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Stéphanie Portet
Stephanie.Portet@umanitoba.ca

Department of Mathematics

March 2023

S. Portet (U of M) March 2023 1 / 69



Outline

1 Characterization of ODEs

2 Well-posedness

3 Analytical methods

4 Qualitative analysis: asymptotic behavior
Linear systems

Planar systems (with constant coefficients)

Nonlinear models
Stability analysis (Local stability): Phase plane analysis
Stability analysis (Local stability): Linearization
Tools to determine the sign of eigenvalues
Global stability: Planar systems

5 Qualitative behavior: transient behaviour

S. Portet (U of M) March 2023 2 / 69



Linear / Nonlinear ODEs

dx

dt
= f (t, x)

Definition

If the function f is a linear function of the dependent variable x then the
ODE is said to be linear. Otherwise, the ODE is nonlinear.
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Linear ODE: Homogeneous / Nonhomogeneous

dx

dt
= p(t)x + g(t)

Definition

If the function g(t) is zero for all t in the interval I , then the linear ODE is
said to be homogeneous. Otherwise, the linear ODE is
nonhomogeneous.
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Autonomous equation

dx

dt
= f (x)

Definition

If the independent variable t does not appear explicitly in the right-hand
term f (x), the ODE is autonomous. Otherwise, the ODE is
non-autonomous.
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nth Order Ordinary Differential Equation

Definition

Let D ⊂ Rn+1 and h ∈ C (D,R) (set of continuous functions from

D → R). Use the notation y (i) = d iy
dt i

and y (0) = y .

y (n) = h(t, y , y (1), . . . , yn−1), (Yn)

Definition

Let J = (a, b). A solution of the differential equation (Yn) on J is
ϕ ∈ Cn(J,R) such that (t, ϕ(t), ϕ(1)(t), . . . , ϕ(n−1)(t)) ∈ D and

ϕ(n)(t) = h(t, ϕ(t), ϕ(1)(t), . . . , ϕ(n−1)(t)),

for all t ∈ J.

The theory of nth order ordinary differential equations actually reduces to
the theory of systems of n first order ordinary differential equations.
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To transform a nth order equation into a system of n first
order equations

y (n) = F (t, y , y ′, y ′′, . . . , y (n−1))

Define a change of variables

x1 = y , x2 = y ′, x3 = y ′′, . . . xn = y (n−1)

then 

dx1
dt = x2
dx2
dt = x3
dx3
dt = x4

...
dxn−1

dt = xn
dxn
dt = F (t, x1, x2, x3, . . . , xn)
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IVP for nth Order Ordinary Differential Equation

Definition

Given (τ, ξ1, . . . , ξn) ∈ D, the initial value problem for (Yn) is given by

y (n) = h(t, y , y (1), . . . , y (n−1))

y (i−1)(τ) = ξi , for i = 1, . . . , n.
(IYn)

Definition

A function ϕ is a solution of (IYn) if ϕ is a solution of (Yn) on some
interval J containing τ and also satisfies the initial conditions,
y (i−1)(τ) = ξi for i = 1, . . . , n.
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Different approaches to deal with initial value problems

1 Analytical methods - used to obtain the exact expression of solutions
of a given equation

2 Qualitative methods - to investigate properties of solutions without
necessarily finding those solutions (existence, uniqueness, stability, or
chaotic or asymptotic behaviors)

3 Numerical methods - approximate, can be reasonably accurate. Yields
approximations only locally on small intervals of the solution’s domain
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Well-posedness

Existence of solutions

Uniqueness of solutions

Positivity of solutions
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Existence and Uniqueness Theorem: general case


dx1
dt = F1(t, x1, x2, x3, . . . , xn)
dx2
dt = F2(t, x1, x2, x3, . . . , xn)

...
dxn
dt = Fn(t, x1, x2, x3, . . . , xn)

with x1(t0) = x0
1 , x2(t0) = x0

2 , . . . , xn(t0) = x0
n .

Theorem

Let each of the functions F1, . . . , Fn and the partial derivatives ∂F1
∂x1

, . . . ,
∂F1
∂xn

, . . . , ∂Fn
∂x1

, . . . , ∂Fn
∂xn

be continuous in a region R of tx1x2 · · · xn−space
defined by α < t < β, α1 < x1 < β1, . . . , αn < xn < βn, and let the point
(t0, x

0
1 , . . . , x

0
n ) be in R. Then there is an interval |t − t0| < h in which

there exists an unique solution x1 = φ1(t), x2 = φ2(t), . . . xn = φn(t) of
the system that also satisfies the initial conditions.
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Existence and Uniqueness Theorem: linear ODEs

dx

dt
= p(t)x + g(t)

with initial condition x(t0) = x0

Theorem (for linear ODEs)

If the functions p and g are continuous on an open interval I (α < t < β)
containing t0, then there exists an unique solution φ(t) of the ODE that
also satisfies the initial conditions. Moreover, the solution is defined on the
whole interval I .
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Methods to solve equations

One equation of 1st order (scalar case)
I Direct integration
I Integrating factors for linear equations
I Separable variables
I Substitution methods (change of variables)
I ..

nth order linear equations or systems of n linear equations
I with constant coefficients
I ..
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Integrating factors (To solve 1st order linear equation with non-constant coefficients)

1 Put the DE in the standard form
dy

dt
+ p(t)y = g(t) (1)

2 Determine the integrating factor µ(t)
I Multiply the DE (1) by an undetermied function µ(t)

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)g(t) (2)

I State that the left side of (2) is equal to d
dt

(µ(t)y)

d

dt
(µ(t)y) = µ(t)

dy

dt
+

dµ

dt︸︷︷︸ y = µ(t)
dy

dt
+ µ(t)p(t)︸ ︷︷ ︸ y

I Solve for µ(t)
dµ

dt
= µ(t)p(t) ⇒ µ(t) = e

∫
p(t)dt

3 Solve (2) for y with µ(t) = e
∫

p(t)dt(
d

dt
e
∫

p(t)dty =

)
e
∫

p(t)dt dy

dt
+ p(t)e

∫
p(t)dty = e

∫
p(t)dtg(t) ⇒

d

dt
µ(t)y = µ(t)g(t)

Integrate with respect to t

µ(t)y =

∫
µ(t)g(t)dt + c

Hence the general solution of (1) is

y(t) =
1

µ(t)

[∫ t

t0

µ(s)g(s)ds + c

]
with µ(t) = e

∫
p(t)dt
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Separable equations

Definition

A first order DE
dy

dx
= f (x , y)

is said to be separable or to have separable variables if it can be expressed
as follows

dy

dx
= g(x)h(y).

(the vector field f can be expressed as a product of a function of the
independent variable times a function of the dependent variable )
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Method to solve separable equations dy
dx = g(x)h(y)

1 Express the separable equation as follows
1

h(y(x))

dy

dx
= g(x)

2 As y , dy
dx

, and g(x) are functions of x , integrate with respect to x

∫
1

h(y(x))

dy

dx
dx =

∫
g(x)dx

3 Use the Change of variable Theorem [if u = v(x),
∫
f (v(x))v′(x)dx =

∫
f (u)du] for the left side with u = y(x)

∫
1

h(u)
du =

∫
g(x)dx

∫
1

h(y)
dy =

∫
g(x)dx

4 Integrate
H(y) = G(x) + c (3)

c is the combination of the left and right integration constants, H and G are antiderivatives of 1
h(y)

and g(x)

respectively.
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Dynamics of the model
Transient behaviour: that leads from the initial state to the long-time
behaviour
Steady-state behaviour: in the long run (asymptotic), persistent
operating state, steady oscillations..
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Qualitative analysis: asymptotic behavior

For autonomous problems:

dX

dt
= f (X )

Nondimensionalize the system (reduce the number of parameter)

Find equilibria

Characterize the nature of equilibria (stability analysis)
I Local stability analysis (phase line analysis, phase plane analysis,

linearization of the system near the equilibrium of interest..)
I Global stability analysis (Poincaré-Bendixson, LaSalle’s invariance

principle, Lyapunov functions..)
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Asymptotic behaviour of solutions - Equilibria and their
nature

dN

dt
= f (N, parameter), N(t) = · · ·
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Equilibria

Consider a nonlinear autonomous system
dx1
dt = f1(x1, x2, x3, . . . , xn)
dx2
dt = f2(x1, x2, x3, . . . , xn)

...
dxn
dt = fn(x1, x2, x3, . . . , xn)

To find equilibria (x̄1, x̄2, x̄3, . . . , x̄n)T , solve
0 = f1(x̄1, x̄2, x̄3, . . . , x̄n)
0 = f2(x̄1, x̄2, x̄3, . . . , x̄n)
...
0 = fn(x̄1, x̄2, x̄3, . . . , x̄n)
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Stability (1/2)

Let define a system of n autonomous differential equations, dY
dt = F (Y ),

where Y = (y1, . . . , yn)T and F (Y ) = (f1(y1, . . . , yn), . . . , fn(y1, . . . , yn))T ,
and F does not depend explicit on t.

(Locally stable)

An equilibrium solution Y ∗ of the system is said to be locally stable if for
each ε > 0 there exits a δ > 0 such that every solution Y (t) of the system
with the initial condition Y (t0) = Y0,

‖Y0 − Y ∗‖ < δ,

satisfies the condition that

‖Y (t)− Y ∗‖ < ε

for all t ≥ t0.
If the equilibrium solution is not locally stable it is said to be unstable.

S. Portet (U of M) March 2023 24 / 69



Let Y1 = (y1
1 , y

1
2 , . . . , y

1
n ) and Y2 = (y2

1 , y
2
2 , . . . , y

2
n ) be 2 points in Rn:

‖Y1 − Y2‖ =

√√√√ n∑
i=1

(y1
i − y2

i )2.
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Stability (2/2)

(Locally asymptotically stable)

An equilibrium solution Y ∗ of the system is said to be locally
asymptotically stable if it is locally stable and if there exist γ > 0 such
that ‖Y0 − Y ∗‖ < γ implies

lim
t→∞

‖Y (t)− Y ∗‖ = 0.
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nth−dimensional nonhomogeneous linear system

Consider the initial value problem (IVP)

d

dt
X(t) = A(t)X(t) + B(t), X(t0) = X0.

The unique solution to the IVP can be expressed as

X(t) = Φ(t)Φ−1(t0)X0 + Φ(t)

∫ t

t0

Φ−1(s)B(s)ds

where Φ(t) is a fundamental matrix of the corresponding homogeneous
system

Definition

A fundamental matrix of solutions of the homogeneous system
d
dt X(t) = A(t)X(t) is Φ(t) = (X1(t), . . . ,Xn(t)), where the columns of
Φ(t) are the n linearly independent solution vectors Xi (t).
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Homogeneous linear system with constant coefficients

d

dt
X(t) = AX(t)

where A = (aij) is a n × n constant matrix with real elements.

If det(A) 6= 0, the unique equilibrium solution is X(t) = 0, ∀t ∈ R.
The general solution is

X(t) = eAtC, ∀t ∈ R

where eAt (matrix exponential) is an n × n matrix, and C is a n × 1
arbitrary constant vector.

Φ(t) = eAt is the fundamental matrix such as Φ(0) = In.

eAt = In + At + t2

2! A2 + t3

3! A3 + · · · =
∑∞

i=0
t i

i! Ai , ∀t ∈ R.
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Homogeneous linear system with constant coefficients

d

dt
X(t) = AX(t)

where A = (aij) is a n × n constant matrix with real elements.

Instead of computing eAt , we need to find n linearly independent solutions
Xi (t) (to form a fundamental matrix)

Let Xi (t) = eλi tui (λi= unknown scalar, ui = unknown
n × 1−vector).

So Aui = λiui where λi is an eigenvalue of A and ui is an eigenvector
associated to λi .

To find λi (i ∈ 1, . . . , n), solve the characteristic polynomial

det(A− λIn) = 0.

To find ui (i ∈ 1, . . . , n), solve (A− λi In) ui = 0.

S. Portet (U of M) March 2023 30 / 69



Homogeneous linear system with constant coefficients : n
distinct eigenvalues

Theorem

Let λ1, . . . , λn be n distinct eigenvalues of the coefficient matrix A of the
homogeneous system

d

dt
X = AX,

and let u1, . . . , un be the corresponding eigenvectors. Then the general
solution of the homogeneous system on the interval (−∞,∞) is given by

X(t) = c1u1e
λ1t + · · ·+ cnune

λnt

with c1, . . . , cn arbitrary constants.
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Complex conjugate eigenvalues

Theorem

Let A be the coefficient matrix having real entries of the homogeneous
system d

dt X = AX, and let u1 be an eigenvector corresponding to the
complex eigenvalue λ1 = α + iβ, with α and β real. Then,

X1(t) = u1e
λ1t , X2(t) = ū1e

λ̄1t

are solutions of the homogeneous system.

Theorem

Let λ1 = α + iβ be a complex eigenvalue of the coefficient matrix having
real entries of the homogeneous system d

dt X = AX, and let u1 = a + ib be
an eigenvector corresponding to the complex eigenvalue λ1. Then

X1(t) = (a cos(βt)− b sin(βt)) eαt , X2(t) = (b cos(βt) + a sin(βt)) eαt

are linearly independent solutions of the homogeneous system on R.
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Asymptotical behavior of solutions

dX

dt
= AX

Theorem

If all the roots of the characteristic polynomial P(λ) = det(A− λIn) = 0
(or the eigenvalues of A) are negative or have negative real part, then
given any solution X(t) of dX

dt = AX, there exist positive constant M and
positive constant b such that

||X(t)|| ≤ Me−bt , ∀t > 0

and
lim
t→∞

||X(t)|| = 0.
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dX
dt = AX with A a 2× 2 constant matrix. The characteristic polynomial

of A is λ2 − trAλ+ detA = 0.

Theorem

if detA > 0 and trA2 − 4detA ≥ 0 then the origin is a node (real
eigenvalues having the same signs)

I an asymptotic stable node if trA < 0 (real λ1,2 < 0),
I an unstable node if trA > 0 (real λ1,2 > 0).

if detA < 0 then the origin is a saddle point (real eigenvalues have
opposite signs, λ1λ2 < 0). It is an unstable point.

if detA > 0 and trA2 − 4detA < 0 and trA 6= 0, the origin is a spiral
point (complex conjugate with nonzero real part)

I an asymptotic stable point if trA < 0 (negative real part)
I an unstable point if trA > 0 (positive real part).

if detA > 0 and trA = 0 then the origin is a center (purely imaginary
eigenvalues λ1,2 = ±iβ). It is a stable point.
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Nature of eigenvalues for a 2× 2 matrix
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Stability

Theorem

Suppose dX
dt = AX where A is a 2× 2 constant matrix with detA 6= 0.

The orign is asymptotically stable iff

trA < 0 and detA > 0.

The orign is stable iff

trA ≤ 0 and detA > 0.

The origin is unstable iff

trA > 0 or detA < 0.
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Real distinct eigenvalues of the same sign
dX
dt = AX with A a 2× 2 constant matrix.

When the eigenvalues λ1 and λ2 are both positive
or both negative, the general solution
X(t) = c1ξ1e

λ1t + c2ξ2e
λ2t , t ∈ R,

with ξ1 (ξ2) eigenvector corresponding to λ1 (λ2)

λ1 < λ2 < 0: as t →∞, trajectories
approach to the origin with the direction of
the eigenvector corresponding to the
maxi=1,2 Re(λi ) = λ2 (the origin is an
asymptotic stable node)

λ1 > λ2 > 0: as t →∞, trajectories flow
away from the origin with the direction of
the eigenvector corresponding to the
maxi=1,2 Re(λi ) = λ1 (the origin is an
unstable node)

Figure: λ1 < λ2 < 0
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Real distinct eigenvalues of opposite sign

dX
dt = AX with A a 2× 2 constant matrix.

When the eigenvalues λ1 and λ2 have opposite
signs, the general solution
X(t) = c1ξ1e

λ1t + c2ξ2e
λ2t , t ∈ R,

with ξ1 (ξ2) eigenvector corresponding to λ1 (λ2)

λ2 < 0 < λ1: the positive exponential term
is dominant for large t, so all solutions
approach infinity asymptotic to the line
determined by the eigenvector ξ1

corresponding to maxi=1,2 Re(λi ) = λ1 > 0.

the origin is a saddle point, it is unstable.

Figure: λ2 < 0 < λ1
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Real repeated eigenvalues 1/2

dX
dt = AX with A a 2× 2 constant matrix.

When the eigenvalues λ1 and λ2 are equal and
there exist 2 linearly independent eigenvectors,
the general solution
X(t) = c1ξ1e

λ1t + c2ξ2e
λ1t , t ∈ R,

with ξ1 (ξ2) eigenvector corresponding to λ1 (λ2)

Trajectories lies on straight line through the
origin.

λ1 = λ2 > 0: trajectories flow away from the
origin. The origin is unstable proper node.

λ1 = λ2 < 0: trajectories flow in the origin.
The origin is asymptotic stable proper
node.

Figure: λ2 = λ1 < 0
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Real repeated eigenvalues 2/2
dX
dt = AX with A a 2× 2 constant matrix.

When λ1 = λ2 and only one eigenvector ξ,
general solution
X(t) = c1ξe

λ1t + c2

(
ξteλ1t + ηeλ1t

)
, t ∈ R,

with η generalized eigenvector ((A− λ1I)η = ξ).

t → +∞, the dominant term is c2ξte
λ1t

Orientation of trajectories depends on the
relative positions of ξ and η
X = (c2ξt + c2η + c1ξ) eλ1t

I c2ξt + c2η + c1ξ determines the direction of
trajectories

I eλ1t determines the magnitude of
trajectories.

λ1 = λ2 < 0: Trajectories approach origin
tangent to line through the eigenvector ξ

The origin is an improper node

Figure: λ2 = λ1 < 0

S. Portet (U of M) March 2023 40 / 69



Complex conjugate eigenvalues

dX
dt = AX with A a 2× 2 constant matrix.

When the eigenvalues λ1 and λ2 are complex
conjugate, the general solution
X(t) = c1e

Re(λ1)t (Re(ξ1) cos(Im(λ1)t)− Im(ξ1) sin(Im(λ1)t)) +

c2e
Re(λ1)t (Im(ξ1) cos(Im(λ1)t) + Re(ξ1) sin(Im(λ1)t)) , t ∈ R

with ξ1 eigenvector corresponding to λ1.

the trajectories are spirals, which approach
or recede from the origin depending on the
sign of Re(λ1).

Stability of spiral points depends on the sign
of Re(λ1).

Figure: Re(λ1) > 0
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Purely imaginary eigenvalues

dX
dt = AX with A a 2× 2 constant matrix.

When the eigenvalues λ1,2 = ±iβ are purely
imaginary, the general solution
X(t) = c1 (Re(ξ1) cos(βt)− Im(ξ1) sin(βt)) +

c2 (Im(ξ1) cos(βt) + Re(ξ1) sin(βt)) , t ∈ R

with ξ1 eigenvector corresponding to λ1.

Trajectories are circles or ellipses (closed
curves) centered at the origin.

Solutions are periodic.

The origin is called a center; it is stable.

Figure: Re(λ1) = 0
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Phase Plane analysis

To study the qualitative behavior of a system without solving it.

dx
dt = f (x , y),
dy
dt = g(x , y).

At any point (x , y) of the xy−plane (called the Phase-Plane),

dy

dx
=

g(x , y)

f (x , y)

is the slope of the trajectory (x(t), y(t)) in the xy−plane, and the tangent
vector that gives the direction of the trajectory is (f (x , y), g(x , y)). The
collection of vectors evaluated at any point of the xy−plane defines the
direction field.
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Determination of trajectories in the xy−plane

dx
dt = f (x , y)
dy
dt = g(x , y)

}
⇒ dy

dx
=

g(x , y)

f (x , y)

If dy
dx = g(x ,y)

f (x ,y) can be solved, and if the implicit solution can be written as

H(x , y) = c ,

then H(x , y) = c is an equation for the trajectories for the system.
Trajectories lie on the level curves of H(x , y).
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Nullclines (1/2)

dx
dt = f (x , y)
dy
dt = g(x , y)

x−nullcline

The x−nullcline for the system is the set of all points in the xy−plane
satisfying f (x , y) = 0.

y−nullcline

The y−nullcline for the system is the set of all points in the xy−plane
satisfying g(x , y) = 0.

Equilibrium point

At any intersection of x−nullcline and y−nullcline, there is an equilibrium
point.
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Nullclines (2/2)

dx
dt = f (x , y)
dy
dt = g(x , y)

On the x−nullcline, all vectors are vertical.

On the y−nullcline, all vectors are horizontal.

We need to check if the direction of flow is up or down on the
x−nullcline.

We need to ckeck if the direction of flow is left or right on the
y−nullcline.
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Local stability: linearization

Consider a nonlinear autonomous system
dx1
dt = f1(x1, x2, x3, . . . , xn)
dx2
dt = f2(x1, x2, x3, . . . , xn)

...
dxn
dt = fn(x1, x2, x3, . . . , xn)

with an equilibrium (x̄1, x̄2, x̄3, . . . , x̄n)T . Consider
u1(t) = x1(t)− x̄1

u2(t) = x2(t)− x̄2
...
un(t) = xn(t)− x̄n

With du
dt = dx

dt and expanding f about x̄ using Taylor’s formula ⇒
Linearization of system
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Taylor’s expansion of f (x , y) about (x̄ , ȳ)

assuming that f (x , y) has continuous second-order partial derivatives in an
open set containing (x̄ , ȳ)

f (x , y) =f (x̄ , ȳ) +
∂f

∂x
(x̄ , ȳ)(x − x̄) +

∂f

∂y
(x̄ , ȳ)(y − ȳ)

+
∂2f

∂x2
(x̄ , ȳ)

(x − x̄)2

2
+

∂2f

∂x∂y
(x̄ , ȳ)(x − x̄)(y − ȳ)

+
∂2f

∂y2
(x̄ , ȳ)

(y − ȳ)2

2
+ . . .
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Linearization

Consider a nonlinear autonomous system
dx1
dt = f1(x1, x2, x3, . . . , xn)
dx2
dt = f2(x1, x2, x3, . . . , xn)

...
dxn
dt = fn(x1, x2, x3, . . . , xn)

with an equilibrium (x̄1, x̄2, x̄3, . . . , x̄n)T .
The linearized system about (x̄1, x̄2, x̄3, . . . , x̄n)T is

d

dt


u1

u2
...
un

 = J(x̄1,...,x̄n)


u1

u2
...
un

 .

where J(x̄1,...,x̄n) is the Jacobian matrix evaluated at the equilibrium.
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Jacobian

Consider a nonlinear autonomous system
dx1
dt = f1(x1, x2, x3, . . . , xn)
dx2
dt = f2(x1, x2, x3, . . . , xn)

...
dxn
dt = fn(x1, x2, x3, . . . , xn)

For this system, the Jacobian matrix J(x1,...,xn) evaluated at (x1, . . . , xn) is

J(x1,...,xn) =


∂f1
∂x1

(x1, . . . , xn) ∂f1
∂x2

(x1, . . . , xn) . . . ∂f1
∂xn

(x1, . . . , xn)
∂f2
∂x1

(x1, . . . , xn) ∂f2
∂x2

(x1, . . . , xn) . . . ∂f2
∂xn

(x1, . . . , xn)
...

... . . .
...

∂fn
∂x1

(x1, . . . , xn) ∂fn
∂x2

(x1, . . . , xn) . . . ∂fn
∂xn

(x1, . . . , xn)


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Nonlinear systems

dX

dt
= f(X)

Hartman-Grobman Theorem

Assume that X is a hyperbolic (all eigenvalues of the Jacobian matrix
evaluated at X have nonzero real part) equilibrium. Then, in a small
neighborhood of X, the nonlinear system behaves in a similar manner as
the linearized system.
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Planar systems

dx

dt
=f (x , y)

dy

dt
=g(x , y)

Theorem

Assume the first order partial derivatives of f and g are continuous in
some open set containing the equilibrium (x̄ , ȳ) of the system. Then the
equilibrium is locally asymptotically stable if

tr(J(x̄ ,ȳ)) < 0 and det(J(x̄ ,ȳ)) > 0,

where J(x̄ ,ȳ) is the Jacobian matrix evaluated at the equilibrium. In
addition, the equilibrium is unstable if either tr(J(x̄ ,ȳ)) > 0 or
det(J(x̄ ,ȳ)) > 0.
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Nonlinear systems

dX

dt
= f(X)

Theorem

If all eigenvalues of the Jacobian matrix evaluated at the equilibrium have
negative real part, then the equilibrium is locally asymptotically stable.
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Tools to determine the sign of eigenvalues

Descartes’ rule of signs

Let p(x) =
∑m

i=0 aix
i be a polynomial with real coefficients such that

am 6= 0. Define v to be the number of variations in sign of the sequence of
coefficients am, . . . , a0. By ‘variations in sign’ we mean the number of
values of n such that the sign of an differs from the sign of an−1, as n
ranges from m down to 1. Then

the number of positive real roots of p(x) is v − 2N for some integer

N satisfying 0 ≤ N ≤ v

2
,

the number of negative roots of p(x) may be obtained by the same
method by applying the rule of signs to p(−x).
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Tools to determine the sign of eigenvalues

Routh-Hurwitz Criteria
Given the polynomial,

P(λ) = λ
n + a1λ

n−1 + · · · + an−1λ + an

where the coefficients ai are real constants, i = 1, . . . , n define the n Hurwitz matrices using the coefficients ai of the
characteristic polynomial:

H1 = (a1), H2 =

(
a1 1
a3 a2

)
, H3 =

 a1 1 0
a3 a2 a1
a5 a4 a3

 , · · ·
and

Hn =



a1 1 0 0 . . . 0
a3 a2 a1 1 . . . 0
a5 a4 a3 a2 . . . 0

.

.

.

.

.

.

.

.

.

.

.

. . . .

.

.

.
0 0 0 0 . . . an


where aj = 0 if j > n. All of the roots of the polynomial P(λ) are negative or have negative real part if and only if the
determinants of all Hurwitz matrices are positive:

detHi > 0, j = 1, 2, . . . , n.
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Tools to determine the sign of eigenvalues

Corollary

Routh-Hurwitz criteria for n = 2, 3, 4, 5

n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a3 > 0 and a1a2 > a3.

n = 4 : a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4.

n = 5 : ai > 0, i = 1, 2, 3, 4, 5, a1a2a3 > a2
3 + a2

1a4 and
(a1a4 − a5)(a1a2a3 − a2

3 − a2
1a4) > a5(a1a2 − a3)2 + a1a

2
5
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Tools to determine the sign of eigenvalues

Gerhgorin’s Theorem

Let A be an n × n matrix. Let Di be the disk in the complex plane with
the center at aii and radius ri =

∑n
j=1,j 6=i |aij |. Then all eigenvalues of the

matrix A lie in the union of the disks Di , i = 1, 2, . . . , n, ∪ni=1Di . In
particular, if λi is an eigenvalue of A, then for some i = 1, 2, . . . , n

|λi − aii | ≤ ri .

Corollary

Let A be an n × n matrix with real entries. If the diagonal elements of A
satisfy

aii < −ri where ri =
n∑

j=1,j 6=i

|aij |

for i = 1, 2, . . . , n then the eigenvalues of A are negative or have negative
real part.

S. Portet (U of M) March 2023 58 / 69



Global stability: Planar systems

dx

dt
=f (x , y)

dy

dt
=g(x , y)

with the initial conditions X0 = (x(t0), y(t0)) = (x0, y0).

⇒ Poincaré-Bendixson Theorem (for global stability analysis)
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Planar systems

dx

dt
=f (x , y)

dy

dt
=g(x , y)

with initial conditions X0 = (x(t0), y(t0))T = (x0, y0)T .

Γ(X0, t): solution trajectory (as a function of time) starting at X0

Γ+(X0, t): part of solution trajectory where t ≥ t0 (positive orbit)

Γ−(X0, t): part of solution trajectory where t ≤ t0 (negative orbit)

α−limit set, α(X0): set of points in the plane that are approached by
the negative orbit Γ−(X0, t), as t → −∞
ω−limit set, ω(X0): set of points in the plane that are approached by
the positive orbit Γ+(X0, t), as t → +∞
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Definition

A periodic solution X(t) of dX
dt = f(X) is a non-constant solution satisfying

X(t + T ) = X(t) for all t on the interval of existence (T > 0 is called the
period).

(No periodic solutions in autonomous scalar differential equations)

Definition

A limit cycle is the orbit of an isolated periodic solution.

S. Portet (U of M) March 2023 61 / 69



Existence of periodic solutions

Poincaré-Bendixson theorem

Let Γ+(X0, t) be a positive orbit of

dx

dt
=f (x , y)

dy

dt
=g(x , y)

that remains in a closed and bounded region of the plane. Suppose that
the ω−limit set does not contain any equilibria. Then either

Γ+(X0, t) is a periodic orbit (Γ+(X0, t) = ω(X0)),

or ω−limit set, ω(X0), is a periodic orbit.

Theorem

Every periodic orbit (closed orbit) must enclose an equilibrium (has an
equilibrium in its interior).
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Poincaré-Bendixson trichotomy

Let Γ+(X0, t) be a positive orbit of

dx

dt
=f (x , y)

dy

dt
=g(x , y)

that remains in a closed and bounded region B of the plane. Suppose B
contains only a finite number of equilibria. Then the ω−limit set takes
ones of the following 3 forms:

ω(X0) is an equilibrium,

ω(X0) is a periodic orbit,

ω(X0) (cycle graph) contains a finite number of equilibria and a set of
trajectories Γi whose α− and ω−limit sets consist of one of these
equilibria for each trajectory Γi .
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Dulac’s criterion

Suppose D is a simply connected open subset of the plane and β(x , y) is a
real-valued continuously differentiable function in D. If

∂(βf )

∂x
+
∂(βg)

∂y

is not identically zero and does not change sign in D, then there is no
periodic solutions of the autonomous system

dx

dt
=f (x , y)

dy

dt
=g(x , y)

in D.

Definition

A region D of the plane is said to be simply connected if every closed loop
within D can be shrunk to a point without leaving D.
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Bendixson’s criterion

Suppose D is a simply connected open subset of the plane. If

∂f

∂x
+
∂g

∂y

is not identically zero and does not change sign in D, then there is no
periodic solutions of the autonomous system

dx

dt
=f (x , y)

dy

dt
=g(x , y)

in D.
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Outline

1 Characterization of ODEs

2 Well-posedness

3 Analytical methods

4 Qualitative analysis: asymptotic behavior
Linear systems

Planar systems (with constant coefficients)

Nonlinear models
Stability analysis (Local stability): Phase plane analysis
Stability analysis (Local stability): Linearization
Tools to determine the sign of eigenvalues
Global stability: Planar systems

5 Qualitative behavior: transient behaviour
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Transient behaviour

Resilience represents the minimum return rate to a stable equilibrium (or
the inverse of the average time to return to a stable equilibrium)

Reactivity quantifies the transient behaviour of a system in response to a
perturbation from a stable equilibrium (the maximum amplification rate,
over all initial perturbations, immediately following the perturbation)

Neubert and Caswell, Ecology 78 (1997). Hastings et al. Science 361 (2018). Lutscher and Wang J. Theor. Biol. 493 (2020)
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Resilience

Consider
dX

dt
= AX

where det(A) 6= 0 and the eigenvalues λ of A satisfied Re(λ) < 0 (there is
a unique equilibrium which is asymptotically stable).

resilience := −max
{
Re(λ) : det

(
λIn×n − A

)
= 0
}
> 0,

1/resilience is the average time to return to the stable equilibrium
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Reactivity

Consider
dX

dt
= AX

where det(A) 6= 0 and the eigenvalues λ of A satisfied Re(λ) < 0 (there is
a unique equilibrium which is asymptotically stable).

reactivity := max
{
λ : det

(
λIn×n − H(A)

)
= 0
}
,

with H(A) = (A + AT )/2 where AT represents the transpose matrix of A.
Notice that H(A) is a symmetric matrix and all its eigenvalues are real.

A system with a positive reactivity is said to be reactive and is sensitive to
any changes in initial conditions. A small change in the initial conditions
might cause drastic changes in the early dynamics before the system
returns to the equilibrium.
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