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Continuous-time Markov chains

CTMC similar to DTMC except in way they handle time between
events (transitions)

DTMC: transitions occur each ∆t

CTMC: ∆t → 0 and transition times follow an exponential
distribution parametrised by the state of the system

CTMC are roughly equivalent to ODE

p. 1 � Continuous time Markov chains
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Converting your compartmental ODE model to CTMC

Easy as π :)

▶ Compartmental ODE model focuses on �ows into and out of
compartments

▶ ODE model has as many equations as there are compartments

▶ Compartmental CTMC model focuses on transitions

▶ CTMC model has as many transitions as there are arrows
between (or into or out of) compartments

p. 2 � ODE ↔ CTMC



ODE to CTMC : focus on di�erent components

S I S I

−βSI

+γI

+βSI

−γI

βSI

γI

ODE CTMC

focus focus
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SIS without demography

Transition E�ect Weight Probability

S → S − 1, I → I + 1 new infection βSI
βSI

βSI + γI

S → S + 1, I → I − 1 recovery of an in-
fectious

γI
γI

βSI + γI

States are S , I
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SIS with demography

Transition E�ect Weight Probability

S → S + 1 birth of a suscepti-
ble

b b
b+d(S+I )+βSI+γI

S → S − 1 death of a suscep-
tible

dS dS
b+d(S+I )+βSI+γI

S → S − 1, I →
I + 1

new infection βSI βSI
b+d(S+I )+βSI+γI

I → I − 1 death of an infec-
tious

dI dI
b+d(S+I )+βSI+γI

S → S + 1, I →
I − 1

recovery of an in-
fectious

γI γI
b+d(S+I )+βSI+γI

States are S , I
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Kermack & McKendrick model

Transition E�ect Weight Probability

S → S − 1, I → I + 1 new infection βSI
βSI

βSI + γI

I → I − 1, R → R + 1 recovery of an in-
fectious

γI
γI

βSI + γI

States are S , I ,R
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Gillespie's algorithm

▶ A.k.a. the stochastic simulation algorithm (SSA)

▶ Derived in 1976 by Daniel Gillespie

▶ Generates possible solutions for CTMC

▶ Extremely simple, so worth learning how to implement; there
are however packages that you can use (see later)

p. 7 � Simulating CTMC (in theory)



Gillespie's algorithm

Suppose system has state x(t) with initial condition x(t0) = x0 and
propensity functions ai of elementary reactions

set t ← t0 and x(t)← x0
while t ≤ tf
• ξt ←

∑
j aj(x(t))

• Draw τt from T ∼ E(ξt)
• Draw ζt from U([0, 1])
• Find r , smallest integer s.t.

r∑
k=1

ak(x(t)) > ζt
∑
j

aj(x(t)) = ζtξt

• E�ect the next reaction (the one indexed r)

• t ← t + τt

p. 8 � Simulating CTMC (in theory)



Drawing at random from an exponential distribution
If you do not have an exponential distribution random number
generator.. We want τt from T ∼ E(ξt), i.e., T has probability
density function

f (x , ξt) = ξte
−ξtx1x≥0

Use cumulative distribution function F (x , ξt) =
∫ x
−∞ f (s, ξt) ds

F (x , ξt) = (1− e−ξtx)1x≥0

which has values in [0, 1]. So draw ζ from U([0, 1]) and solve
F (x , ξt) = ζ for x

F (x , ξt) = ζ ⇔ 1− e−ξtx = ζ

⇔ e−ξtx = 1− ζ

⇔ ξtx = − ln(1− ζ)

⇔ x =
− ln(1− ζ)

ξt

p. 9 � Simulating CTMC (in theory)



Gillespie's algorithm (SIS model with only I eq.)

set t ← t0 and I (t)← I (t0)
while t ≤ tf
• ξt ← β(P⋆ − i)i + γi

• Draw τt from T ∼ E(ξt)
• v ← [β(P⋆ − i)i , ξt ] /ξt
• Draw ζt from U([0, 1])
• Find pos such that vpos−1 ≤ ζt ≤ vpos
• switch pos

1. New infection, I (t + τt) = I (t) + 1
2. End of infectious period, I (t + τt) = I (t)− 1

• t ← t + τt

p. 10 � Simulating CTMC (in theory)



Sometimes Gillespie goes bad

▶ Recall that the inter-event time is exponentially distributed

▶ Critical step of the Gillespie algorithm:
▶ ξt ← weight of all possible events (propensity)
▶ Draw τt from T ∼ E(ξt)

▶ So inter-event time τt → 0 if ξt very large for some t

▶ This can cause the simulation to grind to a halt

p. 11 � Simulating CTMC (in theory)



Example: a birth and death process

▶ Individuals born at per capita rate b

▶ Individuals die at per capita rate d

▶ Let's implement this using classic Gillespie

(CODE/simulate-birth-death-CTMC-classic-Gillespie.R on
course GitHub repo)

p. 12 � Simulating CTMC (in theory)
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Gillespie's algorithm (birth-death model)

set t ← t0 and N(t)← N(t0)
while t ≤ tf
• ξt ← (b + d)N(t)

• Draw τt from T ∼ E(ξt)
• v ← [bN(t), ξt ] /ξt
• Draw ζt from U([0, 1])
• Find pos such that vpos−1 ≤ ζt ≤ vpos
• switch pos

1. Birth, N(t + τt) = N(t) + 1
2. Death, N(t + τt) = N(t)− 1

• t ← t + τt

p. 13 � Simulating CTMC (in theory)



birth_death = function(b = 0.01, d = 0.01,

N_0 = 100,

t_0 = 0, t_f = 1000) {

# Vectors to store time and state.

# Initialise with initial condition.

t = t_0 # Initial time

N = N_0 # Initial population

# We'll track the current time and state (could also just check

# last entry in t and N, but will take more operations)

t_curr = t_0

N_curr = N_0

p. 14 � Simulating CTMC (in theory)



while (t_curr<=t_f) {

xi_t = (b+d)*N_curr

if (N_curr == 0) {

break

}

tau_t = rexp(1, rate = xi_t)

t_curr = t_curr+tau_t

v = c(b*N_curr, xi_t)/xi_t

zeta_t = runif(n = 1)

pos = findInterval(zeta_t, v)+1

switch(pos,

{

N_curr = N_curr+1 # Birth

},

{

N_curr = N_curr-1 # Death

})

N = c(N, N_curr)

t = c(t, t_curr)

}

return(data.frame(t = t, N = N))

}

p. 15 � Simulating CTMC (in theory)
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Last one did not go well

▶ Penultimate slide: sim stopped because the population went
extinct, I did not stop it!

▶ Last slide: I wanted 1,000 time units (days?)

▶ Interrupted at t = 333.25 because I �lost patience� (added
something to check step size, see code for the slide)

▶ At stop time
▶ N = 79, 707
▶ |t| = |N| = 159, 782
▶ time was moving slowly

p. 19 � Simulating CTMC (in theory)
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Tau-leaping (and packages) to the rescue!

▶ Approximation method (compared to classic Gillespie, which is
exact)

▶ Roughly: consider "groups" of events instead of individual
events

▶ Good news: GillespieSSA2 and adaptivetau, two standard
packages for SSA in R, implement tau leaping

p. 21 � Simulating CTMC (in practice)



adaptivetau or GillespieSSA2?

▶ Both packages do roughly the same thing now (in the past,
GillespieSSA2 was the only only one exporting �events�, but
now both do)

▶ GillespieSSA2 can precompile stu�, which is faster. Also has
a slightly more compact syntax

▶ adaptivetau is more robust: precompiling is great but runs
into issues when you are parallelising your code

=⇒ I will illustrate using adaptivetau

CODE directory has some GillespieSSA2 examples as well. Both
are very similar!

p. 22 � Simulating CTMC (in practice)



adaptivetau to simulate an SIRS CTMC
Initial setup

library(adaptivetau)

Pop <- 1000

I_0 <- 2

IC <- c(S = (Pop-I_0), I = I_0, R = 0)

params <- list(gamma = 1/5, nu = 1/50)

params$beta <- params$gamma*1.5/(Pop-I_0)

t_f = 100

p. 23 � Simulating CTMC (in practice)



adaptivetau to simulate an SIRS CTMC
Reactions and reaction rates

reactions_names <- c("new_infection",

"recovery",

"loss_immunity")

reactions_effects <- list(

c(S=-1, I=+1), # new infection

c(I=-1, R=+1), # recovery

c(R=-1, S=+1) # loss of immunity

)

reactions_rates <- function(x, params, t) {

with(as.list(c(x, params)), {

rates <- c(

beta*S*I, # new infection

gamma*I, # recovery

nu*R # loss of immunity

)

return(rates)

})

}

p. 24 � Simulating CTMC (in practice)



adaptivetau to simulate an SIRS CTMC
Calling the �solver�

set.seed(1)

sol <- ssa.adaptivetau(

init.values = IC,

transitions = reactions_effects,

rateFunc = reactions_rates,

params = params,

tf = t_f

)

Beware: set.seed(1) is used for reproducibility. Remove for real
simulations! (E.g., use set.seed(NULL))

p. 25 � Simulating CTMC (in practice)



Simulation output

time S I R

0.0000000 998 2 0
0.7551818 997 3 0
0.8523781 997 2 1
2.8140734 997 1 2
3.6220576 996 2 2

5.5801782 995 3 2

Can be useful to convert to a data.frame for convenience (e.g., to
use sol$time instead of sol[,"time"])

p. 26 � Simulating CTMC (in practice)
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Important options to ssa.adaptivetau

▶ Not an option per se: calling ssa.exact instead of
ssa.tauleap uses the exact SSA algorithm (traditional
Gillespie algorithm) instead of tau-leaping

▶ Both ssa.exact and ssa.tauleap have a
reportTransitions, which, when set to TRUE, returns the
transitions that occurred at each time step

p. 28 � Simulating CTMC (in practice)



adaptivetau to simulate an SIRS CTMC
Playing with options

set.seed(1)

sol <- ssa.exact(

init.values = IC,

transitions = reactions_effects,

rateFunc = reactions_rates,

params = params,

tf = t_f,

reportTransitions = TRUE

)

p. 29 � Simulating CTMC (in practice)



Transitions in the simulation

Calling with reportTransitions = TRUE returns the solution as a
list with �elds dynamics and transitions

dynamics is the output we had before

transitions is a matrix with the corresponding events. That's
where having the transition names is useful:

> colnames(sol$transitions) <- reactions_names

ensures we have the names of the transitions in the output matrix

p. 30 � Simulating CTMC (in practice)



Why are transitions useful?

Let's take the example of an SLIAR model

What is going on?

p. 31 � Simulating CTMC (in practice)
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Who is doing the infecting?

We can go further if we look at transitions in detail

p. 33 � Simulating CTMC (in practice)



Using transitions � The not so good way

reactions_names <- c("new_infection",

"L_to_I",

..

reactions_effects <- list(

c(S=-1, L=+1), # new infection

c(L=-1, I=+1), # L to I

..

reactions_rates <- function(x, params, t) {

with(as.list(c(x, params)), {

rates <- c(

beta*S*(I+eta*A), # new infection I

(1-p)*epsilon*L, # L to I

..

p. 34 � Simulating CTMC (in practice)



Using transitions � The good way

reactions_names <- c("new_infection_I",

"new_infection_A",

"L_to_I",

..

reactions_effects <- list(

c(S=-1, L=+1), # new infection I

c(S=-1, L=+1), # new infection A

c(L=-1, I=+1), # L to I

..

reactions_rates <- function(x, params, t) {

with(as.list(c(x, params)), {

rates <- c(

beta*S*I, # new infection I

beta*S*eta*A, # new infection A

(1-p)*epsilon*L, # L to I

..

p. 35 � Simulating CTMC (in practice)



Representing transition results as epi diagrams

We use the libraries incidence2 and ggplot2

Need to make a �line list� from the transitions, i.e., a matrix with
columns time, value and event

See the code in the Rnw source of these slides and in
CODE/functions-useful.R

p. 36 � Simulating CTMC (in practice)
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Parallelisation

To run multiple realisations, it is a good idea to parallelise your
code, since CTMC simulations are embarrassingly parallel

Write a function, e.g., run_one_sim that .. runs one simulation,
then call it from within a parLapply statement

Note: if you want to compute the mean trajectory of the
realisations, you will need to interpolate solutions, since event times
are di�erent in each realisation

On the GitHub repo for the course, see

▶ CODE/SIS-CTMC-parallel.R

▶ CODE/SIS-CTMC-parallel-multiple-R0.R

p. 38 � Parallelising your code in R
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# Set parameters

# We store even the IC in there.. In parallel computations, this

# can be useful

params = list(

Pop = 1000,

I_0 = 2,

t_f = 100,

gamma = 1/5,

nu = 1/50,

R0 = 1.5)

params$beta <- params$gamma*params$R0/(params$Pop-params$I_0)

params$IC <- c(S = (params$Pop-params$I_0),

I = params$I_0, R = 0)

params$reactions_names <- c("new_infection",

"recovery",

"loss_immunity")

params$reactions_effects <- list(

c(S=-1, I=+1), # new infection

c(I=-1, R=+1), # recovery

c(R=-1, S=+1) # loss of immunity

)

p. 39 � Parallelising your code in R



library(parallel)

run_one_sim = function(params) {

with(as.list(params), {

set.seed(NULL) # avoid reproducibility here

sol <- ssa.exact(

init.values = IC,

transitions = reactions_effects,

rateFunc = reactions_rates,

params = params,

tf = t_f,

reportTransitions = TRUE

)

# Interpolate result (just I will do)

wanted_t = seq(from = 0, to = t_f, by = 0.01)

sol$interp_I = approx(x = sol$dynamics[,"time"],

y = sol$dynamics[,"I"],

xout = wanted_t)

names(sol$interp_I) = c("time", "I")

# Return result

return(sol)

})

}

p. 40 � Parallelising your code in R



if (FALSE) {

SIMS = lapply(1:50, function(x) run_one_sim(params))

} else {

nb_cores <- detectCores()-1

if (nb_cores > 124) {

nb_cores = 124

}

cl <- makeCluster(nb_cores)

clusterEvalQ(cl,{

library(adaptivetau)

})

clusterExport(cl,

c("params",

"run_one_sim",

"reactions_rates"),

envir = .GlobalEnv)

SIMS = parLapply(cl = cl,

X = 1:100,

fun = function(x) run_one_sim(params))

stopCluster(cl)

}

p. 41 � Parallelising your code in R
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Bene�t of parallelisation

Run the parallel code for 100 sims between tictoc::tic() and
tictoc::toc(), giving 0.498 sec elapsed, then the sequential
version

tictoc::tic()

SIMS = lapply(X = 1:params$number_sims,

FUN = function(x) run_one_sim(params))

tictoc::toc()

which gives 2.107 sec elapsed on a 8T Intel(R) Core(TM) i5-8265U
CPU @ 1.60GHz (parallel is 4.23× faster)

p. 43 � Parallelising your code in R



Some words of caution � Overheads

▶ Overheads (setting up the cluster, providing data to workers,
etc.) can be signi�cant. For small numbers of simulations,
overheads can be larger than the gains

▶ Be careful in particular if the function to be parallelised is very
fast

▶ Setup time increases with more cores

In the example, we have the following

▶ Serial version (all included): 2.107 sec elapsed

▶ Parallel version:
▶ Time for the parallel part: 0.498 sec elapsed
▶ Overall, including setup: 0.968 sec elapsed

p. 44 � Parallelising your code in R



Some words of caution � RAM usage

▶ Beware of RAM usage: each worker will have to have a copy
of the data, so if the data is large or you have many workers
(cores/threads on your computer), this can be a problem

▶ Also, about RAM usage: results can quickly become large, so
you may have to select what to keep and what to discard or
save intermediate results to disk (it is �ne to write to disk
from a worker or to run a certain number of simulations, save
the results and then run the next batch, without restarting the
cluster)

p. 45 � Parallelising your code in R



Amdahl's law

Slatency(s) =
1

(1− p) + p/s

where

▶ Slatency is the theoretical speedup of the execution of the whole
task

▶ s is the speedup of the part of the task that bene�ts from
improved system resources

▶ p is the proportion of execution time that the part bene�ting
from improved resources originally occupied

p. 46 � Parallelising your code in R
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