Toolbox to analyse discrete time models

Stéphanie Portet
Stephanie.Portet@umanitoba.ca

Department of Mathematics
March 2023

Outline

(1) Definitions

(2) First-order linear equations
(3) Higher-order linear equations

4 First-order linear systems
(5) Nonlinear systems

Order of a difference equation

Definition

The order of a difference equation

$$
f\left(x_{t+p}, x_{t+p-1}, \ldots, x_{t+1}, x_{t}, t\right)=0
$$

is the difference between the largest and the smallest arguments p appearing in it.

Definition

The difference equation is called autonomous if f does not depend explicitly on t and it is called nonautonomous otherwise.

Definition

Let

$$
x_{t+p}+a_{1} x_{t+p-1}+a_{2} x_{t+p-2}+\cdots+a_{p-1} x_{t+1}=b_{t} .
$$

If the coefficients $a_{j}, j=1, \ldots, p$ are constant or depend on t but do not depend on the state variables, then the difference equation is said to be linear; otherwise, it is nonlinear.

Definition

If the difference equation is linear and $b_{t}=0$ for all t, then it is said to be homogeneous; otherwise, it is said to be nonhomogeneous.

Definition

A solution of the difference equation

$$
f\left(x_{t+k}, x_{t+k-1}, \ldots, x_{t+1}, x_{t}, t\right)=0
$$

is a function $x_{t}, t=0,1,2, \ldots$ such that when substituted into the equation makes it a true statement.

Definition

A point x^{*} in the domain of f is said to be an equilibrium point (an equilibrium solution) of the first-order difference equation

$$
x_{t+1}=f\left(x_{t}\right)
$$

if it is a fixed point of f i.e. a constant solution that satisfies

$$
f\left(x^{*}\right)=x^{*}
$$

Graphically, if $f: \mathbb{R} \rightarrow \mathbb{R}$, an equilibrium point is the x-coordinate of a point where the graph of $f(x)$ intersects the diagonal $y=x$ (since at such a point, $x=f(x)$).

Outline

(1) Definitions

(2) First-order linear equations

(3) Higher-order linear equations

4 First-order linear systems
(5) Nonlinear systems

First-order linear homogeneous equations with constant coefficients

Consider the first-order linear homogeneous difference equation with constant coefficients

$$
x_{t+1}=a x_{t}
$$

If an initial value x_{0} is known, the solution is unique and is given by

$$
x_{t}=a^{t} x_{0} .
$$

The asymptotic behavior of the solution depends on the value of a :

- if $|a|<1$, then $\lim _{t \rightarrow \infty} x_{t}=0$, i.e., x_{t} converges to 0 ,
- if $a=1$, then for all $t \geq 0, x_{t}=x_{0}$, i.e., x_{t} remains constant,
- if $a=-1$, then for all $t \geq 0, x_{t}=(-1)^{t} x_{0}$, i.e., x_{t} alternates,
- if $|a|>1$ then x_{t} diverges (either approaches infinity if $a>1$ or diverges with alternating signs if $a<-1$).

First-order linear homogeneous equations with non-constant coefficients

Proposition

Consider the first-order linear homogeneous difference equation defined for $t=0,1,2, \ldots$ by

$$
x_{t+1}=a_{t} x_{t}
$$

If an initial value x_{0} is known, then the solution is unique and is given by

$$
x_{t}=\left[\prod_{i=0}^{t-1} a_{i}\right] x_{0}
$$

Proposition

Consider the first-order linear nonhomogeneous difference equation defined for $t=0,1,2, \ldots$ by

$$
x_{t+1}=a_{t} x_{t}+b_{t}
$$

If an initial value x_{0} is known, then the solution is unique and is given by

$$
x_{t}=\left[\prod_{i=0}^{t-1} a_{i}\right] x_{0}+b_{t-1}+\sum_{i=0}^{t-2}\left[\prod_{r=i+1}^{t-1} a_{r}\right] b_{i}
$$

In particular,

- If $x_{t+1}=a x_{t}+b_{t}$, then $x_{t}=a^{t} x_{0}+\sum_{i=0}^{t-1} a^{t-i-1} b(i)$.
- If $x_{t+1}=a x_{t}+b$, then

$$
x_{t}= \begin{cases}a^{t} x_{0}+b\left[\frac{a^{t}-1}{a-1}\right] & a \neq 1 \\ x_{0}+b t & a=1\end{cases}
$$

Outline

(1) Definitions

(2) First-order linear equations
(3) Higher-order linear equations

4 First-order linear systems
(5) Nonlinear systems

Higher-order linear equations

Principle of superposition

If $x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{k}$ are solutions of a $k^{t h}$-order linear homogeneous difference equation, then

$$
c_{1} x_{t}^{1}+c_{2} x_{t}^{2}+\ldots, c_{k} x_{t}^{k}
$$

is also solution of the $k^{t h}$-order linear homogeneous difference equation.

Definition

A set of k linearly independent solutions of a $k^{t h}$-order linear homogeneous difference equation is called a fundamental set of solutions.

Higher-order linear equations

Theorem
If the Casoratian of $x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{k}$ satifies

$$
C\left(x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{k}\right) \neq 0, \quad \forall t
$$

then $x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{k}$ are k linearly independent functions.

Definition

The Casoratian of k functions $x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{k}$ is defined as

$$
C\left(x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{k}\right)=\operatorname{det}\left(\begin{array}{cccc}
x_{t}^{1} & x_{t}^{2} & \ldots & x_{t}^{k} \\
x_{t+1}^{1} & x_{t+1}^{2} & \cdots & x_{t+1}^{k} \\
x_{t+2}^{1} & x_{t+2}^{2} & \cdots & x_{t+2}^{k} \\
\vdots & & & \\
x_{t+k-1}^{1} & x_{t+k-1}^{2} & \cdots & x_{t+k-1}^{k}
\end{array}\right)
$$

Higher-order linear equations

Definition

Let $\left\{x_{t}^{1}, x_{t}^{2}, \ldots, x_{t}^{k}\right\}$ be a fundamental set of solutions of $k^{t h}$-order linear homogeneous difference equation. Then the general solution of the $k^{\text {th }}$-order linear homogeneous difference equation is given by

$$
x_{t}=\sum_{i=1}^{k} c_{i} x_{t}^{i},
$$

for arbitrary constants $c_{i}, i=1, \ldots, k$

Higher-order linear equations with constant coefficients

An $m^{t h}$-order linear homogeneous equation with constant coefficients is defined as

$$
\begin{equation*}
a_{0} x_{t+m}+a_{1} x_{t+m-1}+\cdots+a_{m} x_{t}=0 \tag{1}
\end{equation*}
$$

The fundamental set is composed of m linear independent solutions of the form $x_{t}=\lambda^{t}$, where λ are the roots (eigenvalues) of the characteristic equation

$$
a_{0} \lambda^{m}+a_{1} \lambda^{m-1}+\cdots+a_{m}=0
$$

- If eigenvalues are all real and distinct, the general solution takes the form

$$
x_{t}=c_{1} \lambda_{1}^{t}+\cdots+c_{m} \lambda_{m}^{t}
$$

where $c_{i}, i=1, \ldots, m$ are arbitrary.

- If there is a real eigenvalue λ_{1} of multiplicity k, then k linearly independent solutions can be formed by multiplying by powers of t :

$$
\lambda_{1}^{t}, t \lambda_{1}^{t}, t^{2} \lambda_{1}^{t}, \ldots, t^{k-1} \lambda_{1}^{t}
$$

- If there are complex eigenvalues $\lambda_{1,2}=r(\cos \phi \pm i \sin \phi)$ of multiplicty k, then there are $2 k$ linearly independent solutions:

$$
r^{t} \cos (t \phi), r^{t} \sin (t \phi), t r^{t} \cos (t \phi), t r^{t} \sin (t \phi), \ldots, t^{k-1} r^{t} \cos (t \phi), t^{k-1} r^{t} \sin (t \phi)
$$

Higher-order linear equations with constant coefficients

Let the general solution of (1) be

$$
x_{t}=\sum_{i=1}^{m} c_{i} \lambda_{i}^{t}
$$

The asymptotic behavior of the general solution is determined by the behavior of the dominant solution (corresponding to the dominant eigenvalue). Suppose that there exists a strictly dominant eigenvalue $\left|\lambda_{1}\right|>\left|\lambda_{i}\right|$, then

$$
x_{t}=\lambda_{1}^{t}\left[c_{1}+\sum_{i=2}^{m} c_{i}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{t}\right]
$$

Since $\left|\frac{\lambda_{i}}{\lambda_{1}}\right|<1$, for all $i \neq 1$, it follows that $\left\{\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{t}\right\}$ is a geometric sequence with general term $\left|\frac{\lambda_{i}}{\lambda_{1}}\right|<1$, and thus

$$
\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{t} \rightarrow 0 \quad \text { as } t \rightarrow+\infty
$$

Then

$$
\lim _{t \rightarrow+\infty} x_{t}=\lim _{t \rightarrow+\infty} c_{1} \lambda_{1}^{t} .
$$

Definition

Suppose that the k eigenvalues of a characteristic equation are λ_{1}, \cdots, λ_{k}. An eigenvalue λ_{i} such as $\left|\lambda_{i}\right| \geq\left|\lambda_{j}\right|$ for all $j \neq i$ is called a dominant eigenvalue. If $\left|\lambda_{i}\right|>\left|\lambda_{j}\right|$ for all $j \neq i$, then λ_{i} is called a strictly dominant eigenvalue.

Higher-order linear equations with constant coefficients

 If $\lambda_{1} \in \mathbb{R}$. Then- if $\lambda_{1}>1$, then $\lim _{t \rightarrow+\infty} c_{1} \lambda_{1}^{t}=\infty$ (monotonically diverges \Rightarrow unstable equilibrium),
- if $\lambda_{1}=1$, then the solution is constant,
- if $0<\lambda_{1}<1$: $\lim _{t \rightarrow+\infty} c_{1} \lambda_{1}^{t}=0$ (monotonically decreases to $0 \Rightarrow$ asymptotically stable equilibrium),
- if $-1<\lambda_{1}<0: \lim _{t \rightarrow+\infty} c_{1} \lambda_{1}^{t}=0$ (oscillating around zero and converging to 0 \Rightarrow asymptotically stable equilibrium),
- if $\lambda_{1}=-1$, the system oscillates between two values c_{1} and $-c_{1}$,
- and if $\lambda_{1}<-1$, the system is oscillating but increasing in magnitude (unstable equilibrium).
If $\lambda_{1} \in \mathbb{C}$. Then
- if $\left|\lambda_{1}\right|>1$, the system oscillates but increases in magnitude (unstable equilibrium),
- if $\left|\lambda_{1}\right|=1$, the system oscillates but constant magnitude,
- if $\left|\lambda_{1}\right|<1$, the system oscillates but converges to 0 (asymptotically stable equilibrium).

Outline

(1) Definitions
(2) First-order linear equations
(3) Higher-order linear equations

4 First-order linear systems

(5) Nonlinear systems

$$
a_{0} x_{t+m}+a_{1} x_{t+m-1}+\cdots+a_{m} x_{t}=b(t)
$$

Assume that $x_{t}=x(t)$. Let $Y(t)=\left(y_{1}(t), y_{2}(t), \ldots, y_{m}(t)\right)$, which satisfies

$$
\begin{aligned}
y_{1}(t) & =x(t) \\
y_{2}(t) & =x(t+1) \\
\vdots & \\
y_{m}(t) & =x(t+m-1)
\end{aligned}
$$

The first element $y_{1}(t)$ is the solution $x(t)$. Hence a first-order system in Y is

$$
\begin{aligned}
y_{1}(t+1) & =y_{2}(t) \\
y_{2}(t+1) & =y_{3}(t) \\
\vdots & \\
y_{m-1}(t+1) & =y_{m}(t) \\
y_{m}(t+1) & =-a_{1} y_{m}(t)-\cdots-a_{m-1} y_{2}(t)-a_{m} y_{1}(t)+b(t)
\end{aligned}
$$

In matrix form,

$$
Y(t+1)=A Y(t)+B
$$

where

$$
A=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
-a_{m} & -a_{m-1} & -a_{m-2} & \cdots & -a_{1}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
b(t)
\end{array}\right)
$$

A solution to a first-order linear difference system

$$
X(t+1)=A X(t)+B
$$

is the superposition of two solutions:

- the general solution X_{h} to the homogeneous system

$$
X_{h}(t+1)=A X_{h}(t)
$$

- and a particular solution X_{p} to the nonhomogeneous system

$$
X_{p}(t+1)=A X_{p}(t)+B
$$

The general solution to the nonhomogeneous system is

$$
X(t)=X_{h}(t)+X_{p}(t)
$$

The solution of

$$
X(t+1)=A X(t)
$$

is

$$
X(t)=A^{t} X(0)
$$

To solve

$$
X(t+1)=A X(t)
$$

where $A=\left(a_{i j}\right)$ is an $m \times m$ constant matrix.

- Assume that a solution has the following form $X(t)=\lambda^{t} V$ where V is an nonzero m-column vector and λ is a constant.
- Substituting $\lambda^{t} V$ into the linear system gives

$$
\lambda^{t+1} V=A \lambda^{t} V
$$

then

$$
\begin{equation*}
(A-\lambda I) V=\mathbf{0} \tag{2}
\end{equation*}
$$

where I is the $m \times m$ identity matrix and $\mathbf{0}$ is the zero vector.

- Hence, nonzero solutions V are obtained if and only if

$$
\begin{equation*}
\operatorname{det}(A-\lambda I)=0 \tag{3}
\end{equation*}
$$

Equation (3) is the characteristic equation of matrix A.

- m solutions $\lambda_{i}, i=1, \ldots, m$ of Eq. (3) are the eigenvalues of A.

Nonzero solutions V_{i} are the eigenvectors corresponding to eigenvalues λ_{i} obtained by $\left(A-\lambda_{i} I\right) V_{i}=\mathbf{0}$.

$$
X(t+1)=A X(t)
$$

where $A=\left(a_{i j}\right)$ is an $m \times m$ constant matrix.
The general solution is a linear combination of m linearly independent solutions $X_{i}=\lambda_{i}^{t} V_{i}, i=1, \ldots, m$:

$$
X(t)=\sum_{i=1}^{m} c_{i} \lambda_{i}^{t} V_{i}
$$

where c_{i} are arbitrary constants.

Understanding the asymptotic behavior of the solution

$$
X(t)=\sum_{i=1}^{m} c_{i} \lambda_{i}^{t} V_{i}
$$

does not require the knowledge of the eigenvectors.
The asymptotic behavior is determined by the eigenvalues and their magnitude, as the solution of $X(t+1)=A X(t)$ is $X(t)=A^{t} X(0)$.

Definition

Suppose the $k \times k$ matrix A has k eigenvalues $\lambda_{1}, \cdots, \lambda_{k}$. The spectral radius of matrix A is denoted as $\rho(A)$ and defined as

$$
\rho(A)=\max _{i \in\{1,2, ., k\}}\left\{\left|\lambda_{i}\right|\right\} .
$$

Theorem

Let A be a constant $k \times k$ matrix. Then the spectral radius of A satisfies $\rho(A)<1$ if and only if $\lim _{t \rightarrow \infty} A^{t}=\mathbf{0}$.

Structured populations

In some species, the amount of reproduction varies greatly with the age of individuals.

Type I: organisms have high survivorship throughout life until old age sets in, and then survivorship declines dramatically to 0 . Humans are type I organisms. Type III: organisms, in contrast, have very low survivorship early in life, and few individuals live to old age.

Age structure or developmental stage of population matter.

Example: US human population in 1964

To capture the effects of age structure on population growth: 10 age classes.

- $x_{1}(t)=\#$ of individuals of age 0 to 4 at time t
- $x_{2}(t)=\#$ of individuals of age 5 to 9 at time t
- $x_{3}(t)=\#$ of individuals of age 10 to 14 at time t
- $x_{4}(t)=\#$ of individuals of age 15 to 19 at time t
- $x_{5}(t)=\#$ of individuals of age 20 to 24 at time t
- $x_{6}(t)=\#$ of individuals of age 25 to 29 at time t
- $x_{7}(t)=\#$ of individuals of age 30 to 34 at time t
- $x_{8}(t)=\#$ of individuals of age 35 to 39 at time t
- $x_{9}(t)=\#$ of individuals of age 40 to 44 at time t
- $x_{10}(t)=\#$ of individuals of age 45 to 49 at time t

Structured population dynamics: discrete models, general

 case- population categorized into a finite number of classes $i=1,2, \cdots, m$
- $x_{i}(t)$ number or density of individuals in the $i^{\text {th }}$ class at time $t=0,1,2, \cdots$
- If only birth and death processes (no migration):

$$
x(t+1)=P x(t)
$$

where $P=T+F$ is the projection matrix

Structured population dynamics: discrete models, general

 case$$
x(t+1)=P x(t)
$$

- $T=\left[t_{i j}\right]$ transition matrix
- $t_{i j}$ fraction of j-class individual expected to survive and move to class i per unit of time
- $t_{i j}$ fraction of individuals in class i that survive and remain in class i after one unit of time
- No individual can shrink or grow more than one class in one unit of time
- $0 \leq t_{i j} \leq 1$ and $\sum_{i=1}^{m} t_{i j} \leq 1$ for all j
- $F=\left[f_{i j}\right]$ fertility matrix
- $f_{i j}$ the expected number of (surviving) i-class offspring per j-class individual per unit of time
- $f_{i j} \geq 0$

A particular case: Leslie model (time interval coincides with the structure interval)

$$
\begin{aligned}
& x_{1}(t+1)=b_{1} x_{1}(t)+b_{2} x_{2}(t)+b_{3} x_{3}(t)+\ldots b_{m} x_{m}(t) \\
& x_{2}(t+1)=s_{1} x_{1}(t)
\end{aligned}
$$

$$
x_{m}(t+1)=s_{m-1} x_{m-1}(t)
$$

$$
X(t+1)=\left(\begin{array}{c}
x_{1}(t+1) \\
x_{2}(t+1) \\
\vdots \\
x_{m}(t+1)
\end{array}\right)=\left(\begin{array}{ccccc}
b_{1} & b_{2} & \ldots & b_{m-1} & b_{m} \\
s_{1} & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & s_{m-1} & 0
\end{array}\right)\left(\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{m}(t)
\end{array}\right)=L X(t)
$$

Leslie model

$$
L=\left(\begin{array}{ccccc}
b_{1} & b_{2} & \ldots & b_{m-1} & b_{m} \\
s_{1} & 0 & \ldots & 0 & 0 \\
0 & s_{2} & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & s_{m-1} & 0
\end{array}\right)
$$

- L is called the Leslie matrix
- fertilities or fecundities on the first row
- survival probabilities on the subdiagonal
- all other entries in the Leslie matrix are zero.

Life cycle and projection matrix

Life cycle graph of the projection matrix on m age classes: each node represents each age group x_{i}, and arcs represent relation between two groups. An arrow connects the node j to i if the $i j^{t h}$ element in the projection matrix is nonzero.

Example: US population in 1964

Data:
$b=(0,0.001,0.0878,0.3487,0.4761,0.3377,0.1833,0.0761,0.0174,0.001)$
$s=(0.9966,0.9983,0.9979,0.9968,0.9961,0.9947,0.9923,0.9987,0.9831)$

Perron-Frobenius Theorem

If M is a nonnegative primitive matrix, then:

- M has a positive eigenvalue λ_{1} of maximum modulus.
- λ_{1} is a simple root of the characteristic polynomial.
- For every other eigenvalue $\lambda_{i}, \lambda_{1}>\left|\lambda_{i}\right|$ (it is strictly dominant).
-

$$
\begin{aligned}
& \min _{i} \sum_{j} m_{i j} \leq \lambda_{1} \leq \max _{i} \sum_{j} m_{i j} \\
& \min _{j} \sum_{i} m_{i j} \leq \lambda_{1} \leq \max _{j} \sum_{i} m_{i j}
\end{aligned}
$$

- Row and column eigenvectors associated with λ_{1} are strictly positive.
- The sequence M^{t} is asymptotically one-dimensional, its columns converge to the column eigenvector associated with λ_{1}; and its rows converges to the row eigenvector associated with λ_{1}.

Definition

A matrix A whose entries are nonnegative is called a nonnegative matrix, denoted $A \geq 0$.

Definition

A matrix A whose entries are positive is called a positive matrix, denoted $A>0$.

Irreducible

Definition
 If there exits a directed path from node i to j for every node i and j in the digraph, then the digraph is said to be strongly connected.

Theorem
The digraph of matrix A is strongly connected if and only if A is irreducible.

Primitivity

Definition (Primitivity)

If an irreducible, nonnegative matrix A has h eigenvalues $\lambda_{1}, \lambda_{2}, \ldots \lambda_{h}$ of maximum modulus $\left(\rho(A)=\left|\lambda_{i}\right|, i=1,2, \ldots, h\right)$, then A is called primitive if $h=1$ and imprimitive if $h>1$. The value of h is called the index of imprimitivity.

The index of imprimitivity is the number of eigenvalues of matrix A with maximum modulus (with magnitude equal to $\rho(A)$).

Theorem

A nonnegative matrix A is primitive if and only if some power of A is positive (i.e. $A^{p}>0$ for some integer $p \geq 1$).

Theorem (Berman and Plemmons, 1994)

An irreducible matrix is primitive if its trace is positive.

Fundamental Theorem of Demography

Suppose that the nonnegative matrix $P \geq 0$ is irreducible and primitive. Let λ_{1} be the strictly dominant eigenvalue of P and $V_{1}>0$ be an associated eigenvector (called stable distribution). Let $x(t)$ be the solution of the linear matrix equation $x(t+1)=P x(t), t \in[0,+\infty)$, with an initial state satisfying $0 \leq x(0) \neq 0$, and let $p(t)=|x(t)|=\sum_{i=1}^{n} x_{i}(t)$. Then

- $\lim _{t \rightarrow+\infty} \frac{x(t)}{p(t)}=\frac{V_{1}}{\left|V_{1}\right|}$
- $\lim _{t \rightarrow+\infty} p(t)=0 \quad$ if $\quad \lambda_{1}<1$, and $\lim _{t \rightarrow+\infty} p(t)=+\infty \quad$ if $\quad \lambda_{1}>1$.
(The strictly dominant eigenvalue λ_{1} is the (inherent) growth rate of the population)

$$
x(t+1)=P x(t)
$$

- λ_{1} dominant eigenvalue of P
- Stable stage distribution V_{1} (right eigenvector associated to λ_{1})

$$
P V_{1}=\lambda_{1} V_{1}
$$

For P, any initial population stage structure projected forward will approach the stable stage distribution V_{1}, where each stage class increases in size λ_{1} times each time period.

- Reproductive value of each stage W_{1} (left eigenvector associated to λ_{1})

$$
W_{1}^{T} P=\lambda_{1} W_{1}^{T}
$$

These reproductive values estimate the expected reproductive contribution of each stage to population growth.

- Total population $p(t)=\sum_{i=1}^{n} x_{i}(t)$

$$
p(t)=\lambda_{1}^{t} p_{0}
$$

define $\lambda_{1}=e^{r}$ then

$$
\frac{d p}{d t}=r p
$$

Outline

(1) Definitions

(2) First-order linear equations
(3) Higher-order linear equations

4 First-order linear systems
(5) Nonlinear systems

$1^{\text {st }}$-order scalar nonlinear equation

Cobwebbing is a graphical method to answer qualitative questions about the solution of

$$
x_{t+1}=f\left(x_{t}\right)
$$

In the $\left(x_{t} x_{t+1}\right)$-plane, sketch $x_{t+1}=x_{t}$ and $x_{t+1}=f\left(x_{t}\right)$:

- any intersection of these graphs is an equilibrium solution of the difference equation.
- to investigate the behavior of the solutions
- choose a starting value x_{0}, and begin at the point $\left(x_{0}, x_{0}\right)$ in the $\left(x_{t} x_{t+1}\right)$-plane.
- draw a vertical line to the curve $x_{t+1}=f\left(x_{t}\right)$; this reaches the curve at $\left(x_{0}, f\left(x_{0}\right)\right)=\left(x_{0}, x_{1}\right)$.
- draw a horizontal line to the diagonal $x_{t+1}=x_{t}$; this reaches the diagonal at the point $\left(x_{1}, x_{1}\right)$.
- Repeat the process to arrive at (x_{2}, x_{2}) and indefinitely until the behavior of the equation with this starting value becomes clear.
- If necessary, repeat the process with other starting values.

Nonlinear systems of difference equations

Consider the system

$$
\begin{align*}
& x_{t+1}=f\left(x_{t}, y_{t}\right) \tag{4}\\
& y_{t+1}=g\left(x_{t}, y_{t}\right),
\end{align*}
$$

where f and g are nonlinear function. An equilibrium (\bar{x}, \bar{y}) to (4) satisfies the fixed point problem

$$
\begin{aligned}
& \bar{x}=f(\bar{x}, \bar{y}) \\
& \bar{y}=g(\bar{x}, \bar{y}) .
\end{aligned}
$$

What is the stability of the equilibrium (\bar{x}, \bar{y}) ?

Local stability: linearization

Linearization of the nonlinear system (4) at the equilibrium (\bar{x}, \bar{y}) is

$$
V_{t+1}=J V_{t}
$$

where $V_{t}=\left(u_{t}, v_{t}\right)^{T}$ (with small perturbations $u_{t}=x_{t}-\bar{x}$ and $v_{t}=y_{t}-\bar{y}$ about $\left.(\bar{x}, \bar{y})\right)$ and J is the Jacobian of $(f, g)^{T}$ evaluated at (\bar{x}, \bar{y}),

$$
J=\left(\begin{array}{cc}
\left.\frac{\partial f}{\partial x}\right|_{\bar{x}, \bar{y}} & \left.\frac{\partial f}{\partial y}\right|_{\bar{x}, \bar{y}} \\
\left.\frac{\partial g}{\partial x}\right|_{\bar{x}, \bar{y}} & \left.\frac{\partial g}{\partial y}\right|_{\bar{x}, \bar{y}}
\end{array}\right) .
$$

Eigenvalues of the Jacobian J determine the local stability of (\bar{x}, \bar{y}) :

- if $\left|\lambda_{i}\right|<1$ for $i=1,2$, i.e, if the spectral radius $\rho(J)<1$, then $\lim _{t \rightarrow \infty} J^{t}=0$.

Therefore $\lim _{t \rightarrow \infty} V_{t}=0$. This, in turn, implies that

$$
\begin{array}{ll}
\lim _{t \rightarrow \infty} x_{t}-\bar{x}=0, & \lim _{t \rightarrow \infty} x_{t}=\bar{x} \\
\lim _{t \rightarrow \infty} y_{t}-\bar{y}=0, \quad \lim _{t \rightarrow \infty} y_{t}=\bar{y}
\end{array}
$$

(\bar{x}, \bar{y}) is locally asymptotically stable.

- If one of the eigenvalues has modulus larger than to 1 , then V_{t} does not converge, implying that (\bar{x}, \bar{y}) is unstable.

Theorem: Condition for stability

Assume $\frac{d f}{d x}=f^{\prime}$ is continuous on an open interval \mathcal{I} containing \bar{x}, and \bar{x} is a fixed point of f. Then \bar{x} is a locally asymptotically stable equilibrium of $x_{t+1}=f\left(x_{t}\right)$ if

$$
\left|f^{\prime}(\bar{x})\right|<1
$$

and unstable if

$$
\left|f^{\prime}(\bar{x})\right|>1 .
$$

Another formulation of this result is as follows:

Theorem

Let f be a continuously differentiable function $\left(C^{1}\right)$, and \bar{x} be a fixed point of f.
(1) If $\left|f^{\prime}(\bar{x})\right|<1$, then there is an open interval $\mathcal{I} \ni \bar{x}$ such that $\lim _{k \rightarrow \infty} f^{k}(x)=\bar{x}$ for all $x \in \mathcal{I}$.
(2) If $\left|f^{\prime}(\bar{x})\right|>1$, then there is an open interval $\mathcal{I} \ni \bar{x}$ such that if $x \in \mathcal{I}$, $x \neq \bar{x}$, then there exists k such that $f^{k}(x) \notin \mathcal{I}$.

Theorem

Let $f(x, y)$ and $g(x, y)$ be two functions with continuous first-order partial derivatives in x and y on some set containing (\bar{x}, \bar{y}). Then the equilibrium (\bar{x}, \bar{y}) of the nonlinear system

$$
\begin{aligned}
& x_{t+1}=f\left(x_{t}, y_{t}\right) \\
& y_{t+1}=g\left(x_{t}, y_{t}\right)
\end{aligned}
$$

is locally asymptotically stable if the eigenvalues of the Jacobian matrix J evaluated at the equilibrium (\bar{x}, \bar{y}) satisfy $\left|\lambda_{i}\right|<1$ if and only if

$$
|\operatorname{tr}(J)|<1+\operatorname{det}(J)<2
$$

The equilibrium is unstable if some $\left|\lambda_{i}\right|>1$, that is, if any one of three inequalities is satisfied

- $\operatorname{tr}(J)>1+\operatorname{det}(J)$,
- or $\operatorname{tr}(J)<-1-\operatorname{det}(J)$,
- or $\operatorname{det}(J)>1$

Figure: The triangular region inside the dashed lines is the region of local asymptotic stability $\left(\left|\lambda_{i}\right|<1\right)$ for the system of difference equations in the $\operatorname{tr}(J)-\operatorname{det}(J)$-plane. The solid curve represents $\operatorname{tr}(J)^{2}=4 \operatorname{det}(J)$, below the curve the eigenvalues are real and above it the eigenvalues are complex conjugate. If the parameters lie outside of the triangular region then at least one eigenvalue satisfies $\left|\lambda_{i}\right|>1$.

$n^{\text {th }}$-order criterium

Theorem

If the solutions $\lambda_{i}, i=1,2, \ldots, n$ of

$$
p(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+a_{3} \lambda^{n-3}+\cdots+a_{n}=0
$$

satisfy $\left|\lambda_{i}\right|<1$ then

- $p(1)>0$
- $(-1)^{n} p(-1)>0$
- $\left|a_{n}\right|<1$

Jury conditions or Schur-Cohn Criteria, for $n=3$

Consider the characteristic polynomial

$$
p(\lambda)=\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+a_{3} .
$$

The solutions $\lambda_{i}, i=1,2,3$, of $p(\lambda)=0$ satisfy $\left|\lambda_{i}\right|<1$ if and only if the following three conditions hold:
(1) $p(1)=1+a_{1}+a_{2}+a_{3}>0$,
(2) $(-1)^{3} p(-1)=1-a_{1}+a_{2}-a_{3}>0$
(3) $1-\left(a_{3}\right)^{2}>\left|a_{2}-a_{3} a_{1}\right|$

