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Using functions ?

To caricature, suppose we have an IVP x ′ = f (x , µ), x(t0) = x0, where µ are
parameters

We can find functional expressions telling us that, say, if Ψ(µ) < 0, then the system
has a certain behaviour and that this changes when Ψ(µ) > 0

This type of functional relationship between model parameters and behaviour is what
we are interested in here

There are cases also where we need to numerically solve the IVP to obtain, say, the
value of an equilibrium x⋆, because there is no closed-form formula giving x⋆ as a
function of µ

This type of work uses simulations and is the second set of slides in this lecture
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This is not a vignette!

The vignettes in this repo illustrate how to use R to consider several problems that a
modeller is faced with

This is somewhat orthogonal: it takes the information in several of these vignettes and
integrates it in the perspective of computational analysis

I am including it in this repo, however, because of the non-empty intersection between
the two: this is R and is related to modelling
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Course objectives

The objective of the course is to introduce notions used in the computational analysis
of a mathematical model

This is not an exhaustive course on the subject, but rather an introduction to some
basic concepts

See this as a minimal toolkit to get you started

If you are a graduate student of mine, take this as a hint: this is the type of stuff that I
expect to see in your work

Note that I am not doing my job properly: I am skipping a very important part of any
computational analysis by not doing a proper return to biology. This is an essential
part of any computational analysis but is outside the scope of these slides
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Course slides

These slides are produced using knitr in Rnw, i.e., R within LATEX, to illustrate some of
the concepts

To generate them, you need to have R and LATEX installed on your computer and,
preferably, RStudio

The code ensures that all the required packages are installed
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Code chunks

In Rnw files, code chunks are delimited by <<>>= and @

Code chunks are highlighted in the RStudio editor, so you should be able to identify
them easily

I also generate an R file with all the code (basic-computational-analysis.Rnw). It
is in the CODE directory of the repo. See the last slide for details
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The toy models

I illustrate the methods using two toy models

Both are epidemiological models I have worked on

Some of the computational analysis is common to both models, some is specific
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The SLIAR epidemic model

Kermack-McKendrick SIR (susceptible-infectious-removed) is a little too simple for
many diseases:

▶ No incubation period

▶ A lot of infectious diseases (in particular respiratory) have mild and less mild
forms depending on the patient

=⇒ model with SIR but also L(atent) and (A)symptomatic individuals, in which I are
now symptomatic individuals

Arino, Brauer, PvdD, Watmough & Wu, Simple models for containment of a pandemic, Journal of the Royal Society Interface (2006)
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The SLIAR epidemic model – Flow diagram
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The SLIAR epidemic model – Equations

S ′ = −βS(I + δA) (1a)

L ′ = βS(I + δA)− εL (1b)

I ′ = pεL− γI (1c)

A ′ = pεL− ηA (1d)

R ′ = f γI + ηA (1e)
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The SLIAR epidemic model – Behaviour

It’s always a good idea to not barge into the computational analysis of a model
without an understanding of its behaviour

This is an epidemic model: all its solutions go to a disease-free equilibrium

There is a basic reproduction number R0 (next slide) that determines whether the
disease will spread or not. If R0 < 1, the disease dies out without first going through
an outbreakl if R0 > 1, the disease goes through an outbreak, then dies out

As with many epidemic models, we can also caracterise the so-called final size of the
epidemic
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The SLIAR epidemic model – Basic reproduction number & Final size

We find the basic reproduction number

R0 = β

(
p

γ
+

δ(1− p)

η

)
S0 (2)

The final size relation takes the form

S0(lnS0 − lnS∞) = R0(S0 − S∞) +
R0I0
ρ

(3)

with

ρ =
p

γ
+

δ(1− p)

η
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The SLIARVS endemic model

The SLIAR model is an epidemic model: all its solutions go to a disease-free
equilibrium

Here we consider a complexification of the SLIAR epidemic model:

▶ Add vital dynamics (births and deaths), a.k.a. demography

▶ Add a vaccination compartment V , with imperfect and waning vaccine

▶ Interpret R as recovered (and immune) individuals instead of removed

▶ Add loss of immunity (waning immunity)

This makes the model endemic: it has an endemic equilibrium (EEP) and (roughly)
R0 determines if the system goes to the DFE or the EEP

Arino & Milliken, Bistability in deterministic and stochastic SLIAR-type models with imperfect and waning vaccine protection, Journal of
Mathematical Biology (2022)
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The SLIARVS endemic model – Flow diagram

S

V

L

I

A

R
(1− v)B

vB

βS(I + ηA)

eS

ω
v V

(1
−
σ
)β
V
(I
+
ηA
)

πεL

(1− π)εL

γI

γI

ωrR

dS

d
V

d
L

(d
+
µ
)I

d
A

d
R

p. 13 – Some toy epidemiological models



The SLIARVS endemic model – Equations

S ′ = (1− v)B + ωvV + ωrR − βS(I + ηA)− (e + d)S (4a)

V ′ = vB + eS − (1− σ)βV (I + ηA)− (ωv + d)V (4b)

L ′ = β(S + (1− σ)V )(I + ηA)− (ε+ d)L (4c)

I ′ = πεL− (γ + µ+ d)I (4d)

A ′ = (1− π)εL− (γ + d)A (4e)

R ′ = γ(A+ I )− (ωr + d)R (4f)
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The SLIARVS endemic model – DFE

In (4) without equation for V ′ and with v = e = ωv = 0, disease-free equilibrium
(DFE) has S̄0 = B/d

DFE of full (4) is E0 = (S0,V0, 0, 0, 0, 0), where

S0 =
(1− v)d + ωv

e + ωv + d

B

d
and V0 =

vd + e

e + ωv + d

B

d
(5)

p. 15 – Some toy epidemiological models



The SLIARVS endemic model – Reproduction numbers

With the combination parameter

λ = βε
(γ + µ+ d)η(1− π) + π(γ + d)

(γ + d)(γ + µ+ d)
(6)

we have

R0 =
λ

ε+ d
S̄0 (7)

Rv =
λ

ε+ d
(S0 + (1− σ)V0) (8)
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The models are systems of ODEs, we could simulate and show the result, but who
cares if we just show the behaviour?

▶ System (1) goes to the DFE every time, after undergoing (or not) an epidemic
depending on the value of R0

▶ System (4) goes to the DFE or the EEP, depending on the value of R0

Booooriiiing!

We can still do things with the solutions, but we’ll have to make it worthwhile...

To get more insight into the model, we can use the formula for the reproduction
numbers (2), (7) and (8), the final size relation (3) and other quantities to study the
model: this will show how these important quantities depend on parameters
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Make a function for R0

We have

R0 = β

(
p

γ
+

δ(1− p)

η

)
S0 (2)

So write a function, where p is a list of parameters (including the initial number S0 of
susceptible individuals)

R0_SLIAR = function(p) {
OUT = p$beta*(p$p/p$gamma+p$delta*(1-p$p)/p$eta)*p$S0

return(OUT)

}
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Another way to write the function

R0_SLIAR_2 = function(p) {
with(as.list(p), {

OUT = beta*(p/gamma+delta*(1-p)/eta)*S0

return(OUT)

})
}

This can be useful if you have a lot of parameters and want to avoid writing p$ all the
time. However, note that the return statement must be within the with statement
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What we can do with this function

Of course, we can check what R0 is at a given point in parameter space, but let us go
further

We can plot R0 as a function of one parameter, ceteris paribus (all other things
remaining the same), to see how it behaves

We can plot R0 as a function of two parameters, to see how it behaves in a plane

We can conduct a “full fledged” sensitivity analysis, by plotting R0 as a function of all
parameters
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Now repeat everything for the SLIARVS model



The parameter list

Before we begin, we have to set default values for the parameters

p = list()

p$kappa = 1/3 # incubation

p$p = 1/3 # fraction going to I vs A

p$beta = 1 # contact parameter

p$delta = 1/3 # infectivity differential A

p$gamma = 1/7 # recovery rate I

p$eta = 1/7 # recovery rate A

p$f = 0.5 # fraction symptomatic not dying

p$S0 = 999 # Initial S
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Plotting R0 as a function of one parameter

We can plot R0 as a function of one parameter, say β

beta = seq(1e-5, 1e-1, by=1e-3)

R0_values = c()

for (i in 1:length(beta)) {
p$beta = beta[i]

R0_values = c(R0_values, R0_SLIAR(p))

}
plot(beta, R0_values,

type="l", xlab=expression(beta), ylab=expression(R[0]))
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An old trick

Clearly, we’re getting super large values of R0. Finding the “right” values for β is
hard. One way to solve the problem is to solve (2) as a function of R0 for β and set an
interval for R0 instead of one for β

R0 = β

(
p

γ
+

δ(1− p)

η

)
S0 (2)

So we can write

β =
R0(

p
γ + δ(1−p)

η

)
S0

(9)

beta_SLIAR = function(R0, p) {
return(R0/((p$p/p$gamma+p$delta*(1-p$p)/p$eta)*p$S0))

}
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But there’s no point plotting R0 as a function of R0...

This function will nonetheless be useful later

For now, let’s vary another parameter. For this

▶ choose a sensible value of β using (9), all other parameters being fixed

▶ vary the parameter of interest

▶ compute R0 for each value of the parameter of interest
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Plotting R0 as a function of another parameter

p$beta = beta_SLIAR(R0=1.5, p)

gamma = seq(from=1/14, to=1, by=0.01)

R0_values = c()

for (i in 1:length(gamma)) {
p$gamma = gamma[i]

R0_values = c(R0_values, R0_SLIAR(p))

}
plot(gamma, R0_values,

type="l", xlab=expression(gamma), ylab=expression(R[0]),

main = TeX("$R_0$ as a function of $\\gamma$"))
# Throw in a line at R0=1 for good measure

abline(h=1, col="red", lty = 3)
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Making axes that make sense

A substantial part of a modeller’s job is to communicate with non-modellers (e.g., your
favourite biologist/public health/medical person)

It is important to use axes that make sense to them: they are your end users

Remember: numerics is here to help you bridge the gap between the model and the
real world
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Reworking the previous figure

γ is the recovery rate of symptomatic individuals, so the average duration of the
symptomatic infectious period is 1/γ

inv_gamma = 1/gamma

plot(inv_gamma, R0_values,

type="l",

xlab=TeX("Average duration of the symptomatic infectious period (days)"),

ylab=expression(R[0]),

main = TeX("$R_0$ as a function of $1/\\gamma$"))
abline(h=1, col="red", lty = 3)
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Looks way less cool

Indeed, but it is way more informative

And expected ...

R0 = β

(
p

γ
+

δ(1− p)

η

)
S0 (2)

So as a function of 1/γ, R0 is an affine function
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Make it even easier to read

A good figure can “sell your work”, it is worth spending some time thinking about it

Don’t overload with information, but ensure the important stuff is there

For instance, the red line at R0 = 1 is a good idea: in your work, you are probably
describing how the situation changes when R0 = 1

Let’s make the point of intersection even easier to see
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Finding where R0 = 1

Recall that as we computed it, R0 is decreasing, so look for when R0 < 1 the first time

idx_switch = which(R0_values<=1)[1]

inv_gamma_switch = inv_gamma[idx_switch]

plot(inv_gamma, R0_values,

type="l",

xlab=TeX("Average duration of the symptomatic infectious period (days)"),

ylab=expression(R[0]),

main = TeX("$R_0$ as a function of $1/\\gamma$"))
points(x = inv_gamma_switch, y = 1, col = "darkred", pch = 16)

abline(h=1, col="red", lty = 3)
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About figure titles (IMOBO)

(in my own biased opinion)

Here, I am using main= to add titles to the figures

This is because I am including the figures as full size images in slides without titles
(see the Rnw file)

In a paper, usually, you do not need to provide a title for the figure: the caption should
be enough and serves the same role. Check the journal you are submitting to!
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Sensitivity analysis of R0
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Heatmap plots

The last plot shows how R0 varies as a function of γ

In many circumstances, we are interested in how R0 varies as a function of two
parameters

p. 36 – Investigating R0



Setting up the heatmap

The easiest way (IMOBO) to set things up is to use the function expand.grid to
make a table with all combinations of the two parameters and compute the value of
the function for each of the combinations

Ideally, the function evaluated should be vectorised, so that you can compute all values
at once, but this is not always possible. Here, we will do both the direct approach and
the vectorised one to illustrate the difference
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Setting up the heatmap – calling expand.grid

values = expand.grid(gamma = seq(1/14, 1, by=0.01),

p = seq(0, 1, by = 0.01))

head(values)

## gamma p

## 1 0.07142857 0

## 2 0.08142857 0

## 3 0.09142857 0

## 4 0.10142857 0

## 5 0.11142857 0

## 6 0.12142857 0
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Setting up the heatmap – computing the values

R0_values = c()

for (i in 1:nrow(values)) {
p$gamma = values$gamma[i]

p$p = values$p[i]

R0_values = c(R0_values, R0_SLIAR(p))

}
values$R0 = R0_values

head(values, 4)

## gamma p R0

## 1 0.07142857 0 0.9

## 2 0.08142857 0 0.9

## 3 0.09142857 0 0.9

## 4 0.10142857 0 0.9
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Setting up the heatmap – computing the values (vectorised)
Revise the R0 function so it makes the difference between default parameter values and
those changed for the heatmap. We could of course just redefine p$p and p$gamma

R0_SLIAR_vect = function(p, v) {
return(p$beta*(v$p/v$gamma + p$delta*(1-v$p)/p$eta)*p$S0)

}
values = expand.grid(gamma = seq(1/14, 1, by=0.01),

p = seq(0, 1, by = 0.01))

values$R0 = R0_SLIAR_vect(p, values)

head(values, 4)

## gamma p R0

## 1 0.07142857 0 0.9

## 2 0.08142857 0 0.9

## 3 0.09142857 0 0.9

## 4 0.10142857 0 0.9
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Plotting the heatmap

There are many different ways to plot heatmaps in R

▶ The image function is the simplest, but it is not very flexible

▶ The ggplot2 package has a geom tile function that is more flexible

▶ The pheatmap package is very good for publication quality heatmaps

▶ Contour plots are also a good option
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Plotting the heatmap – using image

We need require(RColorBrewer) for the colour palette

image(x = unique(values$gamma), y = unique(values$p),

z = matrix(values$R0,

nrow = length(unique(values$gamma))),

col = brewer.pal(9, "YlOrRd"),

xlab = TeX("$\\gamma$"),
ylab = TeX("$p$"),

main = TeX("$R_0$ as a function of $\\gamma$ and $p$"))
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As before: axes need to make sense to normal people
Here, it is easier to actually recompute with 1/γ

R0_SLIAR_vect_inv_gamma = function(p, v) {
return(p$beta*(v$p*v$inv_gamma + p$delta*(1-v$p)/p$eta)*p$S0)

}
values = expand.grid(inv_gamma = seq(1, 14, by=0.01),

p = seq(0, 1, by = 0.01))

values$R0 = R0_SLIAR_vect_inv_gamma(p, values)

image(x = unique(values$inv_gamma), y = unique(values$p),

z = matrix(values$R0,

nrow = length(unique(values$inv_gamma))),

col = brewer.pal(9, "YlOrRd"),

xlab = TeX("Average duration of the symptomatic infectious period (days)"),

ylab = TeX("$p$"),

main = TeX("$R_0$ as a function of $1/\\gamma$ and $p$"))
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Let us add useful information

A curve showing where R0 = 1 would be useful

image(x = unique(values$inv_gamma), y = unique(values$p),

z = matrix(values$R0,

nrow = length(unique(values$inv_gamma))),

col = brewer.pal(9, "YlOrRd"),

xlab = TeX("Average duration of the symptomatic infectious period (days)"),

ylab = TeX("$p$"),

main = TeX("$R_0$ as a function of $1/\\gamma$ and $p$"))

contour(x = unique(values$inv_gamma), y = unique(values$p),

z = matrix(values$R0,

nrow = length(unique(values$inv_gamma))),

levels = c(1), add = TRUE)

p. 46 – Investigating R0



2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

R0 as a function of 1 γ and p

Average duration of the symptomatic infectious period (days)

p

 1 



Plotting the heatmap – using ggplot2

require(ggplot2)

ggplot(values, aes(x = inv_gamma, y = p, fill = R0)) +

geom_tile() +

scale_fill_viridis_c() +

#scale_fill_gradientn(colours = brewer.pal(9, "YlOrRd")) +

xlab("Average duration of the symptomatic infectious period (days)") +

ylab(TeX("$p$")) +

ggtitle(TeX("$R_0$ as a function of $1/\\gamma$ and $p$")) +

theme_minimal()
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Plotting the heatmap – using contour

contour(x = unique(values$inv_gamma), y = unique(values$p),

z = matrix(values$R0,

nrow = length(unique(values$inv_gamma))),

xlab = "Average duration of the symptomatic infectious period (days)",

ylab = TeX("$p$"),

main = TeX("$R_0$ as a function of $1/\\gamma$ and $p$"))
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Plotting the heatmap – using filled.contour

filled.contour(x = unique(values$inv_gamma), y = unique(values$p),

z = matrix(values$R0,

nrow = length(unique(values$inv_gamma))),

xlab = "Average duration of the symptomatic infectious period (days)",

ylab = TeX("$p$"),

main = TeX("$R_0$ as a function of $1/\\gamma$ and $p$"))
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Last remark on heatmaps – expand.grid is cool

We can use expand.grid for more than two variables

The only problem is visualisation...
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Sensitivity analysis of R0

Now repeat everything for the SLIARVS model



Sensitivity analysis of R0

To perform a sensitivity analysis, there are several steps to follow:

1. Define the parameters of interest

2. Define the range of variation of each parameter

3. Define the method to use to vary the parameters

4. Define the function to evaluate

5. Evaluate the function for each combination of parameters

6. Choose a method to evaluate the sensitivity
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SLIAR model – Sensitivity analysis of R0

We perform a sensitivity analysis of R0 with respect to all parameters involved in (2)
except S0 (which we take to be 999 here)

Note that we cannot use the same trick as before, where we set β using (9): it would
defeat the purpose of the sensitivity analysis to assume a value of R0 to compute β to
then compute R0

Instead, we set overall acceptable bounds for R0 and compute a resulting range of
values of β based on the set ranges for the other parameters and these bounds for R0
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SLIAR model – Finding the range of β

β =
R0(

p
γ + δ(1−p)

η

)
S0

(9)

Then
∂β

∂R0
> 0,

∂β

∂γ
> 0,

∂β

∂η
> 0

∂β

∂δ
< 0

while

sgn

(
∂β

∂p

)
= sgn(γδ − η)
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So the maximum of β can be evaluated using (9) with the maximum values of R0, γ,
η and the minimum value of δ

On the other hand, we always vary p ∈ [0, 1]; for such p, we have β > 0

β|p=0 =
ηR0

δS0
β|p=1 =

γR0

S0

with β(p)

▶ ↗ if γδ > η =⇒ use p = 0 and p = 1 for the min and max values of β,
respectively

▶ ↘ if γδ < η =⇒ use p = 1 and p = 0 for the min and max values of β,
respectively

So we can further simplify the computation of the range of β
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Thus, in practice, if γminδmin > ηmin, then β(p) is increasing and

βmin =
ηminRmin

0

δminSmin
0

while if γminδmin ≤ ηmin, β(p) is decreasing and

βmin =
γminRmin

0

Smin
0

Similarly, if γmaxδmax > ηmax, then β(p) is increasing and

βmax =
γmaxRmax

0

Smax
0

while if γmaxδmax ≤ ηmax, β(p) is decreasing and

βmax =
ηmaxRmax

0

δmaxSmax
0
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SLIAR model – Setting parameters
The ranges are shown on the next page, but let us here show how we set up the code

params = list()

params$N = 1000

params$I0 = 1

params$S0 = params$N-params$I0

params$R0 = c(0.5, 5)

params.vary = list(

delta = c(0.05, 1),

p = c(0, 1),

gamma = c(1/10, 1/2),

eta = c(1/7,1))

params.vary$beta =

c(params.vary$gamma[1]*params$R0[1]/params$S0,

params.vary$eta[2]*params$R0[2]/(params.vary$delta[2]*params$S0))
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SLIAR model – Parameter ranges used with R0

Parameter Minimum Maximum

R0 0.5 5
δ 0.05 1
p 0 1
γ 1/10 1/2
η 1/7 1

γminδmin ≤ ηmin (0.005 ≤ 0.143) =⇒ βmin ≃ 5× 10−5

γmaxδmax ≤ ηmax (0.5 ≤ 1) =⇒ βmax ≃ 0.005005
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SLIAR model – Parameter ranges used with β

After this computation of β, we thus consider the following ranges for the parameters

Parameter Minimum Maximum

β 5× 10−5 0.005005
δ 0.05 1
p 0 1
γ 1/10 1/2
η 1/7 1
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An important question – How to sample parameter space

We want to generate nb samples values of the function we are evaluating

However, we can’t just pick random values for each parameter

Indeed, if we did, we would have no guarantee that we would cover the whole
parameter space (in particular, various combinations of random values of the different
parameters)

Of course, we cannot test all possible combinations of parameter values, but we can
try to approach this by using a sampling method
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Illustrating sampling methods

We use a function adapted from one (graph2LHS) in an official CRAN vignette (not
my vignettes) (link to Rmd version of the vignette) to show the different sampling
schemes

In all illustrations, we use two parameters whose values are in [0, 1]

In practice, we have more parameters and their values are in different ranges
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The “naive” method – Grid sampling

We can use expand.grid to generate all possible combinations of parameter values

This gets large a little too quickly: in the SLIAR model (1), we want to investigate 5
parameters

If we pick 10 values for each parameter, we have to evaluate 105 = 100, 000
combinations

This is viable if the function being evaluated (R0 here) is not costly or there aren’t too
many parameters; otherwise, this quickly becomes messy or too long
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Grid sampling (20 samples)
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Select a sampling method – Grid sampling

nb_points_per_param = 10

params.grid = expand_grid(

delta = seq(params.vary$delta[1],

params.vary$delta[2],

length.out = nb_points_per_param),

p = seq(params.vary$p[1], params.vary$p[2], length.out = nb_points_per_param),

gamma = seq(params.vary$gamma[1], params.vary$gamma[2], length.out = nb_points_per_param),

eta = seq(params.vary$eta[1], params.vary$eta[2], length.out = nb_points_per_param),

beta = seq(params.vary$beta[1], params.vary$beta[2], length.out = nb_points_per_param))
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Vectorised or parallel? Both?

Functions like the ones here are easily vectorised. We show an example here

More complex functions (for instance, requiring the use of ode) may not be vectorised
and can benefit from parallelisation

We will use the parallel package to parallelise the evaluation of the function

It is possible to parallelise a vector function as well, but we will not do that here
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Vectorised version of the R0 function

The first function we wrote actually works with vectors, but we need to allow S0 as an
argument (as it is not varying). So we distinguish between two parameter sets, the
fixed ones and the varying ones

R0_SLIAR = function(p, p_fixed) {
OUT = p$beta*(p$p/p$gamma+p$delta*(1-p$p)/p$eta)*p_fixed$S0

return(OUT)

}
R0_values = R0_SLIAR(params.grid, params)
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Now compute PRCC

Partial rank correlation coefficients (PRCC) are a measure of the correlation between a
parameter and the output of a function, controlling for the effect of the other
parameters

We make a function just to simplify the call

compute_PRCC = function(v, pars) {
x = pcc(pars, as.numeric(v),

rank = TRUE, semi = FALSE)

return(x)

}
R0_SLIAR_PRCC_grid = compute_PRCC(R0_values, params.grid)
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The PRCC values

R0_SLIAR_PRCC_grid

##

## Call:

## pcc(X = pars, y = as.numeric(v), rank = TRUE, semi = FALSE)

##

## Partial Rank Correlation Coefficients (PRCC):

## original

## delta 0.3792029

## p 0.6462309

## gamma -0.5934708

## eta -0.3623526

## beta 0.8778737
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Plotting the results using base graphics

To make things a bit easier to read, let’s sort the PRCC values in decreasing absolute
value

idx = order(abs(R0_SLIAR_PRCC_grid$PRCC$original),

decreasing = TRUE)

plot(R0_SLIAR_PRCC_grid$PRCC$original[idx],

ylim = c(-1,1), xaxt='n',

xlab = "Parameter", ylab = "PRCC",

main = TeX("PRCC for $R_0$ - parameters sampled using a grid"),

pch = 19, col = "blue", cex = 2)

axis(1, at = 1:length(idx),

labels = rownames(R0_SLIAR_PRCC_grid$PRCC)[idx])

abline(h=0, lty = 3)
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Refining the plot a little

Let’s use different colours for the points, make their size proportional to the PRCC
values and use LATEXfor the labels

colour = viridis::viridis(length(idx))

labels = sprintf("$\\%s$", rownames(R0_SLIAR_PRCC_grid$PRCC)[idx])

labels = gsub("\\\\p", "p", labels)

plot(R0_SLIAR_PRCC_grid$PRCC$original[idx],

ylim = c(-1,1), xaxt='n', pch = 19,

xlab = "Parameter", ylab = "PRCC",

col = colour,

main = TeX("PRCC for $R_0$ - parameters sampled using a grid"),

cex = 3 * abs(R0_SLIAR_PRCC_grid$PRCC$original)[idx])

axis(1, at = 1:length(idx), labels = TeX(labels))

abline(h=0, lty = 3)
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Plotting the results using ggplot2

df = data.frame(Parameter = rownames(R0_SLIAR_PRCC_grid$PRCC)[idx],

PRCC = R0_SLIAR_PRCC_grid$PRCC$original[idx])

ggplot(df, aes(x = Parameter, y = PRCC)) +

geom_point(colour = "blue", size = 3) +

geom_hline(yintercept = 0, linetype = "dotted") +

theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

theme_minimal()
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The problem with grid sampling

Suppose we decide that since 100,000 evaluations are done easily, we can afford to do
1,000,000 evaluations

How do we implement that?

We have
1, 000, 0001/5 ≃ 15.8489

so we could decide to cut each range in 16 parts

If the range of each parameter is relatively large, this could quickly become
unmanageable
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What if I do want grid sampling nonetheless?

The function parameterSets from the sensitivity package can be used to generate
a grid of parameter sets

nb_samples = 1000000

length_grid_side = floor(nb_samples^(1/5))

params.grid = parameterSets(par.ranges = params.vary,

samples = rep(length_grid_side, 5),

method = "grid")

params.grid = as.data.frame(params.grid)

colnames(params.grid) = names(params.vary)

R0_values = R0_SLIAR(params.grid, params)

R0_SLIAR_PRCC_grid_2 = compute_PRCC(R0_values, params.grid)

You can also use method="innergrid" to generate a grid of parameter sets that are
offset from the sides of the hypecube
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Sobol sampling (20 samples)
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Select a sampling method – Sobol

This uses the sensitivity package

nb_samples = 100000

params.sobol = parameterSets(par.ranges = params.vary,

samples = nb_samples,

method = "sobol")

params.sobol = as.data.frame(params.sobol)

colnames(params.sobol) = names(params.vary)
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Compute PRCC with Sobol sampling

Partial rank correlation coefficients (PRCC) are a measure of the correlation between a
parameter and the output of a function, controlling for the effect of the other
parameters

R0_values = R0_SLIAR(params.sobol, params)

compute_PRCC = function(v, pars) {
x = pcc(pars, as.numeric(v),

rank = TRUE, semi = FALSE)

return(x)

}
R0_SLIAR_PRCC_sobol = compute_PRCC(R0_values, params.sobol)
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The PRCC values

R0_SLIAR_PRCC_sobol

##

## Call:

## pcc(X = pars, y = as.numeric(v), rank = TRUE, semi = FALSE)

##

## Partial Rank Correlation Coefficients (PRCC):

## original

## delta 0.4129675

## p 0.7018390

## gamma -0.6578156

## eta -0.3885156

## beta 0.8996126
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Plotting the results using base graphics

idx = order(abs(R0_SLIAR_PRCC_sobol$PRCC$original),

decreasing = TRUE)

colour = viridis::viridis(length(idx))

labels = sprintf("$\\%s$", rownames(R0_SLIAR_PRCC_sobol$PRCC)[idx])

labels = gsub("\\\\p", "p", labels)

plot(R0_SLIAR_PRCC_sobol$PRCC$original[idx],

ylim = c(-1,1), xaxt='n', pch = 19,

xlab = "Parameter", ylab = "PRCC",

col = colour,

main = TeX("PRCC for $R_0$ - parameters sampled using Sobol"),

cex = 3 * abs(R0_SLIAR_PRCC_sobol$PRCC$original)[idx])

axis(1, at = 1:length(idx), labels = TeX(labels))

abline(h=0, lty = 3)
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Plotting the results using ggplot2

df = data.frame(Parameter = rownames(R0_SLIAR_PRCC_sobol$PRCC)[idx],

PRCC = R0_SLIAR_PRCC_sobol$PRCC$original[idx])

ggplot(df, aes(x = Parameter, y = PRCC)) +

geom_point(colour = "blue", size = 3) +

geom_hline(yintercept = 0, linetype = "dotted") +

theme(axis.text.x = element_text(angle = 45, hjust = 1)) +

theme_minimal()
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Select a sampling method – Latin Hypercube

This is another method to sample the parameter space

From Wikipedia In the context of statistical sampling, a square grid containing
sample positions is a Latin square if (and only if) there is only one sample
in each row and each column. A Latin hypercube is the generalisation of this
concept to an arbitrary number of dimensions, whereby each sample is the only
one in each axis-aligned hyperplane containing it.
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Latin hypercube sampling (20 samples)
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Select a sampling method – Latin Hypercube
Call the function with arguments for the number of samples and the number of
parameters

params.lhs = lhs::randomLHS(nb_samples, length(params.vary))

params.lhs = as.data.frame(params.lhs)

colnames(params.lhs) = names(params.vary)

head(params.lhs)

## delta p gamma eta beta

## 1 0.2196281 0.65674325 0.47224889 0.6055470 0.4467295

## 2 0.3923825 0.70044379 0.18594261 0.3877079 0.6882853

## 3 0.1343409 0.23472237 0.40297181 0.6030566 0.9984018

## 4 0.9139961 0.09964145 0.05388207 0.9800108 0.7528688

## 5 0.5624563 0.42259898 0.19264973 0.6475799 0.9647556

## 6 0.3854645 0.68503310 0.40032684 0.9348806 0.3037644

Results are uniform on [0, 1] for each parameter and need to be transformed prior to use
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Transforming the uniform distribution

Suppose values ξ uniformly distributed on [0, 1] are to be transformed to the range
[xmin, xmax]

x = xmin + ξ(xmax − xmin)

for (c in 1:length(params.vary)) {
params.lhs[,c] = params.vary[[c]][1] + params.lhs[,c] *

(params.vary[[c]][2] - params.vary[[c]][1])

}
R0_values = R0_SLIAR(params.lhs, params)

R0_SLIAR_PRCC_lhs = compute_PRCC(R0_values, params.lhs)
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Plotting the results using base graphics

idx = order(abs(R0_SLIAR_PRCC_lhs$PRCC$original),

decreasing = TRUE)

colour = viridis::viridis(length(idx))

labels = sprintf("$\\%s$", rownames(R0_SLIAR_PRCC_lhs$PRCC)[idx])

labels = gsub("\\\\p", "p", labels)

plot(R0_SLIAR_PRCC_lhs$PRCC$original[idx],

ylim = c(-1,1), xaxt='n', pch = 19,

xlab = "Parameter", ylab = "PRCC",

main = TeX("PRCC for $R_0$ with parameters sampled using LHS"),

col = colour,

cex = 3 * abs(R0_SLIAR_PRCC_lhs$PRCC$original)[idx])

axis(1, at = 1:length(idx), labels = TeX(labels))

abline(h=0, lty = 3)
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Comparing the PRCC values

R0_SLIAR_PRCC = cbind(R0_SLIAR_PRCC_grid$PRCC$original,

R0_SLIAR_PRCC_grid_2$PRCC$original,

R0_SLIAR_PRCC_sobol$PRCC$original,

R0_SLIAR_PRCC_lhs$PRCC$original)

rownames(R0_SLIAR_PRCC) = rownames(R0_SLIAR_PRCC_grid$PRCC)

colnames(R0_SLIAR_PRCC) = c("Grid 1", "Grid 2", "Sobol", "LHS")

knitr::kable(R0_SLIAR_PRCC, digits = 3, booktabs = TRUE)

Grid 1 Grid 2 Sobol LHS

delta 0.379 0.389 0.413 0.409
p 0.646 0.663 0.702 0.704
gamma -0.593 -0.614 -0.658 -0.660
eta -0.362 -0.370 -0.389 -0.390
beta 0.878 0.885 0.900 0.900
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One last remark on sensitivity

We have used γ and η

We saw when plotting R0 as a function of γ that the situation is very different when
using γ and 1/γ

The same is true, to a lesser extent, of η and 1/η

We would therefore get a very different picture if we considered 1/γ and 1/η for the
sensitivity analysis
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Nobody expects the Spanish Inquisition!

Here, we used PRCC. There are many other types of sensititivities that can be
computed

The sensitivity packages has quite an array of these. See the package
documentation for details

There are other R packages that also do sensitivity analysis
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Why parallelise?

Numerical problems like the evaluation of a function at a bunch of points in parameter
space when all evaluations are independent from one another are embarassingly
parallel

In the case of the PRCC for R0 like here, parallel is not necessarily a good idea, as
there is a lot of overhead

However, if you are computing the response of a more complex function, e.g.,
simulating the solutions to an ODE then performing a bunch of computations, then
parallelising can greatly speed stuff up
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Setting up the parallel version

The easiest way is to use parLapply. For this, we need a list in which each entry is a
list with a specific point in parameter space

params.sobol.list = split(params.sobol, seq(nrow(params.sobol)))

head(params.sobol.list, n = 2)

## $`1`

## delta p gamma eta beta

## 1 0.525 0.5 0.3 0.5714286 0.002527528

##

## $`2`

## delta p gamma eta beta

## 2 0.7625 0.25 0.4 0.3571429 0.003766266
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Testing iteratively first

If your code is going to run in parallel using parLapply, it also needs to run
sequentially using lapply

Using lapply also is good to debug, as debugging parallel code is not easy

R0_values = lapply(X = params.sobol.list,

FUN = function(x) R0_SLIAR(x, params))

head(R0_values, n = 2)

## $`1`

## [1] 5.368255

##

## $`2`

## [1] 8.376266
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Note the little trick here

The function R0 SLIAR takes two arguments, p and p fixed

However, lapply (or parLapply later) only allow dependence on a single variable

Suppose we have a function f(a,b)

We use the construct function(x) f(x,b) to make f depend only its first argument

Similarly, function(x) f(a,x) would make f depend only on its second argument
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Sequential works, let’s go parallel

To run your code in parallel using parLapply, you need several steps:

▶ Create a cluster, i.e., a group of workers that will each execute the function
passed as argument to parLapply (R0 SLIAR here). Typically, you want to use all
compute cores but one (unless you are on a headless server), otherwise your
machine may become unresponsive

▶ Provide each worker with all they need to execute the function. Each worker is an
instance of R running independently

▶ Call parLapply to have the workers run the code

▶ Close the cluster to “free up” the workers
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Let’s go parallel! (and time our run)

nb_cores <- parallel::detectCores() - 1

nb_cores <- ifelse(nb_cores > 122, 122, nb_cores)

tictoc::tic("whole parallel phase")

cl <- parallel::makeCluster(nb_cores)

parallel::clusterExport(cl, c("params", "R0_SLIAR"))

tictoc::tic("parLapply")

result = parallel::parLapply(cl = cl, X = params.sobol.list,

fun = function(x) R0_SLIAR(x, params))

tictoc::toc()

## parLapply: 0.751 sec elapsed

parallel::stopCluster(cl)

tictoc::toc()

## whole parallel phase: 1.133 sec elapsed
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Just for comparison

tictoc::tic("lapply")

result = lapply(X = params.sobol.list,

FUN = function(x) R0_SLIAR(x, params))

tictoc::toc()

## lapply: 1.031 sec elapsed

tictoc::tic("vectorised")

result = R0_SLIAR(params.sobol, params)

tictoc::toc()

## vectorised: 0.002 sec elapsed
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Remarks about running in parallel

Here, the gain was not massive and the overhead of setting up the cluster was not
negligible (cluster setup is sequential so setup time depends on the number of cores)

One of the machines I run this on has 128 threads. R has hard coded limit of 128
threads and uses a few of them for other things =⇒ limit to 122 threads. If you try
to use more, your parallel code will not run

If you want to get rid of this limitation, you need to recompile R with a higher limit.
See a blog post I made about this (link)

That post also explains how to set up a cluster using multiple machines
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Can I have this wrapped up to go?

To finish, we use the command purl to generate an R file
(basic-computational-analysis.R) in the CODE directory with all the code
chunks in this Rnw file

# From https://stackoverflow.com/questions/36868287/purl-within-knit-duplicate-label-error

rmd_chunks_to_r_temp <- function(file){
callr::r(function(file, temp){
out_file = sprintf("../CODE/%s", gsub(".Rnw", ".R", file))

knitr::purl(file, output = out_file, documentation = 1)

}, args = list(file))

}
rmd_chunks_to_r_temp("basic-computational-analysis-1-functions.Rnw")

## [1] "../CODE/basic-computational-analysis-1-functions.R"
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About that R file

Source the file basic-computational-analysis-1-functions.R (in the CODE
directory) in R to reproduce all the results in these slides

Some small changes are required; for instance, when sourcing (instead of knitting or
interactively), ggplot figures are created but not printed, so in the R file, you need to
print them “manually”

pp = ggplot(...)

print(pp)
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