factorization (27) is called the

algebraic multiplicity of λi .

• To each eigenvalue λi there corresponds an eigenvector v i .

• The eigenvectors corresponding to distinct eigenvalues are

linearly independent.
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The set of all eigenvectors belonging to λi is a linear subspace

(eigenspace), whose dimension is called the geometric multiplicity

of λi .

In general, the algebraic and geometric multiplicities are different

with geometric multiplicity being at most equal to the algebraic

one. Thus, in particular, if λi is a single root of the characteristic

polynomial, then the eigenspace corresponding to λi is

one-dimensional.
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If the geometric multiplicities of eigenvalues add up to n, that is, if

we have n linearly independent eigenvectors, then these

eigenvectors form a basis for Rn. In particular, this happens if all

eigenvalues are single roots of the characteristic polynomial.

If this is not the case, then we do not have sufficiently many

eigenvectors to span Rn and if we need a basis for Rn, then we

have to find additional linearly independent vectors on which Ak

can be easily evaluated. We employ the following procedure.
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Let λi has algebraic multiplicity ni and let

(A − λiI)v = 0

have only νi < ni linearly independent eigenvectors. Then we

consider the equation

(A − λiI)
2v = 0.

All eigenvectors solve this equation, but there is at least one more

independent solution so that we have at least νi + 1 independent

vectors (note that these new vectors are no longer eigenvectors).
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If the number of independent solutions is still less than ni , then we

consider

(A − λiI)
kv = 0,

for k > 2 until we get a sufficient number of linearly independent

solutions.

The process must stop at k = ni . Vectors v obtained in this way

for a given λi are called generalized or associated eigenvectors

corresponding to λi and they span an ni dimensional subspace

called the associated eigenspace belonging to λi , denoted hereafter

by Eλi
.
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Let us return to the system

x(k + 1) = Ax(k), x(0) = x̊ .

We take as v the collection of all eigenvectors and associated

eigenvectors of A. If v i is an eigenvector belonging to λi , then

Akv i = λki v
i .

Let v j be an associated eigenvector found as a solution to

(A − λiI)
νjv j = 0 with νj ≤ ni .
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Then, using the binomial expansion, for k > νj we find

Akv j = (λiI +A − λiI)
kv j =

k∑
r=0

λk−r
i

 k

r

 (A − λiI)
rv j

=
(
λki I + kλk−1

i (A − λiI) + . . .

+
k!

(νj − 1)!(k − νj + 1)!
λ
k−νj+1
i (A − λiI)

νj−1

)
v j

= λki pλi
(k , v i ), (28)

where pλi
(k , v i ) is a polynomial in k of degree smaller than ni

with vector coefficients depending on v i , λi and A.
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Since

x = c1v
1 + . . .+ cnv

n,

that is,

c = c(x) = V−1x , (29)

by (28), we have

Akx =
∑

λ∈σ(A)

λkpλ(k , c(x)), (30)

where pλ are polynomials in k of degree strictly smaller than the

algebraic multiplicity of λ, and with vector coefficients being linear

combinations of eigenvectors and associated eigenvectors

corresponding to λ and the coordinates of c(x).
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Returning to our main problem, that is, to the long time behaviour

of the iterates Ak then, from (30), we see that it is determined by

λkm possibly multiplied by a polynomial of degree smaller than the

algebraic multiplicity of λm, where λm is the eigenvalue of the

largest absolute value.
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The situation observed for the Leslie matrix (14) corresponds to

the situation when there is a real positive simple eigenvalue λm

satisfying λm > |λ| for any other eigenvalue λ. Such an eigenvalue

is called the principal or dominant eigenvalue. In such a case, for

any initial condition x we have

Akx ≈ cm(x)λ
k
mv

m

for large k , provided cm(x) ̸= 0. In such a case the vector vm is

called the stable age structure.

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



An important question is to determine cm. Clearly, cm(x) is given

by (29), but this involves knowing all eigenvectors and associated

eigenvectors of A and thus is not particularly handy. Here we shall

describe a simpler method.
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Let us recall that the transposed matrix AT satisfies

⟨ATx∗, y⟩ = ⟨x∗,Ay⟩

where ⟨x∗, y⟩ =
∑n

i=1 x
∗
i yi . Matrices A and AT have the same

eigenvalues and, though eigenvectors and associated eigenvectors

are different (unless A is symmetric), the structure of the

generalized eigenspaces corresponding to the same eigenvalue is

identical.

Theorem 6

Let Eλ and E ∗
λ∗ be generalized eigenspaces of, respectively, A and

AT , corresponding to different eigenvalues: λ ̸= λ∗. If v∗ ∈ E ∗
λ∗

and v ∈ Eλ, then

⟨v∗, v⟩ = 0. (31)
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Thus, given

x = c1v
1 + . . .+ cnv

n,

we obtain

cm =
⟨x , v̂m⟩
⟨vm, v̂m⟩

,

where ATvm = λmv
m.
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Summarizing, to determine a long time behaviour of a population

described by x(k + 1) = Ax ,

• Find the dominant eigenvalue λm of A (if it exists);

• Find the eigenvectors vm of A and v̂m belonging to λm;

• The long time behaviour of the population is then described by

Akx ≈ λkm
⟨v̂m, x⟩
⟨vm, v̂m⟩

vm (32)

for large k , provided ⟨v̂m, x⟩ ≠ 0.
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Example 7

Returning to Fibonacci rabbits, the eigenvalues of L are

λ1,2 = r± =
1±

√
5

2

and clearly, λ1 =
1+

√
5

2 is the dominant eigenvalue. An eigenvector

associated with this eigenvalue is v1 = (1, λ1) =
(
1,

√
5+1
2

)
and

this gives the stable age structure. Moreover, the matrix L is

symmetric and thus the eigenvectors of LT are the same as of L.

Thus

v(k) =

 v0(k)

v1(k)

 ≈ C1r
k
+

 1
√
5+1
2

 ,
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Example 8

where

C1 =
2
(
v1(0)

√
5+1
2 + v0(0)

)
5 +

√
5

as ⟨v1, v1⟩ = (5 +
√
5)/2.

Taking, for instance, the initial condition discussed for (14):

v1(0) = 0, v0(0) = 1, we find C1 = 2/(5 +
√
5) and if we like to

estimate the growth of the whole population, we have

y(k) = v1(k) + v0(k) ≈
2

5 +
√
5

(√
5 + 1

2
+ 1

)
rk+

=
1 +

√
5

2
√
5

rk+.
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Frobenius-Perron theorem.

The question what matrices with nonnegative entries give rise to

such a behaviour is much more delicate and requires invoking the

Frobenius-Perron theorem which will be discussed next.

To make further progress, we have to formalize a number of

statements made in the previous sections and, in particular, the

meaning of the approximate equality (32). For this, we have to set

the problem in an appropriate mathematical framework.
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Positive dynamical systems. First, we note that in the context of

population theory, if a given equation is to describe evolution of a

population; that is, if the solution is the population size or density,

then solutions emanating from non-negative data must stay

non-negative. Thus we have to extend the notion of positivity to

vectors. We say that a vector x = (x1, . . . , xn) is non-negative,

(resp. positive), if for all i = 1, . . . , n, xi ≥ 0, (resp. xi > 0). We

denote these as x ≥ 0, (resp. x > 0) and define

X+ = {x ∈ Rn; x ≥ 0}.

Similar convention is applied to matrices.
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It is easy to prove that

Proposition 1

The solution x(k) of

x(k + 1) = Ax(k), x(0) = x̊

satisfies x(k) ≥ 0 for any k = 1, . . . , for arbitrary x̊ ≥ 0 if and only

if A ≥ 0.

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



The sequence (Ak)k≥1 is a dynamical system in the state space

X = Rn (and in X+ if A ≥ 0). Essentially, (32) is a statement

about the limit of Ak x̊ as k → ∞, so we must introduce a metric

structure on X . To make the metric consistent with the linear

structure of Rn, it is typically defined by a norm, that is, a

functional ∥ · ∥ : X → R+ satisfying, for any x , y ∈ X , α ∈ R,

∥x∥ = 0 iff x = 0, ∥αx∥ = |α|∥x∥, ∥x+y∥ ≤ ∥x∥+∥y∥.

There is a variety of norms in Rn (all defining the same topology),

the most common being the Euclidean metric.
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However, bearing in mind the interpretation of our problems in

which x(k) = (x1(k), . . . , xn(k)) defines the distribution of a

population among the states, we see that the most natural norm is

∥x∥ =
n∑

i=1

|xi | (33)

which, for x ≥ 0, simplifies to

∥x∥ =
n∑

i=1

xi (34)

and which is the total population of the ensemble.
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Since we want A to act from X to X with the same way of

measuring distances, we should have

∥Ax∥ =
n∑

i=1

∣∣∣∣∣∣
n∑

j=1

aijxj

∣∣∣∣∣∣ ≤
n∑

j=1

|xj |
n∑

i=1

|aij | ≤ ∥x∥ max
1≤j≤n

n∑
i=1

|aij |

=: ∥A∥∥x∥

where

∥A∥ = max
1≤j≤n

n∑
i=1

|aij |

is called the norm of the matrix/operator A.

Further, the spectral radius of A is defined as

r(A) = sup
λ∈σ(A)

|λ|. (35)
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Classification of projection matrices. Let A ≥ 0. The long time

behaviour of (Ak)k≥1 is fully determined by whether A is a

primitive irreducible, imprimitive irreducible or a reducible matrix.

For a matrix A = (aij)1≤i ,j≤n, we say that there is:

• an arc from i to j if aij > 0,

• a path from i to j if there is a sequence of arcs starting from i

and ending in j in which the endpoint of each arc (apart from the

last) is the beginning of the subsequent arc; loop is a path from i

to itself.

We say that a non-negative matrix is irreducible if, for each i and j ,

there is a path from i to j . Otherwise, we say that it is reducible.
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To formulate an equivalent, but more algebraic, condition, we

introduce some notation. We write

Ak = (a
(k)
ij )1≤i ,j≤n,

where

a
(k)
ij =

∑
1≤ir≤n,r=1,...,k−1

aii1ai1i2 · . . . · aik−1j .

If some aii1ai1i2 · . . . · aik−1j ̸= 0, then there is a path starting from j

and passing through ik−1, . . . , i1 to i . Since the matrix elements

are nonnegative, for a
(k)
ij to be non-zero it is enough that there

exists at least one such path. Thus, A is irreducible if for each

pair (i , j) there is k such that a
(k)
ij > 0.
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An equivalent definition of reducibility is that A is reducible if, by

simultaneous permutation of rows and columns, it can be brought

to the form  A 0

B C


where A and C are square matrices.
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In terms of age-structured population dynamics, a matrix is

irreducible if each stage i can contribute to any other stage j . E.g.,

the Usher matrix 

0 0 1 | 0

1 0 0 | 0

0 1 0 | 0

− − − − −

0 0 1 | 1


is reducible as the last state cannot contribute to any state other

than itself and fertility is concentrated in only one state.
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Irreducible matrices are subdivided into two further classes. An

irreducible matrix A is called primitive if

Ak > 0,

otherwise it is called imprimitive.

Note the difference between irreducibility and primitivity. For

irreducibility we require that for each (i , j) there is k such that

a
(k)
ij > 0 but for primitivity there must be k such that a

(k)
ij > 0 for

all (i , j).
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In population dynamics, if a population has a single reproductive

stage, then its projection matrix is imprimitive. E.g., the matrix

A =


0 0 1

1 0 0

0 1 0


describing a semelparous population is imprimitive. In fact

A2 =


0 1 0

0 0 1

0 0 1

 , A3 =


1 0 0

0 1 0

0 0 1

 .

In particular, A4 = A — another defining feature of imprimitive

matrices.
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Theorem 9 (Perron-Frobenius)

Let A be a nonnegative matrix.

1. There exists a real nonnegative eigenvalue λm = r(A) such that

λm ≥ |λ| for any λ ∈ σ(A). There is an eigenvector (called the

Perron eigenvector) belonging to λm which is real and nonnegative.

2. If, in addition, A is irreducible, then λm is simple and strictly

positive, λm ≥ |λ| for λ ∈ σ(A). The eigenvector belonging to λm

may be chosen to be strictly positive.

(i)If A is additionally primitive, then λm > |λ|;

(ii) If A is imprimitive, then there are d − 1 (d is called the

imprimitivity index) eigenvalues λj = λme
2πi j

d , j = 1, . . . , j − 1,

with λm = |λj |.
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Perron eigenvector) belonging to λm which is real and nonnegative.

2. If, in addition, A is irreducible, then λm is simple and strictly

positive, λm ≥ |λ| for λ ∈ σ(A). The eigenvector belonging to λm

may be chosen to be strictly positive.

(i)If A is additionally primitive, then λm > |λ|;

(ii) If A is imprimitive, then there are d − 1 (d is called the

imprimitivity index) eigenvalues λj = λme
2πi j

d , j = 1, . . . , j − 1,

with λm = |λj |.
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Let us apply the Perron-Frobenius theorem in the population

context. Suppose that our population is divided into n age (or

other) classes and the state of the population is given by the

vector x = (x1, . . . , xn) giving the number of individuals (or

density) in each class. Let x̊ ≥ 0 denote the initial distribution of

the population among the classes. Then

x(k) = Ak x̊

is the distribution after k periods and

P(k, x̊) = ∥Ak x̊∥ =
n∑

i=1

(Ak x̊)i =
n∑

i=1

xi (k) = ∥x(k)∥

is the total population at time k evolving from the initial

distribution x̊ .
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If A is nonnegative, irreducible or primitive, then the transpose

AT has the same property.

Let r := λm be the dominant eigenvalue of both matrices and v

and v̂ be the corresponding strictly positive eigenvectors of,

respectively, A and AT , belonging to λm. We normalize v so that

∥v∥ = 1 and v̂ so that ⟨v̂ , v⟩ = 1.

Combining the Perron-Frobenius theorem with the spectral

decomposition we arrive at the following result.
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Theorem 10 (Fundamental Theorem of Demography)

Suppose that the projection matrix A is irreducible and primitive

and let r be the strictly positive dominant eigenvalue of A, v the

strictly positive eigenvector of A and v̂ strictly positive

eigenvector of AT corresponding to r . Then, for any x0 ≥ 0,

(a) A has the AEG property

lim
k→∞

r−kAkx0 = ⟨v̂ , x0⟩v . (36)

(b)

lim
k→∞

x(k)

P(k , x0)
=

Akx0

P(k , x0)
= v . (37)
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Theorem 10

(c) If r < 1

lim
k→∞

P(k , x0) = 0,

and

lim
k→∞

P(k, x0) = ∞

if r > 1.
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Back to Leslie matrices. Let us consider the Leslie matrix

L :=



f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn−2 0


, (38)

and find under what conditions the population described by L

exhibits asynchronous exponential growth.
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Irreducibility.

• First we observe that for irreducibility we need all

si ̸= 0, 0 ≤ i ≤ n − 2. Indeed, if for some i the coefficient si = 0,

then there would be no path from k ≤ i to k > i . In other words,

there would be no way of reaching the age k > i .
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• Assuming the above, L is irreducible if and only if fn−1 > 0.

Clearly, if fn−1 = 0, then there is no communication from class

n − 1 to any other class and thus L is reducible.

Now, let fn−1 > 0 and pick a (i , j). If j < i , then there is a path

(j , j + 1)...(i − 1, i) ensured by the survival coefficients

sj , sj+1, . . . si−1. If j ≥ i , then the survival coefficients ensure that

we reach the last class n − 1. Since fn−1 > 0, we reach class 0 and

arrive at i by aging.
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Primitivity.

Let us first assume that fj > 0 for j = 0, . . . , n − 1, that is, that

any age group is capable of reproduction. Let us consider arbitrary

initial state j . Then there is an arc between j and 0 (a0j = fj > 0)

and then from state 0 one can reach any state i in exactly i steps

(s0s1 · . . . · si−1). Thus, there is a path joining j and i of length

i + 1, which still depends on the target state. However, there is an

arc from 0 to itself, so we can wait at 0 for any number of steps.

In particular we can wait for n − (i + 1) steps so that j can be

connected with i in n steps. In other words

si−1 · · · · · s1s0f0 · . . . · f0fj > 0,

where f0 occurs n − (i + 1) times. Hence Ln > 0.
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For instance, for (14),

L =


2 1 1

0.5 0 0

0 0.4 0

 ,

we have

L2 =


4.5 2.4 2

1 0.5 0.5

0.2 0 0

 , L3 =


10.2 5.3 4.5

2.25 1.2 1

0.4 0.2 0.2

 ,

so L3 > 0 and L is primitive.
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The above assumption is too strong — typically young individuals

cannot reproduce. We will strengthen this result. For this, we need

the characteristic equation for L. Rather unusually, we begin with

the eigenvector equation.

Lv =



f0 f1 · · · fn−2 fn−1

s0 0 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn−2 0





v0

v1

v2
...

vn−1


= λ



v0

v1

v2
...

vn−1


.

The equations from the second row down read

s0v0 = λv1, s1v1 = λv2, . . . , sn−2vn−2 = λvn−1.
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Taking v0 = 1, we obtain

v1 =
s0
λ
, v2 =

s0s1
λ2

, . . . vn−1 =
s0s1 . . . sn−2

λn−1
.

Now, the first row gives the equation

λ =

(
f0 +

f1s0
λ

+
f2s0s1
λ2

+ . . .+
fn−1s0s1 . . . sn−2

λn−1

)
.

We use si = li+1/li where li is probability of survival till the i + 1st

reproductive cycle from birth (thus si is conditional probability of

survival to the next reproductive cycle if one survived till i from

birth) and fi = mi+1si to rewrite the above as

1 =

(
m1l1
λ

+
m2l2
λ2

+
m3l3
λ3

+ . . .+
mnln
λn

)
,

where we used l0 = 1. This equation is called the discrete

Euler-Lotka equation.
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We show L is imprimtive if and only if the maternity function is

periodic, that is, if the greatest common divisor of ages of positive

reproduction, called the period, is greater than 1. For instance, the

sequence m2,m4,m6 has period 2. In particular, the period is equal

to the imprimitivity index.

Suppose that r and

λj = re iθ, θ ̸= 2πn,

are roots to

ψ(λ) =
n∑

k=1

λ−kmk lk = 1. (39)
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Then
n∑

k=1

r−ke−ikθlkmk = 1 (40)

or, taking real and imaginary parts,

n∑
k=1

r−k cos(kθ)lkmk = 1, (41)

n∑
k=1

r−k sin(kθ)lkmk = 0. (42)

If mk is periodic, then the only nonzero terms correspond to

multiples of d , mk1d ,mk2d ,mk3d , . . .. Taking θj = 2πj/d ,

j = 0, 1, . . . , d − 1, we see cos kldθj = 1, sin kldθj = 0 and so, if

the above equations are satisfied by r , they are also satisfied by

any λj = re iθj .
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If mk is aperiodic, with mki ̸= 0, i ∈ I ⊂ {1, . . . , n}, then there is

no θ ̸= 0 for which cos kiθ = 1 for all ki . Indeed, otherwise there is

θ ∈ (0, 2π) such that

cos k1θ = 1.

This implies

θ = 2π
p

k1
= 2π

j

d
,

where p < k1 is an integer and j and d are relatively prime

integers, so that 0 < j ≤ d − 1 (note that if j = 0, then θ = 0).

But then, for arbitrary i ∈ I ,

kiθ = ki
2πj

d
= 2πpi

for some integer pi .
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Thus

ki = pi
d

j
.

However, ki is an integer and j and d are relatively prime so that

pi must be divisible by j . Hence

ki = rid

for some integer ri , i ∈ I . Thus, any ki is an integer multiple of d .
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Thus, whatever θ, for some k we must have cos kθ < 1. But then,

if (41) was satisfied, we would have

n∑
k=1

r−k lkmk > 1,

which contradicts the fact that r is a solution to (39), that is,

n∑
k=1

r−k lkmk = 1.
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Reducible case.

Let us consider a more complicated case where the fertility is

restricted to some interval [n1, n2], that is, when fj > 0 for

j ∈ [n1, n2]. As we noted earlier, if n2 < n, the matrix cannot be

irreducible as there is no communication between postreproductive

stages and the reproductive ones. Consequently, if we start only

with individuals in postreproductive age, the population will die

out in finite time. Nevertheless, if n1 < n2, then the population

still displays asynchronous exponential growth, albeit with a slight

modification, as explained below.
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To analyse this model, we note that since we cannot move from

stages with j > n2 to earlier stages, the part of the population with

j ≤ n2 evolves independently from postreproductive part (but feeds

into it). Assume that n1 < n2 and introduce the restricted matrix

L̃ =



f0 f1 · · · fn2−1 fn2

s0 0 · · · 0 0

0 s1 · · · 0 0
...

... · · ·
...

...

0 0 · · · sn2−1 0


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and the matrix providing (one-way) link from reproductive to

postreproductive stages is given by

R =


0 · · · sn2 0 · · · 0 0
... · · ·

...
... · · ·

...
...

0 · · · 0 0 · · · sn−2 0


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For the matrix L̃, fn2 > 0 and fn2−1 > 0, so the maternity function

is not periodic and L̃ is primitive. Thus, we can use (32), so that

there is r > 0 and (normalized) vectors v = (v0, . . . vn2) and

v̂ = (v̂0, . . . v̂n2) such that L̃v = rv and

lim
k→∞

r−kv(k+1) = lim
k→∞

r−kL̃k v̊ = v⟨v̂ , v̊⟩, 0 ≤ v̊ ∈ Rn2 . (43)
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For n2 ≤ j < n, k ≥ 0, we have vj+1(k + 1) = sjvj(k). Hence,

starting from vn2(k) we get vn2+i (k + i) = civn2(k), where

ci = sn2+i−1 · . . . · sn2 , as long as i ≤ n − n2 − 1. So

lim
k→∞

r−kvn2+i (k + i) = civn2⟨v̂ , v̊⟩, 0 ≤ v̊ ∈ Rn2 ,

and hence, changing k + i into k

lim
k→∞

r−kvn2+i (k) = ci r
−ivn2⟨v̂ , v̊⟩, 0 ≤ v̊ ∈ Rn2 ,

for any i = 1, . . . , n − n2 − 1.
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Hence, we see that the formula (32) is satisfied if we take

v = (v0, . . . vn2 , c1r
−1vn2 , . . . , cn−n2−1r

−(n−n2−1)vn2)

v̂ = (v̂0, . . . , v̂n2 , 0, . . . , 0).

Finally, we observe that if only one fj is positive (semelparous

population), then we do not have asynchronous exponential

growth. Indeed, in this case starting from initial population in one

class we will have a cohort of individuals in the same age group

moving through the system.

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



Further applications.

Example 11

The Northern Spotted Owl has the following characteristics:

mk =

 0 for k < 3,

0.24 for k ≥ 3,

l3 = 0.0722 and P = lk+1/lk = 0.942 for k ≥ 3 hence, in principle,

we have infinitely many reproductive classes. Denoting m3 = m for

k ≥ 3, we have

1 =
∞∑
k=3

λ−k lkmk =
l3m

λ3
+

l3Pm

λ4
+

l3P
2m

λ5
+ . . .

=
l3m

λ3

∞∑
k=0

(
P

λ

)k

=
l3m

λ3
1

1− P/λ
,
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Example 12

which can be re-written as

λ3 − Pλ2 − l3m = 0.

Using, say, Mathematica, we get

{λ→ 0.960772}, {λ→ −0.00938594 + 0.133968i} and

{λ→ −0.00938594− 0.133968i}. We note the complex roots are

not the roots of the original equation as for them P/|λ| > 1 and

the series would be divergent. So, λ = 0.960772 is the only root

outside |λ| = P.
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Example 13

The dominant real eigenvalue gives an indication of the rate of

growth for large times of the population. The characteristic

equation can be used to find out how sensitive this parameter is

with respect to environmental changes. The dominant eigenvalue

can be thought of as a function of the parameters P, l3,m

determined implicitly through the equation

λ3(P, l3,m)− Pλ2(P, l3,m)− l3m = 0.

Sensitivity of a function with respect to a parameter is given by the

value of the partial derivative of the function with respect to this

parameter. In this case we can find the derivatives differentiating

the above equation implicitly.
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Example 14

Thus,

3λ2
∂λ

∂P
− λ2 − P2λ

∂λ

∂P
= 0

or
∂λ

∂P
=

λ2

3λ2 − 2Pλ

which, evaluated at P = 0.942 and λ = 0.96, gives

∂λ

∂P
= 0.962.

In the same way,

∂λ

∂l3
= 0.254,

∂λ

∂m
= 0.075.
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Example 15

We see that the growth rate of the population is most sensitive to

the changes in adult annual survival rate, less to the survival rate

to the breeding stage, and lastly to the average reproductive rate.
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Example 16

Consider semelparous reproduction defined by

mk =


0 for k = 1,

0 for k = 2,

6 for k = 3,

and

lk =


1 for k = 1,

1/2 for k = 2,

1/6 for k = 3.
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Example 17

The Euler-Lotka equation reduces to

1

λ3
= 1

so that

λ0 = 1, λ1,2 = −1

2
±

√
3

2
i ,

with all roots of modulus 1. This means that we have periodic

population.
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Example 18

However, if we introduce immature reproduction

mk =


1/4 for k = 1,

0 for k = 2,

6 for k = 3,

and

lk =


1 for k = 1,

1/2 for k = 2,

1/6 for k = 3,
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Example 19

we have aperiodic maternity function and the Euler-Lotka equation

is
1

4

1

λ
+

1

λ3
= 0,

yielding λ0 = 1.09, λ1,2 = −0.42± 0.86i with |λ1,2| = 0.957.

Hence, the single positive root is dominant.

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



McKendrick–von Foerster model.

From discrete Leslie model to continuous McKendrick–von

Foerster model. In the classical Leslie model the census is taken in

equal intervals taken, for convenience, to be also a unit of time. If

the time between censuses and the length of each age class are,

instead, taken to be h > 0 then, starting from some time t the

Leslie model would take the form
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

x0(t + h)

xh(t + h)

x2h(t + h)
...

x(n−1)h(t + h)



=



f0(h) fh(h) · · · f(n−2)h(h) f(n−1)h(h)

s0(h) 0 · · · 0 0

0 sh(h) · · · 0 0
...

... · · ·
...

...

0 0 · · · s(n−2)h(h) 0





x0(t)

xh(t)

x2h(t)
...

x(n−1)h(t)


.

(44)

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



The maximal age of individuals ω = nh is thus divided into n age

intervals [0, h), [h, 2h) . . . [(n − 1)h, nh) with the convention that if

the age a of an individual is in [kh, (k + 1)h), it is considered to be

kh. In this definition, as in the discrete case, nobody actually lives

till ω. Thus, xa(t) denotes the number of individuals of age a,

sa = la+h/la is the probability of survival to the age of a+ h

conditioned upon surviving up to age a with l0 = 1 and

fa = ma+hsh is the effective fecundity with ma+h being the average

fertility of females of age a+ h. We note that 1− sa is the number

of individuals who do not survive from a to a+ h.
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We make the following assumptions and notation: for any a ≥ 0

lim
h→0+

sa(h) = sa(0) = 1, (45)

lim
h→0+

1− sa(h)

h
= µ(a), (46)

lim
h→0+

fa(h)

h
= β(a). (47)
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To explain these assumptions, we note that

• the probability of survival over a very short period of time should

be close to 1, as in Eq. (45),

• if the death rate µ is constant, then the probability of surviving

over a short time interval h approximately is sa(h) = 1− µh for

any a and thus the limit in Eq. (46) can serve as a more general

definition of the age dependant death rate,

• if the average number of births per female over a unit time is a

constant β, then the number of births over h will be βh and the

last equation gives the general definition of the age dependent

birth rate which, moreover, is independent of the survival rate by

Eq. (45).
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Finally, we assume that there is a density function p(a, t)

xa(t) =

a+h∫
a

p(α, t)dα. (48)

We are going to derive a differential equation for p. Consider a

fixed age a = ih > 0. From (44) we see that

xa+h(t + h) = sa(h)xa(t), a = 0, h, . . . , (n − 2)h. (49)

Using (48),

xa+h(t + h) =

a+2h∫
a+h

p(α, t + h)dα =

a+h∫
a

p(α+ h, t + h)dα.
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Thus (49) can be written as

a+h∫
a

p(α+ h, t + h)dα = sa(h)

a+h∫
a

p(α, t)dα.

We re-write it as

1

h

 a+h∫
a

p(α+ h, t + h)dα−
a+h∫
a

p(α, t)dα


= −1− sa(h)

h

a+h∫
a

p(α, t)dα.
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Assuming that the directional derivative

Dp(a, t) = lim
h→0+

p(a+ h, t + h)− p(a, t)

h

exists, under some technical assumptions we can pass to the limit

above, arriving, by (46), at

Dp(a, t) = −µ(a)p(a, t), a > 0, t > 0.

Assuming that the partial derivatives ∂tp, ∂ap at (a, t) exist, we

can further transform the last equation to

∂tp(a, t) + ∂ap(a, t) = −µ(a)p(a, t), a > 0, t > 0.

This is the most commonly used form of the equation for p

though, as we shall see later, not the best for its analysis and, in

fact, false in many cases.
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Now consider the class of neonates in the Leslie formulation:

x0(t + h) =
n−1∑
j=0

fjhxjh(t),

which can be rewritten as

1

h
x0(t + h) =

n−1∑
j=0

1

h
fjh(h)

1

h
xjh(t)h.

Now, if p is continuous and f is differentiable at 0, then

1

h
xjh(t) =

1

h

(j+1)h∫
jh

p(α, t)dα = p(jh+ θjh),
fjh(h)

h
= β(jh+ θ′jh).

for some 0 < θj , θ
′
j < 1.
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Thus

p(θjh, t) =
n−1∑
j=0

p(jh + θjh)β(jh + θ′jh)h.

If we further assume that β is a continuous function, then the right

hand side is the Riemann sum and we can pass to the limit as

h → 0+ getting

p(0, t) =

ω∫
0

β(α)p(α, t)dα.
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Thus, we have the classical formulation of the McKendrick–von

Foerster model

∂tp(a, t) + ∂ap(a, t) = −µ(a)p(a, t), a > 0, t > 0, (50)

p(0, t) =

ω∫
0

β(α)p(α, t)dα, t > 0, (51)

p(a, 0) = p0(a), (52)

where the last equation provides the initial distribution of the

population.
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If ω < +∞, then we have to ensure that p(a, t) = 0 for

t ≥ 0, a ≥ ω, which can be done either by imposing an additional

boundary condition on p, or by introducing assumptions on the

coefficients which ensure that no individual survives beyond ω. If

ω = ∞ then, instead of such an additional condition, we impose

some requirements on the behaviour of the solution at ∞, e.g.,

that they are integrable over [0,∞).
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Linear constant coefficient case. Before we embark on more

advanced analysis of (50)–(52), let us get a taste of the structure

of the problem by solving the simplest case with µ(a) = µ and

β(a) = β:

∂tp(a, t) + ∂ap(a, t) = −µp(a, t). (53)

coupled with the boundary condition

p(0, t) = β

∞∫
0

p(a, t)da,

and the initial condition

p(a, 0) = p̊(a),
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First, let us simplify the equation (53) by introducing the

integrating factor

∂t(e
µap(a, t)) = −∂a(eµap(a, t))

and denote u(a, t) = eµap(a, t). Then

u(0, t) = p(0, t) = β

∞∫
0

e−µau(a, t)da

with u(a, 0) = eµap̊(a) =: ů(a). Now, if we knew ψ(t) = u(0, t),

then

u(a, t) =

 ů(a− t), t < a,

ψ(t − a), a < t.
(54)
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The boundary condition can be rewritten as

ψ(t) = β

∞∫
0

e−µau(a, t)da

= β

t∫
0

e−µaψ(t − a)da+ β

∞∫
t

e−µaů(a− t)da

= βe−µt

t∫
0

eµσψ(σ)dσ + βe−µt

∞∫
0

e−µr ů(r)dr

which, upon denoting ϕ(t) = ψ(t)eµt and using the original initial

value, can be written as

ϕ(t) = β

t∫
0

ϕ(σ)dσ + β

∞∫
0

n̊(r)dr . (55)
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Now, if we differentiate both sides, we get

ϕ′ = βϕ,

which is just a first order linear equation. Letting t = 0 in (55), we

obtain the initial value for ϕ: ϕ(0) = β
∞∫
0

p̊(r)dr . Then

ϕ(t) = βeβt
∞∫
0

p̊(r)dr

and

ψ(t) = βe(β−µ)t

∞∫
0

p̊(r)dr .
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Then

p(a, t) = e−µau(a, t) = e−µt


p̊(a− t), t < a,

βeβ(t−a)
∞∫
0

p̊(r)dr , a < t.

Observe that

lim
a→t+

p(a, t) = p̊(0)

and

lim
a→t−

p(a, t) = β

∞∫
0

p̊(r)dr ,

so that the solution is continuous, let alone differentiable, only if

the initial condition satisfies the following compatibility condition

p̊(0) = β

∞∫
0

p̊(r)dr . (56)
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Thus, as we noted earlier, we must be very careful with using

(50)-(52) in the differential form and interpreting the solution.

Figure: Discontinuity of the population density p(a, t).
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General linear McKendrick-von Foerster problem. The ideas used

to solve the McKendrick-von Foerster case in the constant

coefficient case can be also used in more general situations but,

unfortunately, the resulting integral equation (55) cannot be

explicitly solved. Before, however, we discuss the solvability of

more general cases, let us introduce certain functions related to

(50)-(52), which are relevant to the population dynamics.

Consider again the general McKendrick problem

∂tp(a, t) + ∂ap(a, t) = −µ(a)p(a, t)

p(0, t) =

ω∫
0

β(α)p(α, t)dα,

p(a, 0) = p̊(a).
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We recall that β(a) is the age specific fertility which can be

defined as the number of newborns, in one time unit, coming from

a single individual whose age is in the small time age interval

[a, a+ da). So, the number of births coming from all individuals in

the population aged between a1 and a2 in a one time unit is

a2∫
a1

β(α)p(α, t)da

and we can define the total birth rate as

B(t) =

ω∫
0

β(α)p(α, t)da

which gives the total number of newborns in a unit time (ω is the

maximum age in the population).
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Let us consider the death rate µ(a), which is average number of

deaths per unit of population aged a. We can relate µ(a) to a

number of vital characteristics of the population. Similarly to the

discrete case, we introduce the survival probability S(a) as the

proportion of the initial population surviving to age a. We can

relate µ and S by the following argument.
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Consider a population beginning with p̊ individuals of age 0. Then

p̊(a)S(a)(= p(a)) is the average number of individuals that

survived to age a. The decline in the population over a short age

period [a, a+ da] is p̊(a)S(a)− p̊(a)S(a+ da). On the other hand,

this decline can only be attributed to deaths: if the death rate is µ,

then in this age interval we will have approximately p̊(a)S(a)µ(a)da

deaths. Equating and passing to the limit as da → 0 yields

dS

da
= −Sµ

or

S(a) = S(0)e
−

a∫
0

µ(σ)dσ
= e

−
a∫
0

µ(σ)dσ
,

since the probability of surviving to age 0 is 1.
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We note that if no individuals can survive beyond ω, we must have

S(ω) = 0 or, equivalently,

ω∫
0

µ(σ)dσ = ∞. (57)
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These considerations can be used to find the average life span of

individuals in the population. In fact, the average life span is the

mean value of the length of life in the population, which can be

expressed as

L =

ω∫
0

ap(a)da,

where p(a) is the probability (density) of an individual dying at age

a. We approximate the integral as the Riemann sum

L ≈
∑
i

aip(ai )∆ai

where p(ai ) is the probability that an individual survived till the

age ai and died at this age.
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Thus

p(ai ) = S(ai )µ(ai ).

We note that S(a)µ(a) is, indeed, a probability density. Thus

L =

ω∫
0

aµ(a)e
−

a∫
0

µ(s)ds
da = −

ω∫
0

a
d

da
e
−

a∫
0

µ(s)ds
da =

ω∫
0

S(a)da

where we used integration by parts and S(ω) = 0.
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Further, we introduce

K (a) = β(a)S(a) (58)

which is called the maternity function and describes the rate of

birth relative to the surviving fraction of the population and is the

continuous equivalent to the coefficients f0, f1, . . . , fn−1. Further,

we define

R =

ω∫
0

β(a)S(a)da (59)

and call it the net reproduction rate of the population. It is the

expected number of offspring produced by an individual during her

life.
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Solution of general McKendrick-von Foerster model. One of the

easiest way of analysing the general model

∂tp(a, t) + ∂ap(a, t) = −µ(a)p(a, t)

p(0, t) =

ω∫
0

β(a)p(a, t)da,

p(a, 0) = p̊(a), (60)

is to reduce it to an integral equation in the same way as for the

constant coefficient case, though the technicalities are slightly

more involved due to age dependence of the mortality and

maternity functions.
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First, we simplify (60) by introducing the integrating factor

∂t

e

a∫
0

µ(σ)dσ
p(a, t)

 = −∂a

e

a∫
0

µ(σ)dσ
p(a, t)

 (61)

and denote u(a, t) = e

a∫
0

µ(σ)dσ
p(a, t). Then

u(0, t) = p(0, t) =

ω∫
0

β(a)e
−

a∫
0

µ(σ)dσ
u(a, t)da =

ω∫
0

K (a)u(a, t)da,

where we recognized that the kernel in the integral above is the

maternity function introduced in (58).
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Further, u(a, 0) = e

a∫
0

µ(s)ds
p̊(a) =: ů(a). Also, the right hand side

defines the total birth rate B(t).

Now, if we knew B(t) = u(0, t), then

u(a, t) =

 ů(a− t), t < a,

B(t − a), a < t.
(62)
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The boundary condition can be rewritten as

B(t) =

∞∫
0

β(a)e
−

a∫
0

µ(σ)dσ
u(a, t)da

=

t∫
0

β(a)e
−

a∫
0

µ(σ)dσ
B(t − a)da+

∞∫
t

β(a)e
−

a∫
0

µ(σ)dσ
ů(a− t)da

=

t∫
0

K (t − a)B(a)da+

∞∫
0

β(a+ t)e
−

a+t∫
0

µ(σ)dσ
e

a∫
0

µ(s)ds
p̊(a)da,

where to shorten notation we extended coefficients by zero beyond

a = ω.
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Summarizing, we arrived at the integral equation for the total birth

rate

B(t) =

t∫
0

K (t − a)B(a)da+ G (t) (63)

where

G (t) =

∞∫
0

β(a+ t)
S(a+ t)

S(a)
p̊(a)da, (64)

is a known function.
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Explicitly, we have

B(t) =

t∫
0

K (t − a)B(a)da+

ω−t∫
0

β(a+ t)
S(a+ t)

S(a)
p̊(a)da

=

t∫
0

K (t − a)B(a)da+

ω∫
t

β(a)
S(a)

S(a− t)
p̊(a− t)da, (65)

for 0 ≤ t ≤ ω, and

B(t) =

ω∫
0

K (t − a)B(a)da (66)

for t > ω.
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This equation cannot be solved explicitly and we have to use more

abstract approach. For this we have to introduce a proper

mathematical framework. As in the discrete case, the natural norm

will be

∥p∥1 =
ω∫

0

|p(α)|dα

which in the current context, with p ≥ 0 being the density of the

population distribution with respect to age, is the total population.

Thus, the state space is the space X0 = L1([0, ω)) of Lebesgue

integrable functions on [0, ω).
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Since we are dealing with functions of two variables, we often

consider (a, t) → p(a, t) as a function t → u(t, ·), that is, for each

t the value of this function is a function with argument a. For such

functions, we consider the space C ([0,T ], L1([0, ω])) of

L1([0, ω])-valued continuous functions. For functions f bounded on

[0, ω] we introduce ∥f ∥∞ = sup0≤a≤ω |f (a)|.
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We make the following assumptions.

(i)

β ≥ 0 is bounded on [0, ω], (67)

(ii)

0 ≤ µ ∈ L1([0, ω
′]) for any ω′ < ω (68)

with
ω∫

0

µ(α)dα = ∞, (69)

(iii)

0 ≤ p̊ ∈ L1([0, ω]). (70)
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Now, if (67)-(70) are satisfied, then we can show that K is a

non-negative bounded function which is zero for t ≥ ω and G is a

continuous function which also is zero for t ≥ ω. If, additionally

p̊ ∈ W 1,1([0, ω]) and µp̊ ∈ L1([0, ω]), (71)

(here by W 1
1 we denote the Sobolev space of functions from L1

with generalized derivatives in L1), then G is differentiable with

bounded derivative. Indeed, let us look at G for t < ω

G (t) =

ω∫
t

β(a)
S(a)

S(a− t)
p̊(a− t)da =

ω∫
t

β(a)e
−

a∫
a−t

µ(s)ds

p̊(a− t)da
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If we formally differentiate using the Leibnitz rule, we get

G ′(t) = −β(t)S(t)p̊(0) +
ω∫
t

β(a)e
−

a∫
a−t

µ(s)ds

µ(a− t)p̊(a− t)da

+

ω∫
t

β(a)e
−

a∫
a−t

µ(s)ds

µ(a− t)p̊′(a− t)da

so we see that for existence of the integrals we need integrability of

µp̊ and differentiability of p̊. Then we can prove the main result

Theorem 20

If (67)-(70) are satisfied, then (63) has a unique continuous and

nonnegative solution. If, additionally, (71) is satisfied that B then

B is differentiable with B ′ bounded on bounded intervals.
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Proof.

We define iterates

B0(t) = G (t),

Bk+1(t) = G (t) +

t∫
0

K (t − s)Bk(s)ds. (72)

Take T > 0. Then, for any t ∈ [0,T ] we have

|B1(t)− B0(t)| =
t∫

0

|K (t − s)F (s)|ds ≤ tKmFm

where Km = sup0≤t≤T |K (s)| and Lm = sup0≤t≤T |F (s)|. Then

|B2(t)− B1(t)| ≤ Km

t∫
0

|B1(s)− B0(s)|ds ≤ K 2
mFm
2

t2
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and, by induction,

|Bk+1(t)− Bk(t)| ≤ Km

t∫
0

|Bk(s)− Bk−1(s)|ds ≤ K k+1
m Fm

(k + 1)!
tk+1.

(73)

Further

lim
k→∞

Bk+1(t) = G (t) + lim
k→∞

k∑
i=0

(B i+1(t)− B i (t))

with

sup
0≤t≤T

∣∣∣∣∣
k∑

i=0

(B i+1(t)− B i (t))

∣∣∣∣∣ ≤
k∑

i=0

sup
0≤t≤T

∣∣B i+1(t)− B i (t)
∣∣

≤ Fm

k∑
i=0

(TKm)
k+1

(k + 1)!
.
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The series on the right hand side converges to Fme
TKm and thus

(Bk(t))k≥0 converges uniformly to a continuous solution B of

(63). Uniqueness follows by the Gronwall inequality.

If, in addition, (71) is satisfied, then Bk can be differentiated with

respect to t and the functions

V k :=
d

dt
Bk

satisfy the recurrence

V k+1(t) = F ′(t) + K (t)F (0) +

t∫
0

K (t − s)V k(s)ds,

which converges uniformly to some continuous function V which,

by the theorem of uniform convergence of derivatives, must be the

derivative of B. □
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Once we have B, we can recover p by (90) and back substitution

p(a, t) = e
−

a∫
0

µ(σ)dσ
u(a, t) =


S(a)

S(a−t) p̊(a− t), t < a,

S(a)B(t − a), a < t.

(74)

Thus, if (71) is satisfied in addition to (67)-(70), then it is easy to

see that p defined above satisfies the equation (50) everywhere

except the line a = t. Along this line we have, as before,

lim
a→t+

p(a, t) = S(0)p̊(0) = p̊(0)

and

lim
a→t−

p(a, t) = S(0)B(0) =

ω∫
0

β(a)p̊(a)da.
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To ensure at least continuity of the solution we need to assume the

compatibility condition

p̊(0) =

ω∫
0

β(a)p̊(a)da. (75)

We note that if a function is continuous at a point and

differentiable in both one sided neighbourhoods, then it is a

Lipschitz function and it is in fact differentiable almost everywhere

(in the sense that the function can be recovered from its

derivative). On the other hand, if a function has a jump at a point,

then its derivative at this point is of a Dirac delta type. Thus, we

can state that if (75) is satisfied, then the solution is continuous

and satisfies (50) almost everywhere.
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If we do not assume (75) then we can still claim that the solution

satisfies

Dn(a, t) = lim
h→0+

p(a+ h, t + h)− p(a, t)

h

= −µ(a)p(a, t), a > 0, t > 0.
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Furthermore, both the birth rate B and the solution p itself grow

at most at an exponential rate. Consider again (63)

B(t) =

t∫
0

K (t − a)B(a)da+ G (t),

with G given by (64),

S(a) = e
−

a∫
0

µ(σ)dσ
,

and K (a) = β(a)S(a), we see that K (t) ≤ ∥β∥∞ and

G (t) ≤ ∥β∥∞∥p̊∥1 so that
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B(t) ≤ max
0≤a≤ω

β(a)

t∫
0

B(s)ds + max
0≤a≤ω

β(a)

ω∫
0

p̊(s)ds

=: ∥β∥∞

t∫
0

B(s)ds + ∥β∥∞∥p̊∥1,

which, by Gronwall’s inequality, yields

B(t) ≤ ∥β∥∞∥p̊∥1et∥β∥∞ . (76)
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This gives the estimate for p:

∥p(·, t)∥1 ≤
t∫

0

B(t − s)S(s)ds +

∞∫
t

S(s)

S(s − t)
p̊(s − t)ds

≤ ∥β∥∞∥p̊∥1

 t∫
0

e(t−s)∥β∥∞ds + 1

 ,

where we used S(s)/S(s − t) ≤ 1. Then, by integration

∥p(·, t)∥1 ≤ ∥p̊∥1+∥p̊∥1et∥β∥∞(1−e−t∥β∥∞) = ∥p̊∥1et∥β∥∞ . (77)
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Long time behaviour of the solution – the constant coefficients

case. Consider again the constant coefficient problem

∂tp(a, t) + ∂ap(a, t) = −µp(a, t)

p(0, t) = β

∞∫
0

p(a, t)da,

p(a, 0) = p̊(a)

with the solution

p(a, t) = e−µt


p̊(a− t), t < a,

βeβ(t−a)
∞∫
0

p̊(r)dr , a < t

and ask what happens with the population as t → ∞.
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Clearly, for large t we can consider only the second part of the

solution

p(a, t) = βP0e
−βaet(β−µ), a < t,

where P0 =
∞∫
0

p̊(r)dr . Denote by r = β − µ the net growth rate.

We see that if r = 0, we have

p(a, t) = βP0e
−µa, a < t,

and one can surmise that

p(a, t) ≈ βP0e
−βa,

for large t and all a > 0.
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If we assume that p̊ is bounded, this can be easily checked. Indeed

p(a, t) =

 e−µt p̊(a− t), t < a,

βe−µaP0, a < t

= βe−µaP0 +

 −βe−µaP0 + e−µt p̊(a− t), t < a,

0, a < t

and, since for t < a, e−µa < e−µt , we have

| − βe−µaP0 + e−µt p̊(a− t)| ≤ Ce−µt

where C = max{βP0, sup |p̊|}. In other words

p(a, t) = βe−µaP0 + O(e−µt). (78)
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So we see that for large t the solution has the shape of βe−µa,

independent of the initial data, multiplied by the scalar P0. Thus,

the shape of the solution is practically not affected by the initial

age distribution. In other words, the age distribution of the

population after long time is the same independently of the initial

age distribution.

Even if r ̸= 0, we can write

e−rtp(a, t) = βP0e
−βa, a < t,

and, as before,
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e−rtp(a, t) =

 e−βt p̊(a− t), t < a,

βe−βaP0, a < t,

= βe−µaP0 +

 −βe−βaP0 + e−βt p̊(a− t), t < a,

0, a < t,

and, since for t < a, e−βa < e−βt , we have

| − βe−βaP0 + e−βt p̊(a− t)| ≤ Ce−βt

where C = max{βP0, ∥p̊∥∞}.
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In other words

p(a, t) = P0e
rtβe−βa + O(e−µt). (79)

where we used erte−βt = e−µt . Hence, the population is described

by the Malthusian part P0e
rt , which is independent of the age

profile of the population, multiplied by the age profile βe−βa. The

profile is called the stable age distribution and we recognize the

asynchronous exponential growth property. In what follows we

shall prove that this property holds for general McKendrick-von

Foerster model.
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However, before we move to more general models, we provide

another way of deriving the stable age distribution. Let us consider

the eigenvalue problem for (53)

λp(a) + p′(a) = −µp(a)

p(0) = β

∞∫
0

p(a)da. (80)

The first equation is a linear equation with the general solution

p(a) = Ce−(µ+λ)a

while the nonlocal initial condition yields

1 = β

∞∫
0

e−(µ+λ)ada

where we cancelled the constant C .
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This is an example of the Lotka renewal equation. In our case, we

solve it explicitly. Integration gives

1 =
β

µ+ λ
(81)

or

λ = β − µ = r

and

p(a) = Ce−βa.

So, the unique eigenvalue of (85) is (in this case) precisely the net

growth rate. This eigenvalue is simple and the corresponding

eigenvector is the stable age distribution. As we shall see, this is

not a coincidence.
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Long time behaviour–general case. By (76), we can apply the

Laplace transform to analyse (63). The Laplace transform of an

exponentially bounded integrable function f is defined by

f̂ (λ) = (Lf )(λ) =

∞∫
0

e−λt f (t)dt,

and f̂ is defined and analytic in a right half-plane (determined by

the rate of growth of f ) of the complex plane C. In the case of B,

(76) shows that B̂(λ) is analytic in ℜλ > ∥m∥∞. For our

applications it is also important to note that if the f is only

non-zero over a finite interval [a, b], then its Laplace transform is

defined and analytic everywhere in C. Such functions are called

entire.
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Moreover, we also use f̂ (λ) → 0 as |λ| → ∞ in any closed strip

contained in the domain of analyticity of f̂ .

We use the property of the Laplace transform that the convolution

is transformed into the algebraic product of transforms; that is, for

the convolution

(f ∗ g)(t) =
t∫

0

f (t − s)g(s)ds =

t∫
0

f (s)g(t − s)ds,

using the definition of the Laplace transform and changing the

order of integration, we obtain

[L(f ∗ g)](λ) = (Lf )(λ) · (Lg)(λ). (82)
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With this result, (63) yields

B̂(λ) = B̂(λ)K̂ (λ) + Ĝ (λ). (83)

Hence,

B̂(λ) =
Ĝ (λ)

1− K̂ (λ)
= Ĝ (λ) +

Ĝ (λ)K̂ (λ)

1− K̂ (λ)
(84)

As we noted above, Ĝ is an entire function so the only singularities

of B̂ are due to zeroes of 1− K̂ . Since K̂ is an entire function,

these zeroes are isolated of finite order (thus giving rise to poles of

B̂ and with no finite accumulation point).
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However, there may be infinitely many of them and this requires

some care with handling the inverse. We know that if f̂ is the

Laplace transform of a continuous function f , then

f (t) =
1

2πi

c+i∞∫
c−i∞

eλt f̂ (λ)dλ

where we integrate along a line in the domain of analyticity of f̂ .

Let us look closer at the equation

K̂ (λ) = 1, (85)

or, explicitly,
∞∫
0

β(a)e
−λa−

a∫
0

µ(σ)dσ
da = 1, λ ∈ C. (86)
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Remark 1

We observe that (86) is a continuous copy of the discrete renewal

equation (39) if one replaces λ of the latter by eλ. However, as we

shall see below, continuous case does not admit any cyclic

behaviour.

Theorem 21

Equation (85) has exactly one real root, λ = λ0, of algebraic

multiplicity 1. All other roots λj of (85) occur as complex

conjugates (real root is its own conjugate). Moreover, ℜλj < λ0

for any j, there could be only denumerable number of them and, in

each strip a < ℜλ < b, there is at most a finite number of them.
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Proof.

We introduce the real function

ψ(λ) =

∞∫
0

e−λaK (a)da

for λ ∈ R. We note that this function is well defined on R since K

is non zero only on a finite interval. Also, because of this, it is

continuous and differentiable, see Remark 2 below. Then

lim
λ→−∞

ψ(λ) = ∞,

lim
λ→∞

ψ(λ) = 0.
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Moreover,

ψ′(λ) = −
β∫

α

ae−λaK (a)da < 0,

ψ′′(λ) =

β∫
α

a2e−λaK (a)da > 0,

so that ψ is strictly decreasing and concave up function. Since it is

continuous, it takes on every positive value exactly once. Thus, in

particular, there is exactly one real value λ∗ satisfying (85).
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Suppose λ = u + iv is a root of (85). Then

1 =

∞∫
0

e−va(cos(−ua) + i sin(−ua))K (a)da

and, taking the real and imaginary part,

∞∫
0

e−vaK (a) cos ua da = 1,

∞∫
0

e−vaK (a) sin ua da = 0.

We observe that these two equations are invariant under the

change v → −v so that λ̄ = u − iv also satisfies (85).
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To prove the second part, we note that, since the variable a is

continuous, there must be a range of a, say, [α, β] over which

cos ua < 1. Thus,

∞∫
0

e−vaK (a)da >

∞∫
0

e−vaK (a) cos ua da = 1.

However
β∫

α

e−λ∗aK (a)da = 1,

and direct comparison of these two integrals yields λ∗ > v = ℜλ.
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The last part follows from the fact that since K̂ − 1 is an entire

function, in each bounded set there can be only finitely many zeros

of it, by the principle of isolated zeros. Thus, there could be no

more than denumerable amount of them in C. Finally, since

K̂ → 0 as |λ| → ∞ in any strip, we also see that there can be only

finitely many of them in any vertical strip. □
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Remark 2

In the proof above, the continuity of ψ is a consequence of the

boundeness of the support of definition of K. In general, if we

allow K to be nonzero on [0,∞), then the above statement is not

true. Consider K (a) = c(1 + a2)−1 with c < 2/π. Then

ψ(λ) = c

∞∫
0

e−λa

1 + a2
da

then ψ(λ) < 1 for λ ≥ 0 but ψ(λ) = ∞ for λ < 0 and ψ(λ) < 1

for all λ ≥ 0 and Eq. (85) has no real solution.
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Remark 3

In general, if ω = ∞, one has to prove that the range of ψ contains

1. For instance, in the constant coefficient case, ψ is given by (81)

ψ(λ) =
m

λ+ µ

and though it is discontinuous at λ = −µ, its range for

λ ∈ (−µ,∞) is R and the argument holds.
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Observe that the function ψ crosses the a axis at

R := ψ(0) =

∞∫
0

K (a)da (87)

which is precisely the net reproductive rate. R must exceed 1 for

λ∗ to be positive, R = 1 if and only if λ∗ = 0 and, finally, R < 1 if

and only if λ∗ < 0.

Next we shall show that the sign of λ∗ indeed determines the long

time behaviour of the population.
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Let us consider the second term in the last formula of (84)

Ĥ(λ) :=
Ĝ (λ)K̂ (λ)

1− K̂ (λ)
.

We noted that Ĝ (λ) and K̂ (λ) tend to zero as |λ| → ∞ in any

half plane ℜλ > δ, δ ∈ R. Furthermore, on any line

{σ + iy ; y ∈ R} which does not meet any root of (85), we have

infy∈R |1− K̂ (σ + iy)| > 0 and

∞∫
−∞

∣∣∣∣∣ Ĝ (σ + iy)K̂ (σ + iy)

1− K̂ (σ + iy)

∣∣∣∣∣ dy <∞. (88)

This follows from the fact that any finitely supported function,

multiplied by e−σt is an L2 function and thus its Laplace

transform, treated as the Fourier transform, is in L2 with respect to

y . Then the result follows from the Plancherel theorem.
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Inverting Ĥ(λ) we have

H(t) =
1

2πi

σ+i∞∫
σ−i∞

Ĝ (σ + iy)K̂ (σ + iy)

1− K̂ (σ + iy)
e(σ+iy)tdy

for any σ > λ∗. Hence

B(t) = G (t) + H(t).

To estimate H(t) we note that, by properties of Ĥ, we can shift

the line of integration to {σ1 + iy ; y ∈ R} where ℜλ1 < σ1 < λ∗

and λ1 is the eigenvalue with the largest real part less than λ∗.
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Then the Cauchy theorem gives

H(t) = H1(t) + H2(t)

where

H1(t) = resλ=λ∗
eλtĜ (λ)K̂ (λ)

1− K̂ (λ)
= lim

λ→λ∗
(λ−λ∗)

eλtĜ (λ)K̂ (λ)

1− K̂ (λ)
= B0e

λ∗t ,

with

B0 =

∞∫
0

e−λ∗aG (a)da

∞∫
0

ae−λ∗aK (a)da

and

H2(t) =
1

2πi

σ1+i∞∫
σ1−i∞

Ĝ (σ1 + iy)K̂ (σ1 + iy)

1− K̂ (σ1 + iy)
e(σ1+iy)tdy .
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The function H2 satisfies the estimate

|H2(t)| ≤
eσ1t

2π

σ1+i∞∫
σ1−i∞

∣∣∣∣∣ Ĝ (σ1 + iy)K̂ (σ1 + iy)

1− K̂ (σ1 + iy)

∣∣∣∣∣ dy = B1e
σ1t .

Here B1 is a constant. Thus, we arrived at the representation

B(t) = eλ∗tB0 + G (t) + eσ1tB1.

However, remembering that G (t) = 0 for t ≥ 0, we can write

B(t) = B0e
λ∗t

(
1 +

e−λ∗tG (t)

B0
+ e(σ1−λ∗)t B1

B0

)
= B0e

λ∗t (1 + Ω(t))

(89)

where Ω(t) → 0 as t → ∞, provided B0 ̸= 0.

Now, B0 = 0 if and only if G (t) = 0 for all t ≥ 0 but then, from

uniqueness, B(t) = 0 for all t.
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Let us interpret this condition. We have

0 = G (t) =

∞∫
0

β(a+ t)
S(a+ t)

S(a)
p̊(a)da

which, by positivity of p̊, is possible only if

β(a+ t)p̊(a) = 0

for a ∈ [0, ω] and t ≥ 0. This occurs only if the support of β is to

the left of the support of p̊ (as the support of β(·+ t) moves to

the left as t increases). In other words, this case occurs only if the

original population is too old to become fertile.
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In this case

p(a, t) =

 p̊(a− t) S(a)
S(a−t) , t < a,

0, a < t.
(90)

Otherwise, we can write

p(a, t) =

 p̊(a− t) S(a)
S(a−t) , t < a,

B0e
λ∗(t−a) (1 + Ω(t − a)) S(a), a < t.

(91)
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Now, in the case ω < +∞ we see that for t ≥ ω we have

p(a, t) = B0e
λ∗(t−a) (1 + Ω(t − a))S(a)

and we identify the stable age distribution

p∞(a) = e
−λ∗a−

a∫
0

µ(s)ds
.

so that

lim
t→∞

e−λ∗tp(a, t) = e
−λ∗a−

a∫
0

µ(s)ds

on [0, ω] (provided the supports of p̊ and β meet).
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Finally, we noted in (87) that λ∗ > 0, λ∗ = 0 and λ∗ < 0 if and

only if, respectively, R > 1,R = 1 and R < 1. Thus, the

population is growing if R > 1, it is stable if R = 1 and it decays if

R < 1 (again if supports of p̊ and β meet), in accordance with the

interpretation of the parameter R.
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Age-structured population model

Standard SIR model. Here the population as homogeneous apart

from the differences due to the disease. Then, for the description

of the epidemics the population is divided into three main classes:

susceptibles (individuals who are not sick and can be infected),

infectives (individuals who have the disease and can infect others)

and removed (individuals who were infective but recovered and are

now immune, dead or isolated). Depending on the disease, other

classes can be introduces to cater e.g., for the latent period of the

disease. We denote by S(t), I (t),R(t) the number of individuals in

the classes above.
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By

S(t) + I (t) + R(t) = N(t)

we denote the total population size. In many models it is assumed

that the population size is constant disregarding thus vital

dynamics such as births and deaths. Thus, the total population is

a conserved quantity and the relevant conservation law can be

written as

S ′ = −λS + δI ,

I ′ = λS − (γ + δ)I ,

R ′ = γI (92)

with S(0) = S0, I (0) = I0,R(0) = R0 and S0 + I0 + R0 = N.
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The parameter λ is the force of infection, δ is the recovery rate

and γ is the recovery/removal rate. While δ and γ are usually

taken to be constant, the force of infection requires a constitutive

law. The simplest is the law of mass action

λ = cϕ
I

N
, (93)

where c is the contact rate (the number of contacts that a single

individual has with other individuals in the population per unit

time), ϕ is the infectiveness; that is, the probability that a contact

with an infective will result in infection and I/N is the probability

that the contacted individual is infective. In what follows we shall

denote k = cϕ/N.
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There are many other assumptions underlying this model: that the

population is homogenous, that no multiple infections are possible,

that an infected individual immediately become infective, etc.

Concerning the nature of the disease the basic distinction is

between those which are not lethal and do not impart immunity

(influenza, common cold) and those which could be caught only

once (leading to death or immunity) such as measles or AIDS. In

the first case, γ = 0 and the model is referred to as an SIS model

and in the second δ = 0 and the model is called an SIR model.
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In many cases the rate of infection significantly varies with age and

thus it is important to consider the age structure of the

population. Thus we expect the interaction of the vital dynamics

and the infection mechanism to produce a nontrivial behaviour. To

introduce the model we note again that, in absence of the disease,

the age-dependent density of the population n(a, t) would be the

solution of the linear model introduced in (50)–(52). However,

because of the epidemics, the population is partitioned into the

three classes: susceptibles, infectives and removed, represented by

their respective age densities s(a, t), i(a, t) and r(a, t).
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Now, if we look at the population of susceptibles, than we see that

it is losing individuals at the rate λ(a, t)s(a, t) and gaining at the

rate δ(a)i(a, t), where we have taken into account that the

infection force and the cure rate are age dependent. Similarly, the

source terms for the other two classes are given by the (age

dependent) terms of the (92) model.
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This leads to the system

∂ts(a, t) + ∂as(a, t) + µ(a)s(a, t) = −λ(a, t)s(a, t) + δ(a)i(a, t),

∂t i(a, t) + ∂ai(a, t) + µ(a)i(a, t) = λ(a, t)s(a, t)

− (δ(a) + γ(a))i(a, t),

∂tr(a, t) + ∂ar(a, t) + µ(a)r(a, t) = γ(a)i(a, t), (94)
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with boundary conditions

s(0, t) =

ω∫
0

β(a)(s(a, t) + (1− q)i(a, t) + (1− w)r(a, t))da,

i(0, t) = q

ω∫
0

β(a)i(a, t)da,

r(0, t) = w

ω∫
0

β(a)r(a, t)da, (95)

where q ∈ [0, 1] and w ∈ [0, 1] are the vertical transmission

coefficients of infectiveness and immunity, respectively. The system

is complemented by initial conditions s(a, 0) = s0(a), i(a, 0) = i0(a)

and r(a, 0) = r0(a).
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We remark that here we assumed that the death and birth

coefficients are not significantly affected by the disease. In

particular, if we assume that the solution of (94) exists in such a

way that all terms are separately well defined, then adding the

equations together we obtain that the total population density

p(a, t) = s(a, t) + i(a, t) + r(a, t) satisfies

∂tp(a, t) + ∂ap(a, t) + µ(a)p(a, t) = 0,

p(0, t) =

ω∫
0

β(a)p(a, t)da,

p(a, 0) = p0(a) = s0(a) + i0(a) + r0(a),

that is, the disease does not change the global picture of the

evolution of the population, as expected from the model.

Finally, we have to specify a constitutive relation for the force of

infection λ. This usually is given by the equation

λ(a, t) = K0(a)i(a, t) +

ω∫
0

K (a, s)i(s, t)ds, (96)

where the two terms on the right hand side are called the

intracohort and intercohort terms, respectively. The intracohort

term describes the situation in which individuals only can be

infected by those of their own age, while the intercohort term

describes the case in which they can be infected by individuals of

any age.
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Solvability of the SIR/SIS system with age structure.

Let us recall the system

∂ts(a, t) + ∂as(a, t) + µ(a)s(a, t) = −λ(a, t)s(a, t) + δ(a)i(a, t),

∂t i(a, t) + ∂ai(a, t) + µ(a)i(a, t) = λ(a, t)s(a, t)

− (δ(a) + γ(a))i(a, t),

∂tr(a, t) + ∂ar(a, t) + µ(a)r(a, t) = γ(a)i(a, t) (97)
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with the boundary conditions

s(0, t) =

ω∫
0

β(a)(s(a, t) + (1− q)i(a, t) + (1− w)r(a, t))da,

i(0, t) = q

ω∫
0

β(a)i(a, t)da, r(0, t) = w

ω∫
0

β(a)r(a, t)da,(98)

where q ∈ [0, 1] and w ∈ [0, 1] are the vertical transmission

coefficients of infectiveness and immunity, respectively, and the

initial conditions

s(a, 0) = s0(a), i(a, 0) = i0(a), r(a, 0) = r0(a). (99)

To deal with solvability of this system we have to provide a more

general framework for the original McKendrick problem.
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Solution of the McKendrick-von Foerster problem as a

semidynamical system. We considered the problem

∂tn(a, t) + ∂an(a, t) = −µ(a)n(a, t)

n(0, t) =

ω∫
0

β(a)n(a, t)da,

n(a, 0) = n0(a) (100)

and proved that, under assumptions (67)–(70), it has a solution

p(a, t) =


S(a)

S(a−t)n0(a− t), t < a,

S(a)B(t − a), a < t,
(101)
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where B is the solution of the Volterra equation

B(t) =

t∫
0

K (t − a)B(a)da+

ω−t∫
0

β(a+ t)
S(a+ t)

S(a)
n0(a)da

=

t∫
0

K (t − a)B(a)da+

ω∫
t

β(a)
S(a)

S(a− t)
n0(a− t)da(102)

for 0 ≤ t ≤ ω and

B(t) =

ω∫
0

K (t − a)B(a)da (103)

for t > ω. The solution satisfies the estimate

∥p(·, t)∥L1([0,ω]) ≤ ∥p0∥L1([0,ω])e
t∥β∥∞ . (104)
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Unique solvability of (100) in the sense of formula (101) allows for

the dynamical systems approach to the problem. This amounts to

looking at the solution not through individual trajectories but more

globally, as a family of mappings of the state space into itself,

parametrized by time. Let us recall that our state space is

X = L1([0, ω]) of all population densities with finite total

population. Then, for any p0 ∈ X we define

[T (t)p0](a) = p(a, t) (105)

where n is the solution defined by (101). From (104) we see that

(T (t))t≥0 is a family of linear bounded operators on X with at

most exponential growth in time.
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The previous results show that (T (t))t≥0 is a strongly continuous

(semi)dynamical system, or a strongly continuous semigroup, that

is, it is a family of bounded linear operators satisfying, for any

x ∈ X ,

1 T (t + τ)x = T (t)T (τ)x , t, τ ≥ 0;

2 T (0)x = x ;

3 lim
t→0+

T (t)x = x .

An important role is played by an operator A, called the generator

of the semigroup (T (t))t≥0, defined by the formula

Ax = lim
h→0+

T (h)x − x

h
, (106)

whenever the limit exists in X .
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The set of such x ∈ X is called the domain of A and denoted by

D(A). Typically A is unbounded and D(A) ̸= X . It follows that if

x0 ∈ D(A), then t → x(t, x0) = T (t)x0 is differentiable,

T (t)x0 ∈ D(A) for all t ≥ 0 and

d

dt
x(t, x0) = Ax(t, x0), x(0, x0) = x0, (107)

that is, (T (t))t≥0 gives solutions to the Cauchy problem (107) and

x(t, x0) is the semiflow associated with this equation due to the

semigroup property.
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In the case of the McKendrick-von Foerster problem, it can be

proved that A = −∂a − µ with

D(A) = {p ∈ W 1
1 ([0, ω]); µp ∈ L1([0, ω]), p(0) =

ω∫
0

β(a)p(a)da}.

Finally we note the following fact which will be of importance in

the analysis of nonlinear problems.

Proposition 2

Under assumptions (67)–(70), if p0 is bounded, then p(a, t) is

bounded on [0, ω]× [0,T ] for any 0 ≤ T <∞.
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Epidemiological system – linear part. We first look at its linear part

∂ts(a, t) + ∂as(a, t) + µ(a)s(a, t)− δ(a)i(a, t) = 0,

∂t i(a, t) + ∂ai(a, t) + µ(a)i(a, t) + (δ(a) + γ(a))i(a, t) = 0,

∂tr(a, t) + ∂ar(a, t) + µ(a)r(a, t)− γ(a)i(a, t) = 0,

with the boundary conditions

s(0, t) =

ω∫
0

β(a)(s(a, t) + (1− q)i(a, t) + (1− w)r(a, t))da,

i(0, t) = q

ω∫
0

β(a)i(a, t)da, r(0, t) = w

ω∫
0

β(a)r(a, t)da,

and the initial conditions

s(a, 0) = s0(a), i(a, 0) = i0(a), r(a, 0) = r0(a). (108)
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The problem is an example of a more general vector McKendrick

system

∂tp = Sp +Mp, (109)

p(t, a) = (p1(a, t), . . . , pN(a, t))

and pi (a, t) is the population density at time t of individuals in

patch i and being of age a (here p = (s, i , r)). Further,

Sp = −∂ap = (−∂ap1, . . . ,−∂apN) (110)

describes aging, M(a) = (µij(a))1≤i ,j≤N is the mortality/projection

matrix.
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In our case

M =


−µ δ 0

0 −(µ+ δ + γ) 0

0 γ −µ



=


−µ 0 0

0 −µ 0

0 0 −µ

+


0 δ 0

0 −(δ + γ) 0

0 γ 0


(111)

where the first matrix describes death, which is an intrapatch

phenomenon, and the second refers to migrations between patches

and is thus a Kolmogorov matrix.
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Similarly, we assume that

M = diag{−µ1, . . . ,−µN}+ Q

where Q is a Kolmogorov matrix, that is, it is positive off-diagonal

and the sum of entries in each column is 0. This structure has

important consequences as far as the asymptotic properties are

concerned.

This system is supplemented by the McKendrick boundary

condition

p(t, 0) = [Bp](t) =

∞∫
0

B(a)p(a, t)da, (112)

where γ denotes the operator of taking the trace at a = 0 and

B(a) = {βij(a)}1≤i ,j≤N is the fertility matrix.
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We note that births may be interpatch phenomena; in our case

B =


β β(1− q) β(1− w)

0 βq 0

0 0 βw

 . (113)

The initial condition is given by

p|t=0 = p(0, a) = p̊(a). (114)
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The natural phase space for the problem is X = L1([0, ω],RN). We

denote by X+ the subset of X consisting of vectors p which are

coordinate-wise nonnegative almost everywhere. Further,

X∞ = L∞([0, ω],RN).

We mimic the scalar case approach. Let us denote by VM(a, b) the

fundamental solution matrix of the equation z ′a(a) = M(a)z(a);

that is, z(a) = VM(a)z0 satisfies the above equation with

z(b) = z0 (VM plays the role of the integrating factor in the scalar

case). Since the columns of VM(a, 0) are linearly independent for

any a, the inverse V−1
M (a, 0) always exists and thus

VM(a, b) = VM(a, 0)V−1
M (b, 0).
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With this, we can write the solution to (109)-(112) as

p(a, t) =

 VM(a, a− t)p̊, a > t,

(VM(a, 0)ψ)(t − a) a < t,
(115)

where ψ satisfies the Volterra equation

ψ(t) =

t∫
0

(B(a)VM(a, 0)ψ)(t−a)da+

∞∫
t

B(a)VM(a, a−t)p̊(a−t)da.
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Let us define by A the realization of −diag{∂a} −M on the

domain

DA = {p ∈ (W 1,1(R+))
N ,p(0) = Bp}.

Then we can prove

Theorem 22

A generates a strongly continuous semigroup {T(t)}t≥0 such that

||T(t)|| ≤ e( b̄−m )t ,

where b̄ := sup
a∈R+

||B(a)|| and m := inf
j ,a
µj(a). Furthermore, if

p̊ ∈ X+, then p(t, ·) ∈ X+ and if p̊ ∈ X∞ ∩ X1, then

p(t, ·) ∈ X∞ ∩ X1.
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The nonlinear system. With the notation of the previous section,

the problem (97)–(99) can be written in compact form

∂tp = Ap + F(p), t > 0,

p|a=0 = Bp,

p|t=0 = p̊, (116)

where p = (s, i , r), A = S +M with S and M defined by (110)

and (111).
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Further, B is defined by (113) and F is the nonlinear perturbation

F((s, i , r)) =


−λ 0 0

λ 0 0

0 0 0




s

i

r

 , (117)

where the force of infection depends on the solution through the

formula

λ(a, t) = K0(a)i(a, t) +

ω∫
0

K (a, s)i(s, t)ds, (118)

where K0(a) and K (a, s) are known functions.
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How to deal with such problems? First we note that the boundary

condition is really a part of the definition of the domain of A and

thus, if we find a solution to (116), then it must satisfy u ∈ DA

and automatically satisfies the boundary condition. Thus, for a

time being we shall ignore it.

The main idea is to use the fact that we can solve the linear

version of (116)

∂tu = Au + f (t), t > 0,

u|t=0 = ů, (119)

where f is a given function,
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and the solution is given by the Duhamel formula

u(t) = T(t)ů +

t∫
0

T(t − s)f (s)ds.

So, if we knew the solution p to (116), then it would be given by

p(t) = T(t)p̊ +

t∫
0

T(t − s)F(p(s))ds. (120)

Even if we do not know the solution, then (120) offers a

simplification of (116) by not involving the unbounded operator

A. Of course, a solution to (120) is not necessarily a solution to

(116) but at least it seems to be step in right direction in the sense

that any continuous solution to (116) must be a solution to (120).
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The problem (120) can be solved by Picard’s iterations, similar to

(72)

p0(t) = p̊,

pk+1(t) = T(t)p̊ +

t∫
0

T(t − s)F(pk(s))ds, (121)

however, handling the nonlinearity F requires more care.

First, let us assume that F satisfies the global Lipschitz condition

on X , that is, there is L > 0 such that for any u, v ∈ X

∥F(u)− F(v)∥X ≤ L∥u − v∥. (122)
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Let us denote by Y = C ([t0,T ],X ) the space of continuous

functions [t0,T ] ∋ t → u(t) ∈ X , where −∞ < t0 < T <∞. We

define the norm in Y by

∥u(·)∥Y = sup
t∈[t0,T ]

∥u(t)∥X .

Then, returning to (121) we obtain, for any t ∈ [0,T ],

∥pk+1(t)− pk(t)∥X ≤
t∫

0

∥T(t − s)(F(pk(s))− F(pk−1(s)))∥Xds

≤ MeωTLt∥pk − pk−1∥Y , (123)
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which, by induction as in (73), yields

sup
t∈[0,T ]

∥pk+1(t)− pk(t)∥X ≤ (MeωTL)k

k!
∥p1 − p̊∥Y

and, as in the linear case, this shows that (pk)k∈N converges to a

continuous solution to (120) defined on the whole interval [0,T ]

for any T <∞. Such solutions are called global.
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If we consider another solution v to (120) with the initial condition

v̊ , then

∥p(t)−v(t)∥X ≤MeωT∥p̊−v̊∥X+
t∫

0

∥T(t−s)(F(p(s))−F(v(s)))∥Xds

≤ MeωT∥p̊ − v̊∥X +MeωTL

t∫
0

∥p(s)− v(s)∥Xds

and Gronwall’s inequality gives

∥p(t)− v(t)∥X ≤ MeωT eMLTeωT ∥p̊ − v̊∥X , 0 ≤ t ≤ T ,

so that we obtain that the solution is (Lipschitz) continuous with

respect to the initial data and is unique (by putting p̊ = v̊).

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



However, it is easy to see that even for a simple nonlinearities such

as F(u) = u2 we have

|F(u)− F(v)| = |(u + v)||u − v |

and thus F is Lipschitz continuous as long as we restrict u and v

to satisfy |u|, |v | ≤ K for some constant K . Thus, a quadratic

nonlinearity is Lipschitz continuous, but not globally, as the

Lipschitz constant depends on bounds for u and v . Functions like

this are called locally Lipschitz.
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Precisely, F is said to satisfy a local Lipschitz condition on X if for

any c > 0 there is L = Lc such that

∥F(u)− F(v)∥X ≤ Lc∥u − v∥X , (124)

whenever ∥u∥X , ∥v∥X ≤ c .

In such a case we cannot use directly (123), as the constant L

changes with the iterates and can grow to infinity. We can,

however, use the same argument if we make sure beforehand that

all the iterates will stay in a fixed bounded set of X . We can prove

the following result.
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Theorem 23

Let F : X → X be a locally Lipschitz function. If A is the

generator of a semigroup (T(t))t≥0, then for every p̊ ∈ X and

every t0 ∈ R there is tmax > t0, such that the Cauchy problem

∂tp = Ap + F(p), t > 0,

p|t=t0 = p̊, (125)

has a unique mild solution p on [t0, tmax). Moreover, if tmax <∞,

then

lim
t→tmax

∥p(t)∥X = ∞.
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The above theorem does not address the question whether our

mild solution is the solution to (125), that is, whether it can be

differentiated and whether it belongs to DA and thus satisfies the

boundary conditions. We only note here that for p to be a classical

solution to (125) it suffices that n̊ ∈ DA and p → F(p) be

continuously differentiable.
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Let us return to the epidemiological problem (116) with F given by

(117)–(118). Our state space is X = L1([0,∞))3 = L1([0,∞),R3)

and

∥p∥X = ∥(s, i , r)∥X = ∥s∥L1([0,∞)) + ∥i∥L1([0,∞)) + ∥r∥L1([0,∞)).

To simplify discussion, we only consider the intercohort infection

and disregard r .
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Then

F(p1)− F(p2) = −
∞∫
0

Ki1da 0

∞∫
0

Ki1da 0


 s1

i1

−

 −
∞∫
0

Ki2da 0

∞∫
0

Ki2da 0


 s2

i2



=

 −s1
∞∫
0

Ki1da+ s2
∞∫
0

Ki2da

s1
∞∫
0

Ki1da− s2
∞∫
0

Ki2da

 .
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It is now easy to see that F is locally Lipschitz continuous as

∥F(p1)− F(p2)∥X

≤ 2

∞∫
0

∣∣∣∣∣∣s1(a)
∞∫
0

K (α)i1(α)dα− s2(a)

∞∫
0

K (α)i2(α)dα

∣∣∣∣∣∣ da
≤ 2

 ∞∫
0

|s1(a)− s2(a)|
∞∫
0

K (α)|i1(α)|dαda

+

∞∫
0

|s2(a)|
∞∫
0

K (α)|i1(α)− i2(α)|dαda

 ≤ C∥(s1 − s2, i1 − i2)∥X ,

where C = 2 supa∈R+
K (a)max{∥i1∥L1([0,∞)), ∥s2∥L1([0,∞))}. Hence,

the problem has a unique solution defined at least on some interval

[0, δ].

J. BanasiakDepartment of Mathematics and Applied MathematicsUniversity of Pretoria, Pretoria, South AfricaAge-structured population models - from Fibonacci to McKendrick-von Foerster models



We note that the case with intracohort infection the situation is

slightly different as the product is of two integrable functions not

necessarily is integrable. However, from Proposition 2, we know

that if s̊, i̊ ∈ X1,∞ := L1([0,∞)) ∩ L∞([0,∞)), then the solution

also is in this space and so is the product i · s.

∥F(p1)− F(p2)∥X1,∞ ≤ 2

∞∫
0

|K (a)(i1(a)s1(a)− s2(a)i2(a))| da

≤ 2 sup
a∈R+

K (a)

∞∫
0

(|s1(a)− s2(a)||i1(a)|da+ |s2(a)||i1(a)− i2(a)|) da

≤ C∥(s1 − s2, i1 − i2)∥X1,∞ ,

for appropriate C and, as above, there exists a mild solution to

(116) on some interval [0, δ].
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Can this solution be extended to [0,∞)? We observe that if

i , s ≥ 0 then in, say, intercohort case,

∥p(t)∥X =

∞∫
0

(|i(a, t)|+ |s(a, t)|)da =

∞∫
0

(i(a, t) + s(a, t))da

=

∞∫
0

p(a, t)da,

where p is the solution of the equation obtained by adding together

(94)–(95). Since we know that p exists for all t, ∥p(t)∥X would be

bounded for any finite t and thus would be extendable to [0,∞).
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If we look at the iterates (121), we see that, since p̊ ≥ 0 and the

linear semigroup (T(t))t≥0 preserves positivity, the iterates, and

thus the solution, will be positive if F(u) ≥ 0 for u ≥ 0. However,

clearly F is not positive.

To solve this problem, we observe that the iterations in Theorem

23 are performed on a fixed ball in X (or X1,∞). This means that

in the iterations we can always assume that the argument p of F

satisfies ∥p∥ ≤ C with respective norm, for some constant C .
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Then we observe that the problem (125) is equivalent to

∂tp = (Ap − ωp) + (ωp + F(p)) = Aωp + Fω(p)

for any ω ∈ R. It is easy to see that the semigroup generated by

Aω is (Tω(t))t≥0 = {e−ωtT(t)}t≥0. The semigroup (Tω(t))t≥0

also preserves positivity. Therefore p is the mild solution to

p(t) = Tω(t)p̊ +

∫ t

0
Tω(t − s)Fλ(p(s)) ds, 0 ≤ t < δ. (126)
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In our case we have

Fω(n) =

 −
∞∫
0

K (a)i(a)da 0

∞∫
0

K (a)i(a)da 0


 s

i

+ ω

 s

i


 −s(a)

∞∫
0

K (a)i(a)da+ ωs(a)

s(a)
∞∫
0

K (a)i(a)da+ ωi(a)

 ,

and we see that if we take ω > C supa∈R+
K (a), then Fω(n) ≥ 0

for any p ≥ 0 satisfying ∥p∥ ≤ C . Thus all iterates are

nonnegative and thus the solution is nonnegative. By the earlier

argument, we have global solvability of the age structured

epidemiological problem.
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