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Example: Rabbits and foxes in Australia
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Which model of the collection would represent the best the reality given
the data we have recorded?
Adapted from Pech and Hood (1998) Journal of Applied Ecology. 35: 434.S. Portet (U of M) March 2023 3 / 38



Why consider a collection of models

Lack of knowledge

considering different assumptions for a given mechanism

different translations of the same assumption

Design a collection of models

to mimic the well known positive and negative control experimental
protocol used in experimental labs

to allow the identification of a most plausible scenario for the defined
problem

How to identify the best model of the collection? ⇒ Model selection

Information Theory Criteria

Statistical Tests (nested models)
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Nested or non-nested models

dR

dt
=aR − bRF

dR

dt
=a

(
1− R

k

)
R − bRF

dR

dt
=aR − bRF

1 + fR

dF

dt
=− cF + eRF

dF

dt
=− cF + eRF

dF

dt
=− cF +

eRF

1 + fR

Nested models: the three models are particular cases of the full model
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v = f = 0 ⇒ Lotka-Volterra model
f = 0 ⇒ Model with logistic dynamics for preys
v = 0 ⇒ Model with saturating rate
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Model selection

Consider a collection of R models.

Which model of the collection would represent the best the reality given
the data we have recorded?

In 1973, Akaike found a relationship between the maximum likelihood
(statistical analysis) and Kullback-Leibler divergence (information theory).

Akaike (1973) In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado,

Budapest, pp 267–281
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Kullback-Leibler (KL) divergence

To measure the difference between two probability distribution functions
f (x) and g(x) over the same variable x

The KL divergence of g(x) from f (x) is

I (f , g) =

∫
X
f (x) ln

(
f (x)

g(x)

)
dx

if f (x) and g(x) two pdfs of a continuous random variable

Properties

not symmetric I (f , g) 6= I (g , f )

I (f , g) ≥ 0

I (f , g) = 0 iff f = g

Kullback and Leibler (1951) The Annals of Mathematical Statistics.
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Kullback-Leibler divergence

KL divergence = measure of the information lost when approximating the
full reality f (x) by a model g(x |θ)

I (f , g) =

∫
f (x) ln

(
f (x)

g(x |θ)

)
dx

where the model g(x |θ) depends on parameter θ

Problems:

the reality/truth f is unknown

θ must be estimated from data y (generated from f )

Kullback and Leibler (1951) The Annals of Mathematical Statistics. 22: 79-86.

S. Portet (U of M) March 2023 8 / 38



Measurement of the information lost when approximating the full reality
f (x) by a model g(x |θ)

I (f , g) =

∫
f (x) ln

(
f (x)

g(x |θ)

)
dx

=

∫
f (x) ln(f (x))dx −

∫
f (x) ln(g(x |θ))dx

=Ef [ln(f (x))]− Ef [ln(g(x |θ))]

=C − Ef [ln(g(x |θ))]

where Ef [ln(f (x))] = C depends only on the unknown true distribution f
and is unknown

I (f , g)− C = −Ef [ln(g(x |θ))]

Relative KL divergence between f and g = −Ef [ln(g(x |θ))]
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Comparison of models

Consider two models g1 and g2.

If I (f , g1) < I (f , g2) then the model g1 is better than model g2

I (f , g1) <I (f , g2)

I (f , g1)− C <I (f , g2)− C

−Ef [ln(g1(x |θ))] <− Ef [ln(g2(x |θ))]

⇒ I (f , g2)− I (f , g1) = −Ef [ln(g2(x |θ))] + Ef [ln(g1(x |θ))]

Without knowing C , we know how much better g1 is than g2

Using relative KL divergence between f and gi , we can compare the
models gi
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θ̂(y) estimator of θ = random variable

I (f , g(.|θ̂(y))) = random variable

Ey

[
I (f , g(.|θ̂(y)))

]
= C − Ey

[
Ex

[
ln(g(x |θ̂(y)))

]]
where x and y are independent random samples from the same
distribution and both statistical expectations are taken with respect
to truth f

Aim: minimize the estimated expected KL divergence over a set of models
considered ⇔ maximize the estimated expected relative KL divergence

Model selection criterion

max
g∈G

Ey

[
Ex

[
ln(g(x |θ̂(y)))

]]
where G is the collection of models in terms of probability density functions
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Akaike Information Criterion

In 1973, Akaike found

an asymptotically (for large sample) unbiased estimator of the
expected relative Kullback-Leibler divergence that is

lnL(θ̂MLE |y)− K

where L is the likelihood function, θ̂MLE is the maximum likelihood
estimate of θ and K is the number of estimated parameters

Akaike Information Criterion for each model considered with the same
data set is defined as

AIC = −2 ln
(
L(θ̂MLE |y)

)
+ 2K

Best model = the one with minimum AIC value
Akaike (1973) In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado,

Budapest, pp 267–281
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Akaike Information Criterion

Consider a collection of R models: Which model of the collection would
represent the best the reality given the data we have recorded?

Compute for each model the information criterion:

If K < (N/40), use AIC

AIC = −2 ln
(
L(θ̂MLE |y)

)
+ 2K

If K > (N/40), use corrected AIC (AICc)

AICc = −2 ln
(
L(θ̂MLE |y)

)
+ 2K +

2K (K + 1)

N − K − 1
= AIC +

2KN

N − K − 1

where K is the number of estimated parameters and N is the number of
observations (sample size)

As N →∞, AICc → AIC

Sugiura (1978) Communications in Statistics - Theory and Methods. 7:13. Hurvich and Tsai (1989) Biometrika 76:297.
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When the measurement errors are independent and identically
normally distributed with the same variance

− lnL(θ̂MLE |y) =
N

2
ln(2π) +

N

2
ln

(
Fls(p̂MLE )

N

)
+

N

2

where p̂MLE = p̂LSE (N = nen
e
on

e,o
i )

When the data used to compare all the models are the same, AIC
can be computed as follows

AIC = N ln

(
Fls(p̂LSE )

N

)
+ 2K

where K is the number of estimated parameters (number of estimated
mathematical model parameters + 1), N is the number of observations

Compute AICi of each model i with i ∈ {1, . . . ,R}
Best model = the one with minimum AIC value
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AIC differences

As only the estimates of the expected relative K-L divergences between f
and gi (x |θ) are known with the information criteria, it is convenient to
scale them with respect to the minimum AIC value among all models.

AIC differences: estimate of information loss when using model i rather
than the estimated best model

∆i =AICi −min
i

AICi

mini AICi = AIC of the best model in the collection

Interpretation = the larger the ∆i , the less plausible is model i

Akaike (1974) IEEE Trans. Automatic Control. 19:716. Burnham and Anderson (2002) Model selection and multimodel

inference: a practical information-theoretic approach. Second Edition. Springer.
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Interpretation = the larger the ∆i , the less plausible is model i

Some guidelines for nested models:

∆i ∈ {1, 2} model i has substantial support and should be considered

∆i ∈ {4, . . . , 7} model i has less support

∆i > 10 model i has no support, can be omitted

Might be different for non-nested models or for a very large number of
models

Burnham and Anderson (2002) Model selection and multimodel inference: a practical information-theoretic approach. Second

Edition. Springer.
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Akaike weights

For an easier interpretation, rescaling of ∆i

Likelihood of model i given the data ∝ exp
(
−∆i

2

)
Akaike weight or “weight of evidence” of model i for being the best
model of the collection given the data

wi =
exp(−∆i/2)∑R
r=1 exp(−∆r/2)

wi = probability that model i is the best (approximating) model given the
experimental data and the collection of models considered

Interpretation

The smaller the weight wi , the less plausible is model i

Consider a single best model i if wi > 0.9
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Uses of Akaike weights

Evidence ratio of model i versus model j = Strength of evidence in
favour of model i over model j

wi

wj

Confidence set of models:
Sum the Akaike weights from largest to smallest until the sum is ≥ 0.95
⇒ the corresponding subset of models is the 95% confidence set on the
best model

Relative importance of a process:
Sum the Akaike weights over all models in which the process of interest
appears = measure of the relative importance of the process of interest
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Model selection with Akaike Information Criterion

Best model = the one with the lowest AIC

Best model within the collection of model considered given the
experimental data 6= “true model”

No meaning in the actual values of AIC

Ranking of candidate models

Selection of a model with the least number of parameters that
best-fits experimental data

Specific to a given set of data (cannot be used to compare models on
different data sets)

Valid to compare nested or non-nested models

Not a test!!

Portet (2020) Inf. Dis. Model. 5.
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Strategy as using data and mathematical modelling

Systematic modelling of possible scenarios based on biological
hypotheses and first principles to design a collection of models

Calibration of each model using the same data

Compute AIC and Akaike weights for each model ⇒ rank models and
identify the best model or the 95% confidence set of models

Partition the collection of models in subsets of models based on their
underlying hypotheses and using Akaike weights, evaluate the
importance of different processes

Portet et al. (2015) PLOS One. Jacquier et al. (2018) Scientific Report. Lee et al. (2021) AIMS Mathematics. Portet (2020)

Infectious Disease Modelling.
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Motivation

mTOR regulates cell growth, proliferation, survival and migration

kinase (phosphorylated other molecules)

2 forms of mTOR: inactive (mTOR) and active (pmTOR =
phosphorylated-mTOR)

Cancer cells exploit mTOR to enhance their capacity to growth

Strong expression of NMT1 has been reported in malignant breast tissues
compared with normal breast cells

enzyme

2 forms of NMT1: inactive (pNMT1) and active (NMT1)

⇒ Interactions between NMT1 and mTOR

Work in collaboration with A. Shrivastav (University of Winnipeg, Manitoba, Canada)
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Experimental data
Four datasets

Total mTOR = mTOR + pmTOR

pmTOR

Total NMT1 = NMT1 + pNMT1

at nine time points under control (DMSO) and perturbed (Rapamycin)
conditions

Rapamycin treatment decreases the phosphorylation of mTOR
(pmTOR) and augments total NMT1 levels over time

No significant change in the total mTOR levels under both
experimental conditions

Rapamycin = drug used in cancer, targets mTOR and prevents its activation (prevents mTOR phosphorylation)
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To investigate the regulation of NMT1 by mTOR

Combine experimental data and mathematical modelling

core assumption: NMT1 phosphorylation is regulated by pmTOR

system under two conditions
I unperturbed system = without rapamycin (control)
I perturbed system = with rapamycin (inhibition of mTOR)

Collection of models to test alternative hypotheses

Does the regulation of endogenous levels of mTOR components
impact the dynamics?

I synthesis and degradation vs constant Total mTOR

Does NMT1 have a negative feedback effect on mTOR?
I feedback vs no feedback

Is the effect of rapamycin on mTOR reversible or irreversible?
I reversible vs irreversible binding

Jacquier, M. et al. (2018) Scientific Reports 8:12969.
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Model framework

dT

dt
=

phosphorylation︷ ︸︸ ︷
−αTT

KT + T
+

dephosphorylation︷ ︸︸ ︷
αTpTp

KTp + Tp
+

synthesis︷︸︸︷
ΠT +

feedback︷ ︸︸ ︷
f (T ,N) +

rapamycin effect︷ ︸︸ ︷
g(T , Rc ),

dTp

dt
=

phosphorylation︷ ︸︸ ︷
αTT

KT + T
−

dephosphorylation︷ ︸︸ ︷
αTpTp

KTp + Tp
−

degradation︷ ︸︸ ︷
δTpTp ,

dN

dt
=

phosphorylation︷ ︸︸ ︷
−
αNTpN

KN + N
+

synthesis︷︸︸︷
ΠN ,

dNp

dt
=

phosphorylation︷ ︸︸ ︷
αNTpN

KN + N
−

degradation︷ ︸︸ ︷
δNpNp ,

dRc

dt
=

rapamycin effect︷ ︸︸ ︷
h(T , Rc ).

Control (DMSO) ⇒ g(T ,RC ) = h(T ,RC ) = 0
Negative feedback ⇒ f (T ,N) = −βTN
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Collection of eight models
Perturbed system Unperturbed system Perturbed system

Jacquier, M. et al. (2018) Scientific Reports 8:12969.
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Model Calibration
For each of the four datasets

NT, NTt and NTf models are calibrated to data with DMSO
NTRr, NTtRr, NTRi, NTRrf and NTRif models are calibrated to data
with rapamycin

Model p rapamycin feedback mTOR

NT 10 no no s/d
NTt 9 no no constant
NTf 11 no yes s/d

NTRr 12 reversible no s/d
NTtRr 11 reversible no constant
NTRi 12 irreversible no s/d
NTRrf 13 reversible yes s/d
NTRif 13 irreversible yes s/d

For each model i , minimize

RSSi =
m∑
j=1

pmTOR︷ ︸︸ ︷(
T exp

p (tj)− T i
p(tj)

)2

+

pmTOR+mTOR︷ ︸︸ ︷(
T exp

total(tj)− T i
total(tj)

)2

+

pNMT1+NMT1︷ ︸︸ ︷(
Nexp

total(tj)− N i
total(tj)

)2

and T i
total = T i + T i

p and N i
total = N i + N i

p for model i
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Results of calibration

For the 4 datasets

Unperturbed system: All models (NT, NTt and NTf) reproduce the
trends in the proportion of pmTOR and total NMT1 observed for all
experimental datasets without rapamycin

Perturbed system: All models (NTRr, NTtRr, NTRi, NTRrf and
NTRif) reproduce the trends observed in experimental data with
rapamycin, in particular a decrease in the proportion of p-mTOR and
an increase in total NMT1

Model responses support the regulation of NMT1 by pmTOR in the
presence or absence of rapamycin
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Model selection

Use of the AIC corrected for small sample sizes instead of the AIC

AICci = AICi +
2Ki (Ki + 1)

N − Ki − 1
= N ln

(
RSSi
N

)
+ 2Ki

N

N − Ki − 1

as the number of data points is small (N = 3m = 27 for each dataset) in
comparison to the number of parameters Ki = pi + 1 = number of
estimated parameters for model i including the estimation of RSSi/N

For each model i , we have 4 values of AICci as we have 4 different
datasets

Sugiura (1978) Communications in Statistics - Theory and Methods. Hurvich and Tsai (1989) Biometrika.
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Results (1/2)

Model rapamycin feedback mTOR

NT no no s/d
NTt no no constant
NTf no yes s/d

NTRr revers. no s/d
NTtRr revers. no constant
NTRi irrevers. no s/d
NTRrf revers. yes s/d
NTRif irrevers. yes s/d

Unperturbed system: NTt is the best model for datasets 1, 2 and 3
(non-conclusive for dataset 4)

Perturbed system: NTtRr (analogue of NTt with reversible binding for
rapamycin) is the best model for the datasets 2 and 3 (non conclusive for
datasets 1 and 4)
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Results (2/2)

Model rapamycin feedback mTOR

NT no no s/d
NTt no no constant
NTf no yes s/d

NTRr revers. no s/d
NTtRr revers. no constant
NTRi irrevers. no s/d
NTRrf revers. yes s/d
NTRif irrevers. yes s/d

Weights corresponding to each as-
sumption are obtained by sum-
ming the weights of the models
verifying the assumption

Overall: strong evidence of a constant endogenous level of total mTOR
and an absence of negative feedback regulation of mTOR by NMT1
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Proposed dynamical motif

Perturbed system Unperturbed system Perturbed system
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Parameters for the proposed dynamical motif

Perturbed system - NTtRr Unperturbed system - NTt

Depending on dataset used, different nominal sets of parameter values ⇒
influence sensitivity analysis outcomes, prediction..

S. Portet (U of M) March 2023 33 / 38



Outline

1 Combining data and mathematical models - how to get more

2 Example: Interactions between mTOR and NMT1 in breast cancer cells

3 Conclusion

S. Portet (U of M) March 2023 34 / 38



Work flow – Mathematical modelling

Portet (2015) Insights E-Journal. 8(2).

S. Portet (U of M) March 2023 35 / 38



My $0.02 on combining mathematical modelling and
experimental data

To get more: Collection of models (with model selection):

test different scenarios
select model(s) that approximate the best data
considered (Still not the truth!!)
evaluate the relative importance of processes

To keep in mind: Conclusions drawn when combining mathematical
modelling and data are impacted by

mathematical translation of biological processes
data considered

⇒ change in sensitivity analysis outcomes, transient
(reactivity) and long term (prediction) dynamics...

Al-Darabsah, K.-L. Liao, and S. Portet, A simple in-host model for COVID-19 with treatments: model prediction and calibration.

Journal of Mathematical Biology, 86:20 (2023)
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Why use mathematical modelling?

Test a large number of different scenarios

Propose tentative hypotheses to be tested ⇒ propose new
experiments

Identify the major components of processes

Extrapolate the broad behavior of a system for which data cannot
easily be obtained

Theorize the processes (clarify hypotheses and characterize the chain
of events)
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“All models are wrong, but
some are useful.” G. E. P. Box
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