Toolbox to analyse discrete time models

Stéphanie Portet Stephanie.Portet@umanitoba.ca

Department of Mathematics

March 2023

(4) (3) (4) (4) (4)

Outline

Definitions

- 2 First-order linear equations
- 3 Higher-order linear equations
- 4 First-order linear systems
- 5 Nonlinear systems

Order of a difference equation

Definition

The order of a difference equation

$$f(x_{t+p}, x_{t+p-1}, \ldots, x_{t+1}, x_t, t) = 0$$

is the difference between the largest and the smallest arguments p appearing in it.

< ∃ ►

The difference equation is called *autonomous* if f does not depend explicitly on t and it is called *nonautonomous* otherwise.

Definition

Let

$$x_{t+p} + a_1 x_{t+p-1} + a_2 x_{t+p-2} + \dots + a_{p-1} x_{t+1} = b_t$$

If the coefficients a_j , j = 1, ..., p are constant or depend on t but **do not** depend on the state variables, then the difference equation is said to be *linear*, otherwise, it is *nonlinear*.

Definition

If the difference equation is linear and $b_t = 0$ for all t, then it is said to be *homogeneous*; otherwise, it is said to be *nonhomogeneous*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A solution of the difference equation

$$f(x_{t+k}, x_{t+k-1}, \ldots, x_{t+1}, x_t, t) = 0$$

is a function x_t , t = 0, 1, 2, ... such that when substituted into the equation makes it a true statement.

★ Ξ ► 4

A point x^* in the domain of f is said to be an **equilibrium point** (an equilibrium solution) of the first-order difference equation

$$x_{t+1} = f(x_t)$$

if it is a fixed point of f i.e. a constant solution that satisfies

$$f(x^*)=x^*.$$

Graphically, if $f : \mathbb{R} \to \mathbb{R}$, an equilibrium point is the *x*-coordinate of a point where the graph of f(x) intersects the diagonal y = x (since at such a point, x = f(x)).

▲御▶ ▲陸▶ ▲臣

Outline

Definitions

- 2 First-order linear equations
- 3 Higher-order linear equations
- 4 First-order linear systems
- 5 Nonlinear systems

First-order linear homogeneous equations with constant coefficients

Consider the first-order linear homogeneous difference equation with constant coefficients

$$x_{t+1} = ax_t$$

If an initial value x_0 is known, the solution is unique and is given by

$$x_t = a^t x_0.$$

The asymptotic behavior of the solution depends on the value of a:

- if |a| < 1, then $\lim_{t\to\infty} x_t = 0$, i.e., x_t converges to 0,
- if a = 1, then for all $t \ge 0$, $x_t = x_0$, i.e., x_t remains constant,
- if a = -1, then for all $t \ge 0$, $x_t = (-1)^t x_0$, i.e., x_t alternates,
- if |a| > 1 then xt diverges (either approaches infinity if a > 1 or diverges with alternating signs if a < −1).

・ロト ・回ト ・ヨト ・ヨ

First-order linear homogeneous equations with non-constant coefficients

Proposition

Consider the first-order linear homogeneous difference equation defined for $t = 0, 1, 2, \ldots$ by

$$x_{t+1} = a_t x_t.$$

If an initial value x_0 is known, then the solution is unique and is given by

$$x_t = \left[\prod_{i=0}^{t-1} a_i\right] x_0.$$

Proposition

Consider the first-order linear nonhomogeneous difference equation defined for t = 0, 1, 2, ... by

$$x_{t+1} = a_t x_t + b_t.$$

If an initial value x_0 is known, then the solution is unique and is given by

$$x_{t} = \left[\prod_{i=0}^{t-1} a_{i}\right] x_{0} + b_{t-1} + \sum_{i=0}^{t-2} \left[\prod_{r=i+1}^{t-1} a_{r}\right] b_{i}.$$

In particular,

• If
$$x_{t+1} = ax_t + b_t$$
, then $x_t = a^t x_0 + \sum_{i=0}^{t-1} a^{t-i-1} b(i)$.

• If $x_{t+1} = ax_t + b$, then

$$x_t = egin{cases} a^t x_0 + b \left[rac{a^t - 1}{a - 1}
ight] & a
eq 1 \ x_0 + bt & a = 1. \end{cases}$$

イロト イボト イヨト イヨ

Outline

Definitions

- 2 First-order linear equations
- 3 Higher-order linear equations
- 4 First-order linear systems
- 5 Nonlinear systems

(日)

Higher-order linear equations

Principle of superposition

If x_t^1 , x_t^2 ,..., x_t^k are solutions of a k^{th} -order linear homogeneous difference equation, then

$$c_1 x_t^1 + c_2 x_t^2 + \dots, c_k x_t^k$$

is also solution of the k^{th} -order linear homogeneous difference equation.

Definition

A set of k linearly independent solutions of a k^{th} -order linear homogeneous difference equation is called a *fundamental set of solutions*.

Higher-order linear equations

Theorem

If the Casoratian of $x_t^1, x_t^2, \ldots, x_t^k$ satifies

$$C(x_t^1, x_t^2, \dots, x_t^k) \neq 0, \quad \forall t,$$

then x_t^1 , x_t^2 ,..., x_t^k are k linearly independent functions.

Definition

The *Casoratian* of k functions $x_t^1, x_t^2, \ldots, x_t^k$ is defined as

$$C(x_t^1, x_t^2, \dots, x_t^k) = \det \begin{pmatrix} x_t^1 & x_t^2 & \dots & x_t^k \\ x_{t+1}^1 & x_{t+1}^2 & \dots & x_{t+1}^k \\ x_{t+2}^1 & x_{t+2}^2 & \dots & x_{t+2}^k \\ \vdots & & & \\ x_{t+k-1}^1 & x_{t+k-1}^2 & \dots & x_{t+k-1}^k \end{pmatrix}.$$

▲ 御 ▶ ▲ 臣 ▶

Higher-order linear equations

Definition

Let $\{x_t^1, x_t^2, \ldots, x_t^k\}$ be a fundamental set of solutions of k^{th} -order linear homogeneous difference equation. Then the general solution of the k^{th} -order linear homogeneous difference equation is given by

$$\mathbf{x}_t = \sum_{i=1}^k c_i \mathbf{x}_t^i,$$

for arbitrary constants c_i , $i = 1, \ldots, k$

Higher-order linear equations with constant coefficients

An m^{th} -order linear homogeneous equation with constant coefficients is defined as

$$a_0 x_{t+m} + a_1 x_{t+m-1} + \dots + a_m x_t = 0.$$
⁽¹⁾

The fundamental set is composed of *m* linear independent solutions of the form $x_t = \lambda^t$, where λ are the roots (eigenvalues) of the characteristic equation

$$a_0\lambda^m + a_1\lambda^{m-1} + \cdots + a_m = 0.$$

If eigenvalues are all real and distinct, the general solution takes the form

$$x_t = c_1 \lambda_1^t + \cdots + c_m \lambda_m^t,$$

where c_i , $i = 1, \ldots, m$ are arbitrary.

 If there is a real eigenvalue λ₁ of multiplicity k, then k linearly independent solutions can be formed by multiplying by powers of t:

$$\lambda_1^t, t\lambda_1^t, t^2\lambda_1^t, \ldots, t^{k-1}\lambda_1^t.$$

• If there are complex eigenvalues $\lambda_{1,2} = r(\cos \phi \pm i \sin \phi)$ of multiplicity k, then there are 2k linearly independent solutions:

 $r^{t}\cos(t\phi), r^{t}\sin(t\phi), tr^{t}\cos(t\phi), tr^{t}\sin(t\phi), \dots, t^{k-1}r^{t}\cos(t\phi), t^{k-1}r^{t}\sin(t\phi).$

Higher-order linear equations with constant coefficients Let the general solution of (1) be

$$x_t = \sum_{i=1}^m c_i \lambda_i^t.$$

The asymptotic behavior of the general solution is determined by the behavior of the dominant solution (corresponding to the dominant eigenvalue). Suppose that there exists a strictly dominant eigenvalue $|\lambda_1| > |\lambda_i|$, then

$$x_t = \lambda_1^t \left[c_1 + \sum_{i=2}^m c_i \left(\frac{\lambda_i}{\lambda_1} \right)^t
ight].$$

Since $\left|\frac{\lambda_i}{\lambda_1}\right| < 1$, for all $i \neq 1$, it follows that $\left\{ \left(\frac{\lambda_i}{\lambda_1}\right)^t \right\}$ is a geometric sequence with general term $\left|\frac{\lambda_i}{\lambda_1}\right| < 1$, and thus

$$\left(\frac{\lambda_i}{\lambda_1}\right)^t o 0 \quad \text{as } t \to +\infty.$$

Then

Suppose that the k eigenvalues of a characteristic equation are $\lambda_1, \dots, \lambda_k$. An eigenvalue λ_i such as $|\lambda_i| \ge |\lambda_j|$ for all $j \ne i$ is called a dominant eigenvalue. If $|\lambda_i| > |\lambda_j|$ for all $j \ne i$, then λ_i is called a strictly dominant eigenvalue.

< □ > < 同 > < 回 > < 回 > < 回 >

Higher-order linear equations with constant coefficients

If $\lambda_1 \in \mathbb{R}$. Then

- if $\lambda_1 > 1$, then $\lim_{t \to +\infty} c_1 \lambda_1^t = \infty$ (monotonically diverges \Rightarrow unstable equilibrium),
- if $\lambda_1 = 1$, then the solution is constant,
- if $0 < \lambda_1 < 1$: $\lim_{t \to +\infty} c_1 \lambda_1^t = 0$ (monotonically decreases to $0 \Rightarrow$ asymptotically stable equilibrium),
- if −1 < λ₁ < 0 : lim_{t→+∞} c₁λ₁^t = 0 (oscillating around zero and converging to 0 ⇒ asymptotically stable equilibrium),
- if $\lambda_1 = -1$, the system oscillates between two values c_1 and $-c_1$,
- and if $\lambda_1 < -1$, the system is oscillating but increasing in magnitude (unstable equilibrium).

If $\lambda_1 \in \mathbb{C}$. Then

- if $|\lambda_1| > 1$, the system oscillates but increases in magnitude (unstable equilibrium),
- if $|\lambda_1| = 1$, the system oscillates but constant magnitude,
- if $|\lambda_1| < 1$, the system oscillates but converges to 0 (asymptotically stable equilibrium).

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Outline

Definitions

- 2 First-order linear equations
- 3 Higher-order linear equations
- 4 First-order linear systems
 - 5 Nonlinear systems

• • • • • • • • • • • •

$$a_0x_{t+m}+a_1x_{t+m-1}+\cdots+a_mx_t=b(t).$$

Assume that $x_t = x(t)$. Let $Y(t) = (y_1(t), y_2(t), \dots, y_m(t))$, which satisfies

$$y_1(t) = x(t)$$

 $y_2(t) = x(t+1)$
 \vdots
 $y_m(t) = x(t+m-1).$

The first element $y_1(t)$ is the solution x(t). Hence a first-order system in Y is

$$y_{1}(t+1) = y_{2}(t)$$

$$y_{2}(t+1) = y_{3}(t)$$

$$\vdots$$

$$y_{m-1}(t+1) = y_{m}(t)$$

$$y_{m}(t+1) = -a_{1}y_{m}(t) - \dots - a_{m-1}y_{2}(t) - a_{m}y_{1}(t) + b(t)$$

In matrix form,

$$Y(t+1) = AY(t) + B,$$

where

A solution to a first-order linear difference system

$$X(t+1) = AX(t) + B$$

is the superposition of two solutions:

- the general solution X_h to the homogeneous system $X_h(t+1) = AX_h(t)$
- and a particular solution X_p to the nonhomogeneous system $X_p(t+1) = AX_p(t) + B$.

The general solution to the nonhomogeneous system is

$$X(t) = X_h(t) + X_p(t).$$

• • = • • = •

The solution of

$$X(t+1) = AX(t)$$

is

$$X(t)=A^tX(0).$$

S. Portet (U of M)

メロト メポト メヨト メヨト

To solve

$$X(t+1) = AX(t)$$

where $A = (a_{ij})$ is an $m \times m$ constant matrix.

- Assume that a solution has the following form X(t) = λ^tV where V is an nonzero m-column vector and λ is a constant.
- Substituting $\lambda^t V$ into the linear system gives

$$\lambda^{t+1}V = A\lambda^t V,$$

then

$$(A - \lambda I)V = \mathbf{0} \tag{2}$$

where *I* is the $m \times m$ identity matrix and **0** is the zero vector.

• Hence, nonzero solutions V are obtained if and only if

$$\det(A - \lambda I) = 0. \tag{3}$$

Equation (3) is the characteristic equation of matrix A.

m solutions λ_i, *i* = 1,..., *m* of Eq. (3) are the eigenvalues of *A*. Nonzero solutions V_i are the eigenvectors corresponding to eigenvalues λ_i obtained by (A – λ_iI)V_i = 0.

$$X(t+1) = AX(t)$$

where $A = (a_{ij})$ is an $m \times m$ constant matrix. The general solution is a linear combination of m linearly independent solutions $X_i = \lambda_i^t V_i$, i = 1, ..., m:

$$X(t) = \sum_{i=1}^m c_i \lambda_i^t V_i$$

where c_i are arbitrary constants.

A (10) < A (10) < A (10) </p>

Understanding the asymptotic behavior of the solution

$$X(t) = \sum_{i=1}^m c_i \lambda_i^t V_i$$

does not require the knowledge of the eigenvectors.

The asymptotic behavior is determined by the eigenvalues and their magnitude, as the solution of X(t+1) = AX(t) is $X(t) = A^tX(0)$.

< □ > < 同 > < 回 > < 回 > < 回 >

Suppose the $k \times k$ matrix A has k eigenvalues $\lambda_1, \dots, \lambda_k$. The spectral radius of matrix A is denoted as $\rho(A)$ and defined as

$$\rho(A) = \max_{i \in \{1,2,\ldots,k\}} \{|\lambda_i|\}.$$

Theorem

Let A be a constant $k \times k$ matrix. Then the spectral radius of A satisfies $\rho(A) < 1$ if and only if $\lim_{t\to\infty} A^t = \mathbf{0}$.

A (10) < A (10) < A (10) </p>

Structured populations

In some species, the amount of reproduction varies greatly with the age of individuals.

Type I: organisms have high survivorship throughout life until old age sets in, and then survivorship declines dramatically to 0. Humans are type I organisms. Type III: organisms, in contrast, have very low survivorship early in life, and few individuals live to old age.

Age structure or developmental stage of population matter.

S.	Portet ((U)	of I	M

Example: US human population in 1964

To capture the effects of age structure on population growth: 10 age classes.

- $x_1(t) = \#$ of individuals of age 0 to 4 at time t
- $x_2(t) = \#$ of individuals of age 5 to 9 at time t
- $x_3(t) = \#$ of individuals of age 10 to 14 at time t
- $x_4(t) = \#$ of individuals of age 15 to 19 at time t
- $x_5(t) = \#$ of individuals of age 20 to 24 at time t
- $x_6(t) = \#$ of individuals of age 25 to 29 at time t
- $x_7(t) = \#$ of individuals of age 30 to 34 at time t
- $x_8(t) = \#$ of individuals of age 35 to 39 at time t
- $x_9(t) = \#$ of individuals of age 40 to 44 at time t
- $x_{10}(t) = \#$ of individuals of age 45 to 49 at time t

Structured population dynamics: discrete models, general case

- population categorized into a finite number of classes $i = 1, 2, \cdots, m$
- $x_i(t)$ number or density of individuals in the i^{th} class at time $t = 0, 1, 2, \cdots$
- If only birth and death processes (no migration):

$$x(t+1) = Px(t)$$

where P = T + F is the projection matrix

• • = • • =

Structured population dynamics: discrete models, general case

$$x(t+1) = Px(t)$$

- $T = [t_{ij}]$ transition matrix
 - t_{ij} fraction of j-class individual expected to survive and move to class i per unit of time
 - t_{ii} fraction of individuals in class i that survive and remain in class i after one unit of time
 - ▶ No individual can shrink or grow more than one class in one unit of time
 - $0 \le t_{ij} \le 1$ and $\sum_{i=1}^{m} t_{ij} \le 1$ for all j
- $F = [f_{ij}]$ fertility matrix
 - ▶ f_{ij} the expected number of (surviving) *i*-class offspring per *j*-class individual per unit of time
 - ▶ f_{ij} ≥ 0

イロト 不得 トイラト イラト 一日

A particular case: Leslie model (time interval coincides with the structure interval)

Leslie model

- L is called the Leslie matrix
- fertilities or fecundities on the first row
- survival probabilities on the subdiagonal
- all other entries in the Leslie matrix are zero.

Life cycle and projection matrix

Life cycle graph of the projection matrix on m age classes: each node represents each age group x_i , and arcs represent relation between two groups. An arrow connects the node j to i if the ij^{th} element in the projection matrix is nonzero.

Example: US population in 1964

Data:

b = (0, 0.001, 0.0878, 0.3487, 0.4761, 0.3377, 0.1833, 0.0761, 0.0174, 0.001)

s = (0.9966, 0.9983, 0.9979, 0.9968, 0.9961, 0.9947, 0.9923, 0.9987, 0.9831)

- 4 個 ト 4 ヨ ト 4 ヨ

Perron-Frobenius Theorem

If M is a nonnegative primitive matrix, then:

- *M* has a positive eigenvalue λ_1 of maximum modulus.
- λ_1 is a simple root of the characteristic polynomial.
- For every other eigenvalue λ_i , $\lambda_1 > |\lambda_i|$ (it is strictly dominant).

 $\min_{i} \sum_{j} m_{ij} \le \lambda_{1} \le \max_{i} \sum_{j} m_{ij}$ $\min_{j} \sum_{i} m_{ij} \le \lambda_{1} \le \max_{j} \sum_{i} m_{ij}$

• Row and column eigenvectors associated with λ_1 are strictly positive.

 The sequence M^t is asymptotically one-dimensional, its columns converge to the column eigenvector associated with λ₁; and its rows converges to the row eigenvector associated with λ₁.

٢

イロト 不得 トイヨト イヨト 二日

Definition

A matrix A whose entries are nonnegative is called a **nonnegative matrix**, denoted $A \ge 0$.

Definition

A matrix A whose entries are positive is called a **positive matrix**, denoted A > 0.

→ ∃ →

Irreducible

Definition

If there exits a directed path from node i to j for every node i and j in the digraph, then the digraph is said to be **strongly connected**.

Theorem

The digraph of matrix A is strongly connected if and only if A is irreducible.

Primitivity

Definition (Primitivity)

If an irreducible, nonnegative matrix A has h eigenvalues $\lambda_1, \lambda_2, \ldots \lambda_h$ of maximum modulus ($\rho(A) = |\lambda_i|, i = 1, 2, \ldots, h$), then A is called **primitive** if h = 1 and **imprimitive** if h > 1. The value of h is called the **index of imprimitivity**.

The index of imprimitivity is the number of eigenvalues of matrix A with maximum modulus (with magnitude equal to $\rho(A)$).

Theorem

A nonnegative matrix A is primitive if and only if some power of A is positive (i.e. $A^p > 0$ for some integer $p \ge 1$).

Theorem (Berman and Plemmons, 1994)

An irreducible matrix is primitive if its trace is positive.

Fundamental Theorem of Demography

Suppose that the nonnegative matrix $P \ge 0$ is irreducible and primitive. Let λ_1 be the strictly dominant eigenvalue of P and $V_1 > 0$ be an associated eigenvector (called stable distribution). Let x(t) be the solution of the linear matrix equation x(t+1) = Px(t), $t \in [0, +\infty)$, with an initial state satisfying $0 \le x(0) \ne 0$, and let $p(t) = |x(t)| = \sum_{i=1}^{n} x_i(t)$. Then

•
$$\lim_{t \to +\infty} \frac{x(t)}{p(t)} = \frac{V_1}{|V_1|}$$

• $\lim_{t \to +\infty} p(t) = 0$ if $\lambda_1 < 1$, and $\lim_{t \to +\infty} p(t) = +\infty$ if $\lambda_1 > 1$.

(The strictly dominant eigenvalue λ_1 is the (inherent) growth rate of the population)

イロト 不得 トイラト イラト 一日

$$x(t+1) = Px(t)$$

- λ_1 dominant eigenvalue of *P*
- Stable stage distribution V_1 (right eigenvector associated to λ_1)

$$PV_1 = \lambda_1 V_1.$$

For P, any initial population stage structure projected forward will approach the stable stage distribution V_1 , where each stage class increases in size λ_1 times each time period.

• Reproductive value of each stage W_1 (left eigenvector associated to λ_1)

$$W_1^T P = \lambda_1 W_1^T,$$

These reproductive values estimate the expected reproductive contribution of each stage to population growth.

• Total population $p(t) = \sum_{i=1}^{n} x_i(t)$

$$p(t) = \lambda_1^t p_0$$

define $\lambda_1 = e^r$ then

$$\frac{dp}{dt} = rp.$$

S. Portet (U of M)

イロト 不得 トイヨト イヨト 二日

Outline

Definitions

- 2 First-order linear equations
- 3 Higher-order linear equations
- 4 First-order linear systems

(日)

1st-order scalar nonlinear equation

Cobwebbing is a graphical method to answer qualitative questions about the solution of

$$x_{t+1}=f(x_t).$$

In the $(x_t x_{t+1})$ -plane, sketch $x_{t+1} = x_t$ and $x_{t+1} = f(x_t)$:

- any intersection of these graphs is an equilibrium solution of the difference equation.
- to investigate the behavior of the solutions
 - ▶ choose a starting value x₀, and begin at the point (x₀, x₀) in the (x_tx_{t+1})-plane.
 - draw a vertical line to the curve $x_{t+1} = f(x_t)$; this reaches the curve at $(x_0, f(x_0)) = (x_0, x_1)$.
 - ▶ draw a horizontal line to the diagonal x_{t+1} = x_t; this reaches the diagonal at the point (x₁, x₁).
 - ▶ Repeat the process to arrive at (*x*₂, *x*₂) and indefinitely until the behavior of the equation with this starting value becomes clear.
 - If necessary, repeat the process with other starting values.

イロト 不得下 イヨト イヨト 二日

Nonlinear systems of difference equations

Consider the system

$$\begin{array}{ll} x_{t+1} = & f(x_t, y_t) \\ y_{t+1} = & g(x_t, y_t), \end{array} \tag{4}$$

where f and g are nonlinear function. An equilibrium (\bar{x}, \bar{y}) to (4) satisfies the fixed point problem

 $ar{x} = f(ar{x}, ar{y})$ $ar{y} = g(ar{x}, ar{y}).$

What is the stability of the equilibrium (\bar{x}, \bar{y}) ?

(4) (3) (4) (4) (4)

Local stability: linearization

Linearization of the nonlinear system (4) at the equilibrium (\bar{x}, \bar{y}) is

$$V_{t+1} = JV_t$$

where $V_t = (u_t, v_t)^T$ (with small perturbations $u_t = x_t - \bar{x}$ and $v_t = y_t - \bar{y}$ about (\bar{x}, \bar{y})) and J is the Jacobian of $(f, g)^T$ evaluated at (\bar{x}, \bar{y}) ,

$$J = \begin{pmatrix} \left. \frac{\partial f}{\partial x} \right|_{\bar{x},\bar{y}} & \left. \frac{\partial f}{\partial y} \right|_{\bar{x},\bar{y}} \\ \left. \frac{\partial g}{\partial x} \right|_{\bar{x},\bar{y}} & \left. \frac{\partial g}{\partial y} \right|_{\bar{x},\bar{y}} \end{pmatrix}$$

Eigenvalues of the Jacobian J determine the local stability of (\bar{x}, \bar{y}) :

• if $|\lambda_i| < 1$ for i = 1, 2, i.e, if the spectral radius $\rho(J) < 1$, then $\lim_{t\to\infty} J^t = 0$. Therefore $\lim_{t\to\infty} V_t = 0$. This, in turn, implies that

$$\lim_{t \to \infty} x_t - \bar{x} = 0, \quad \lim_{t \to \infty} x_t = \bar{x}$$
$$\lim_{t \to \infty} y_t - \bar{y} = 0, \quad \lim_{t \to \infty} y_t = \bar{y}.$$

 (\bar{x}, \bar{y}) is locally asymptotically stable.

Theorem: Condition for stability

Assume $\frac{df}{dx} = f'$ is continuous on an open interval \mathcal{I} containing \bar{x} , and \bar{x} is a fixed point of f. Then \bar{x} is a locally asymptotically stable equilibrium of $x_{t+1} = f(x_t)$ if

$$\left|f'(\bar{x})\right| < 1$$

and unstable if

$$\left|f'(\bar{x})\right|>1.$$

Another formulation of this result is as follows:

Theorem

Let f be a continuously differentiable function (C^1) , and \bar{x} be a fixed point of f.

- If |f'(x̄)| < 1, then there is an open interval I ∋ x̄ such that lim_{k→∞} f^k(x) = x̄ for all x ∈ I.
- ② If $|f'(\bar{x})| > 1$, then there is an open interval $\mathcal{I} \ni \bar{x}$ such that if $x \in \mathcal{I}$, $x \neq \bar{x}$, then there exists k such that $f^k(x) \notin \mathcal{I}$.

Theorem

Let f(x, y) and g(x, y) be two functions with continuous first-order partial derivatives in x and y on some set containing (\bar{x}, \bar{y}) . Then the equilibrium (\bar{x}, \bar{y}) of the nonlinear system

$$\begin{array}{ll} x_{t+1} = & f(x_t, y_t) \\ y_{t+1} = & g(x_t, y_t) \end{array}$$

is locally asymptotically stable if the eigenvalues of the Jacobian matrix J evaluated at the equilibrium (\bar{x}, \bar{y}) satisfy $|\lambda_i| < 1$ if and only if

 $|\mathrm{tr}(J)| < 1 + \det(J) < 2.$

The equilibrium is unstable if some $|\lambda_i| > 1$, that is, if any one of three inequalities is satisfied

- tr(J) > 1 + det(J),
- or $\operatorname{tr}(J) < -1 \det(J)$,
- or det(J) > 1

Figure: The triangular region inside the dashed lines is the region of local asymptotic stability $(|\lambda_i| < 1)$ for the system of difference equations in the tr $(J) - \det(J)$ -plane. The solid curve represents tr $(J)^2 = 4\det(J)$, below the curve the eigenvalues are real and above it the eigenvalues are complex conjugate. If the parameters lie outside of the triangular region then at least one eigenvalue satisfies $|\lambda_i| > 1$.

イロト イボト イヨト イヨ

*n*th-order criterium

Theorem

If the solutions λ_i , $i = 1, 2, \ldots, n$ of

$$p(\lambda) = \lambda^n + a_1\lambda^{n-1} + a_2\lambda^{n-2} + a_3\lambda^{n-3} + \dots + a_n = 0$$

satisfy $|\lambda_i| < 1$ then

• p(1) > 0

•
$$(-1)^n p(-1) > 0$$

•
$$|a_n| < 1$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Jury conditions or Schur-Cohn Criteria, for n = 3Consider the characteristic polynomial

$$p(\lambda) = \lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + a_3.$$

The solutions λ_i , i = 1, 2, 3, of $p(\lambda) = 0$ satisfy $|\lambda_i| < 1$ if and only if the following three conditions hold:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >