Use of collection of models and model selection

Stéphanie Portet

Department of Mathematics University of Manitoba Winnipeg, MB, Canada Stephanie.Portet@umanitoba.ca

March 2023

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline

Combining data and mathematical models - how to get more

2 Example: Interactions between mTOR and NMT1 in breast cancer cells

3 Conclusion

S. Portet (U of M)

• • = • •

Example: Rabbits and foxes in Australia

Which model of the collection would represent the best the reality given the data we have recorded?

S. Portet (U of M)

Why consider a collection of models

Lack of knowledge

- considering different assumptions for a given mechanism
- different translations of the same assumption

Design a collection of models

- to mimic the well known positive and negative control experimental protocol used in experimental labs
- to allow the identification of a most plausible scenario for the defined problem

How to identify the best model of the collection? \Rightarrow Model selection

- Information Theory Criteria
- Statistical Tests (nested models)

A B A A B A

Nested or non-nested models

$$\frac{dR}{dt} = aR - bRF \qquad \frac{dR}{dt} = a\left(1 - \frac{R}{k}\right)R - bRF \qquad \frac{dR}{dt} = aR - \frac{bRF}{1 + fR}$$
$$\frac{dF}{dt} = -cF + eRF \qquad \frac{dF}{dt} = -cF + eRF \qquad \frac{dF}{dt} = -cF + \frac{eRF}{1 + fR}$$

Nested models: the three models are particular cases of the full model

$$\frac{dR}{dt} = aR - vR^2 - \frac{bRF}{1 + fR}$$
$$\frac{dF}{dt} = -cF + \frac{eRF}{1 + fR}$$

 $v = f = 0 \Rightarrow$ Lotka-Volterra model $f = 0 \Rightarrow$ Model with logistic dynamics for preys $v = 0 \Rightarrow$ Model with saturating rate

イロト イヨト イヨト イヨト

Model selection

Consider a collection of R models.

Which model of the collection would represent the best the reality given the data we have recorded?

In 1973, Akaike found a relationship between the maximum likelihood (statistical analysis) and Kullback-Leibler divergence (information theory).

Akaike (1973) In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

- 4 回 ト 4 ヨ ト 4 ヨ ト

Kullback-Leibler (KL) divergence

To measure the difference between two probability distribution functions f(x) and g(x) over the same variable x

The **KL divergence of** g(x) from f(x) is

$$I(f,g) = \int_X f(x) \ln\left(\frac{f(x)}{g(x)}\right) dx$$

if f(x) and g(x) two pdfs of a continuous random variable

Properties

- not symmetric $I(f,g) \neq I(g,f)$
- $I(f,g) \geq 0$
- I(f,g) = 0 iff f = g

Kullback and Leibler (1951) The Annals of Mathematical Statistics.

- 本間下 本臣下 本臣下 三臣

Kullback-Leibler divergence

KL divergence = measure of the information lost when approximating the full reality f(x) by a model $g(x|\theta)$

$$I(f,g) = \int f(x) \ln\left(\frac{f(x)}{g(x|\theta)}\right) dx$$

where the model $g(x|\theta)$ depends on parameter θ

Problems:

- the reality/truth f is unknown
- θ must be estimated from data y (generated from f)

Kullback and Leibler (1951) The Annals of Mathematical Statistics. 22: 79-86.

• • = • • = •

Measurement of the information lost when approximating the full reality f(x) by a model $g(x|\theta)$

$$I(f,g) = \int f(x) \ln\left(\frac{f(x)}{g(x|\theta)}\right) dx$$

= $\int f(x) \ln(f(x)) dx - \int f(x) \ln(g(x|\theta)) dx$
= $E_f[\ln(f(x))] - E_f[\ln(g(x|\theta))]$
= $C - E_f[\ln(g(x|\theta))]$

where $E_f[\ln(f(x))] = C$ depends only on the unknown true distribution f and is unknown

$$I(f,g) - C = -E_f[\ln(g(x|\theta))]$$

Relative KL divergence between f and $g = -E_f[\ln(g(x|\theta))]$

< □ > < 同 > < 回 > < 回 > < 回 >

Comparison of models

Consider two models g_1 and g_2 .

If $I(f, g_1) < I(f, g_2)$ then the model g_1 is better than model g_2

$$egin{aligned} & I(f,g_1) < I(f,g_2) \ & I(f,g_1) - C < I(f,g_2) - C \ & -E_f[\ln(g_1(x| heta))] < -E_f[\ln(g_2(x| heta))] \end{aligned}$$

 $\Rightarrow I(f,g_2) - I(f,g_1) = -E_f[\ln(g_2(x|\theta))] + E_f[\ln(g_1(x|\theta))]$

Without knowing C, we know how much better g_1 is than g_2

Using relative KL divergence between f and g_i , we can compare the models g_i

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- $\hat{\theta}(y)$ estimator of θ = random variable
- $I(f, g(.|\hat{\theta}(y))) = random variable$
- $E_y\left[I(f,g(.|\hat{\theta}(y)))\right] = C E_y\left[E_x\left[\ln(g(x|\hat{\theta}(y)))\right]\right]$
 - where x and y are independent random samples from the same distribution and both statistical expectations are taken with respect to truth f

Aim: minimize the estimated expected KL divergence over a set of models considered \Leftrightarrow maximize the estimated expected relative KL divergence

Model selection criterion

$$\max_{g \in G} E_{y} \left[E_{x} \left[\ln(g(x|\hat{\theta}(y))) \right] \right]$$

where G is the collection of models in terms of probability density functions

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Akaike Information Criterion

In 1973, Akaike found

• an asymptotically (for large sample) unbiased estimator of the expected relative Kullback-Leibler divergence that is

$$\ln \mathcal{L}(\hat{ heta}_{MLE}|y) - K$$

where \mathcal{L} is the likelihood function, $\hat{\theta}_{MLE}$ is the maximum likelihood estimate of θ and K is the number of estimated parameters

Akaike Information Criterion for each model considered with the same data set is defined as

$$AIC = -2\ln\left(\mathcal{L}(\hat{\theta}_{MLE}|y)\right) + 2K$$

March 2023

12 / 38

Best model = the one with minimum AIC value

Akaike (1973) In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

S. Portet (U of M)

Akaike Information Criterion

Consider a collection of R models: Which model of the collection would represent the best the reality given the data we have recorded?

Compute for each model the information criterion:

If K < (N/40), use AIC

$$AIC = -2\ln\left(\mathcal{L}(\hat{ heta}_{MLE}|y)\right) + 2K$$

If K > (N/40), use corrected AIC (AICc)

$$AICc = -2\ln\left(\mathcal{L}(\hat{ heta}_{MLE}|y)\right) + 2K + rac{2K(K+1)}{N-K-1} = AIC + rac{2KN}{N-K-1}$$

where K is the number of estimated parameters and N is the number of observations (sample size)

As $N \rightarrow \infty$, $AICc \rightarrow AIC$

Sugiura (1978) Communications in Statistics - Theory and Methods. 7:13. Hurvich and Tsai (1989) Biometrika 76:297.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

When the measurement errors are independent and identically normally distributed with the same variance

$$-\ln \mathcal{L}(\hat{\theta}_{MLE}|y) = \frac{N}{2}\ln(2\pi) + \frac{N}{2}\ln\left(\frac{F_{ls}(\hat{p}_{MLE})}{N}\right) + \frac{N}{2}$$

where $\hat{p}_{MLE} = \hat{p}_{LSE} \ (N = n_e n_o^e n_i^{e,o})$

When **the data used to compare all the models are the same**, *AIC* can be computed as follows

$$AIC = N \ln \left(\frac{F_{ls}(\hat{p}_{LSE})}{N}\right) + 2K$$

where K is the number of estimated parameters (number of estimated mathematical model parameters + 1), N is the number of observations

Compute AIC_i of each model *i* with $i \in \{1, ..., R\}$ Best model = the one with minimum AIC value

AIC differences

As only the estimates of the expected relative K-L divergences between f and $g_i(x|\theta)$ are known with the information criteria, it is convenient to scale them with respect to the minimum AIC value among all models.

AIC differences: estimate of information loss when using model *i* rather than the estimated best model

$$\Delta_i = AIC_i - \min_i AIC_i$$

 $\min_i AIC_i = AIC$ of the best model in the collection

Interpretation = the larger the Δ_i , the less plausible is model *i*

Akaike (1974) IEEE Trans. Automatic Control. 19:716. Burnham and Anderson (2002) Model selection and multimodel inference: a practical information-theoretic approach. Second Edition. Springer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Interpretation = the larger the Δ_i , the less plausible is model *i*

Some guidelines for nested models:

- $\Delta_i \in \{1,2\}$ model *i* has substantial support and should be considered
- $\Delta_i \in \{4, \ldots, 7\}$ model *i* has less support
- $\Delta_i > 10$ model *i* has no support, can be omitted

Might be different for non-nested models or for a very large number of models

Burnham and Anderson (2002) Model selection and multimodel inference: a practical information-theoretic approach. Second Edition. Springer.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Akaike weights

For an easier interpretation, rescaling of Δ_i

Likelihood of model *i* given the data $\propto \exp\left(-\frac{\Delta_i}{2}\right)$

Akaike weight or "weight of evidence" of model *i* for being the best model of the collection given the data

$$w_i = \frac{\exp(-\Delta_i/2)}{\sum_{r=1}^R \exp(-\Delta_r/2)}$$

 w_i = probability that model *i* is the best (approximating) model given the experimental data and the collection of models considered

Interpretation

- The smaller the weight w_i , the less plausible is model i
- Consider a single best model *i* if $w_i > 0.9$

イロト 不得下 イヨト イヨト 二日

Uses of Akaike weights

Evidence ratio of model *i* versus model j =Strength of evidence in favour of model *i* over model *j*

 $\frac{W_i}{W_i}$

Confidence set of models:

Sum the Akaike weights from largest to smallest until the sum is \geq 0.95 \Rightarrow the corresponding subset of models is the 95% confidence set on the best model

Relative importance of a process:

Sum the Akaike weights over all models in which the process of interest appears = measure of the relative importance of the process of interest

・ 何 ト ・ ヨ ト ・ ヨ ト

Model selection with Akaike Information Criterion

- Best model = the one with the lowest AIC
- Best model within the collection of model considered given the experimental data ≠ "true model"
- No meaning in the actual values of AIC
- Ranking of candidate models
- Selection of a model with the least number of parameters that best-fits experimental data
- Specific to a given set of data (cannot be used to compare models on different data sets)
- Valid to compare nested or non-nested models
- Not a test!!

Portet (2020) Inf. Dis. Model. 5.

• • = • • = •

Strategy as using data and mathematical modelling

- Systematic modelling of possible scenarios based on biological hypotheses and first principles to design a collection of models
- Calibration of each model using the same data
- Compute AIC and Akaike weights for each model \Rightarrow rank models and identify the best model or the 95% confidence set of models
- Partition the collection of models in subsets of models based on their underlying hypotheses and using Akaike weights, evaluate the importance of different processes

Portet *et al.* (2015) PLOS One. Jacquier *et al.* (2018) Scientific Report. Lee *et al.* (2021) AIMS Mathematics. Portet (2020) Infectious Disease Modelling.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

Combining data and mathematical models - how to get more

2 Example: Interactions between mTOR and NMT1 in breast cancer cells

3 Conclusion

S. Portet (U of M)

< □ > < 同 > < 回 > < Ξ > < Ξ

Motivation

mTOR regulates cell growth, proliferation, survival and migration

- kinase (phosphorylated other molecules)
- 2 forms of mTOR: inactive (mTOR) and active (pmTOR = phosphorylated-mTOR)

Cancer cells exploit mTOR to enhance their capacity to growth

Strong expression of NMT1 has been reported in malignant breast tissues compared with normal breast cells

- enzyme
- 2 forms of NMT1: inactive (pNMT1) and active (NMT1)

\Rightarrow Interactions between NMT1 and mTOR

Work in collaboration with A. Shrivastav (University of Winnipeg, Manitoba, Canada)

Experimental data

Four datasets

- Total mTOR = mTOR + pmTOR
- pmTOR
- Total NMT1 = NMT1 + pNMT1

at nine time points under control (DMSO) and perturbed (Rapamycin) conditions

- Rapamycin treatment decreases the phosphorylation of mTOR (pmTOR) and augments total NMT1 levels over time
- No significant change in the total mTOR levels under both experimental conditions

Rapamycin = drug used in cancer, targets mTOR and prevents its activation (prevents mTOR phosphorylation) =

To investigate the regulation of NMT1 by mTOR

Combine experimental data and mathematical modelling

- core assumption: NMT1 phosphorylation is regulated by pmTOR
- system under two conditions
 - unperturbed system = without rapamycin (control)
 - perturbed system = with rapamycin (inhibition of mTOR)
- Collection of models to test alternative hypotheses
 - Does the regulation of endogenous levels of mTOR components impact the dynamics?
 - synthesis and degradation vs constant Total mTOR
 - Does NMT1 have a negative feedback effect on mTOR?
 - feedback vs no feedback
 - Is the effect of rapamycin on mTOR reversible or irreversible?
 - reversible vs irreversible binding

Jacquier, M. et al. (2018) Scientific Reports 8:12969.

イロト 不得 トイヨト イヨト 二日

Model framework

Control (DMSO) \Rightarrow $g(T, R_C) = h(T, R_C) = 0$ Negative feedback \Rightarrow $f(T, N) = -\beta TN$

< □ > < □ > < □ > < □ > < □ > < □ >

Jacquier, M. et al. (2018) Scientific Reports 8:12969.

March 2023

26 / 38

S. Portet (U of M)

Model Calibration

For each of the four datasets

- NT, NTt and NTf models are calibrated to data with DMSO
- NTRr, NTtRr, NTRi, NTRrf and NTRif models are calibrated to data with rapamycin

Model	р	rapamycin	feedback	mTOR	
NT	10	no	no	s/d	
NTt	9	no	no	constant	
NTf	11	no	yes	s/d	
NTRr	12	reversible	no	s/d	
NTtRr	11	reversible	no	constant	
NTRi	12	irreversible	no	s/d	
NTRrf	13	reversible	yes	s/d	
NTRif	13	irreversible	yes	s/d	

• For each model *i*, minimize

$$\operatorname{RSS}_{i} = \sum_{j=1}^{m} \underbrace{\left(T_{p}^{exp}(t_{j}) - T_{p}^{i}(t_{j})\right)^{2}}_{pNMT1 + NMT1} + \underbrace{\left(N_{total}^{exp}(t_{j}) - N_{total}^{i}(t_{j})\right)^{2}}_{pNMT1 + NMT1}$$
and $T_{total}^{i} = T^{i} + T_{p}^{i}$ and $N_{total}^{i} = N^{i} + N_{p}^{i}$ for model $i_{n} \in \mathbb{R}$

S. Portet (U of M)

Results of calibration

For the 4 datasets

- Unperturbed system: All models (NT, NTt and NTf) reproduce the trends in the proportion of pmTOR and total NMT1 observed for all experimental datasets without rapamycin
- Perturbed system: All models (NTRr, NTtRr, NTRi, NTRrf and NTRif) reproduce the trends observed in experimental data with rapamycin, in particular a decrease in the proportion of p-mTOR and an increase in total NMT1

Model responses support the regulation of NMT1 by pmTOR in the presence or absence of rapamycin

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Model selection

Use of the AIC corrected for small sample sizes instead of the AIC

$$AICc_{i} = AIC_{i} + \frac{2K_{i}(K_{i}+1)}{N-K_{i}-1} = N \ln\left(\frac{RSS_{i}}{N}\right) + 2K_{i}\frac{N}{N-K_{i}-1}$$

as the number of data points is small (N = 3m = 27 for each dataset) in comparison to the number of parameters $K_i = p_i + 1 =$ number of estimated parameters for model *i* including the estimation of RSS_i/N

For each model *i*, we have 4 values of $AICc_i$ as we have 4 different datasets

Sugiura (1978) Communications in Statistics - Theory and Methods. Hurvich and Tsai (1989) Biometrika.

Results (1/2)

Model	rapamycin	feedback	mTOR	
NT	no	no	s/d	
NTt	no	no	constant	
NTf	no	yes	s/d	
NTRr	revers.	no	s/d	
NTtRr	revers.	no	constant	
NTRi	irrevers.	no	s/d	
NTRrf	revers.	yes	s/d	
NTRif	irrevers.	yes	s/d	

Models		Dataset 1		Dataset 2		Dataset 3		Dataset 4	
	k,	AICci	w _i	AICci	wi	AICci	wi	AICci	wi
(a) Withou	(a) Without rapamycin								
NT	11	-6.9	0.062	-101.9	0.033	-67.2	0.045	-109.2	0.379
NTt	10	-12.4	0.936	-108.6	0.967	-73.5	0.957	-110.2	0.609
NTf	12	-0.7	0.003	-92.9	10^{-4}	-61.2	0.002	-102.4	0.012
(b) With r	apamyo	in							
NTRr	13	-2.3	0.393	-107.1	10^{-4}	-75.9	0.025	-58.8	0.407
NTtRr	12	-1.4	0.248	-124.9	0.997	-83.1	0.929	-58.2	0.305
NTRi	13	-2.0	0.351	-113.5	0.003	-76.7	0.039	-58.1	0.282
NTRrf	14	7.0	0.004	-91.6	10^{-8}	-73.2	0.007	-48.0	0.002
NTRif	14	6.6	0.005	-102.4	10^{-5}	-66.6	10^{-4}	-49.4	0.004

Unperturbed system: NTt is the best model for datasets 1, 2 and 3 (non-conclusive for dataset 4)

Perturbed system: NTtRr (analogue of NTt with reversible binding for rapamycin) is the best model for the datasets 2 and 3 (non conclusive for datasets 1 and 4)

▲ □ ▶ ▲ □ ▶ ▲ □

Results (2/2)

Model	rapamycin	feedback	mTOR
NT	no	no	s/d
NTt	no	no	constant
NTf	no	yes	s/d
NTRr	revers.	no	s/d
NTtRr	revers.	no	constant
NTRi	irrevers.	no	s/d
NTRrf	revers.	yes	s/d
NTRif	irrevers.	yes	s/d

Weights corresponding to each assumption are obtained by summing the weights of the models verifying the assumption

Models		Dataset 1		Dataset 2	Dataset 2		Dataset 3		Dataset 4	
	k _i	AICci	w _i	AICci	wi	AICci	wi	AICci	wi	
(a) Witho	ut rapa	mycin								
NT	11	-6.9	0.062	-101.9	0.033	-67.2	0.045	-109.2	0.379	
NTt	10	-12.4	0.936	-108.6	0.967	-73.5	0.957	-110.2	0.609	
NTf	12	-0.7	0.003	-92.9	10-4	-61.2	0.002	-102.4	0.012	
Assumpt	ons									
Feedback			0.003		0.0004		0.002		0.01	
No feedb	ack		0.997		0.9996		0.998		0.99	
(b) With	apamy	in								
NTRr	13	-2.3	0.393	-107.1	10^{-4}	-75.9	0.025	-58.8	0.407	
NTtRr	12	-1.4	0.248	-124.9	0.997	-83.1	0.929	-58.2	0.305	
NTRi	13	-2.0	0.351	-113.5	0.003	-76.7	0.039	-58.1	0.282	
NTRrf	14	7.0	0.004	-91.6	10^{-8}	-73.2	0.007	-48.0	0.002	
NTRif	14	6.6	0.005	-102.4	10^{-5}	-66.6	10^{-4}	-49.4	0.004	
Assumpt	ions									
Reversibl	e		0.64		0.9967		0.961		0.714	
Irreversil	ole		0.36		0.0033		0.039		0.286	
Feedback			0.008		10^{-5}		0.007		0.006	
No feedb	ack		0.992		0.99999		0.993		0.994	

Overall: strong evidence of a constant endogenous level of total mTOR and an absence of negative feedback regulation of mTOR by NMT1

(4) (日本)

Proposed dynamical motif Perturbed system Unperturbed system Perturbed system $\frac{COMPLEX}{R_{c}}$ NTtRr NTt Rapamycin R p-mTOR mTOR T_p Tp-NMT1 p-NMT1 NMT1 NMT1 N_p N N_p N NMT1 K p-NMT1 K p-NMT1 K p-NMT1 S. Portet (U of M) March 2023 32 / 38

Parameters for the proposed dynamical motif

Perturbed system - NTtRr

Unperturbed system - NTt

Depending on dataset used, different nominal sets of parameter values \Rightarrow influence sensitivity analysis outcomes, prediction..

Outline

Combining data and mathematical models - how to get more

2 Example: Interactions between mTOR and NMT1 in breast cancer cells

A (1) > A (2) > A

Work flow - Mathematical modelling

Portet (2015) Insights E-Journal. 8(2).

A D N A B N A B N A B N

My \$0.02 on combining mathematical modelling and experimental data

To get more: Collection of models (with model selection):

- test different scenarios
- select model(s) that approximate the best data considered (Still not the truth!!)
- evaluate the relative importance of processes

To keep in mind: Conclusions drawn when combining mathematical modelling and data are impacted by

- mathematical translation of biological processes
- data considered

 \Rightarrow change in sensitivity analysis outcomes, transient (reactivity) and long term (prediction) dynamics...

Al-Darabsah, K.-L. Liao, and S. Portet, A simple in-host model for COVID-19 with treatments: model prediction and calibration. Journal of Mathematical Biology, 86:20 (2023)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why use mathematical modelling?

- Test a large number of different scenarios
- Propose tentative hypotheses to be tested ⇒ propose new experiments
- Identify the major components of processes
- Extrapolate the broad behavior of a system for which data cannot easily be obtained
- Theorize the processes (clarify hypotheses and characterize the chain of events)

"All models are wrong, but some are useful." G. E. P. Box