Continuous time Markov chains
R for modellers — Vignette 21

Julien Arino

June 2024

Outline

Continuous time Markov chains
ODE « CTMC

Simulating CTMC (in theory)
Simulating CTMC (in practice)

Parallelising your code in R

Continuous time Markov chains
ODE <+ CTMC

Simulating CTMC (in theory)
Simulating CTMC (in practice)

Parallelising your code in R

Continuous-time Markov chains

CTMC similar to DTMC except in way they handle time between
events (transitions)

DTMC: transitions occur each At

CTMC: At — 0 and transition times follow an exponential
distribution parametrised by the state of the system

CTMC are roughly equivalent to ODE

p. 1 — Continuous time Markov chains

Continuous time Markov chains
ODE < CTMC

Simulating CTMC (in theory)
Simulating CTMC (in practice)

Parallelising your code in R

Converting your compartmental ODE model to CTMC
Easy as 7 :)

» Compartmental ODE model focuses on flows into and out of
compartments

» ODE model has as many equations as there are compartments
» Compartmental CTMC model focuses on transitions

» CTMC model has as many transitions as there are arrows
between (or into or out of) compartments

p. 2 - ODE «< CTMC

ODE to CTMC : focus on different components

ODE : CTMC
+8Sl § BSI
""" * s
OWrRdh 'BROWN
—l iyl
focué focvus

p. 3 - ODE «< CTMC

SIS without demography

Transition Effect Weight Probability

Si
S—S5—-1,1— 141 new infection BSI1 55?7_7/
S—S+1,1—1—-1 recovery of an in- 1 5577_‘_7/

fectious

States are S, /

p. 4 - ODE «< CTMC

SIS with demography

Transition Effect Weight Probability

S—>S5+1 birth of a suscepti- b b+d(5+lt))+BSI+'yl
ble

S—+5S5-1 death of a suscep- ds b+d(5+7)5+ﬂ51+7,
tible

S = S—-1,1 — new infection BSI b+d(5+€ﬁﬁ5!+y/

I+1

I —=1-1 death of an infec- dl b+d(s+ld)'+ﬂ5,+7,
tious

S —S+1, 1 — recovery of an in- vl b+d(s+7)’+ﬂ5,+7,

/-1 fectious

States are S,/

p. 5 - ODE «< CTMC

Kermack & McKendrick model

Transition Effect Weight Probability
SI
S§—-S5S—-1,1— 141 new infection 85I 55‘}"71
| —-1—1, R— R+1 recovery of an in- v/ %
fectious B3l +

States are S, I, R

p. 6 - ODE «< CTMC

Continuous time Markov chains
ODE <+ CTMC

Simulating CTMC (in theory)
Simulating CTMC (in practice)

Parallelising your code in R

Gillespie's algorithm

» A.k.a. the stochastic simulation algorithm (SSA)

» Derived in 1976 by Daniel Gillespie

» Generates possible solutions for CTMC

» Extremely simple, so worth learning how to implement; there
are however packages that you can use (see later)

p. 7 - Simulating CTMC (in theory)

Gillespie's algorithm

Suppose system has state x(t) with initial condition x(tg) = xo and
propensity functions a; of elementary reactions

set t < tg and x(t) + xg
while t < tr

&) ai(x(1)

® Draw 7¢ from T ~ E(&;)
Draw ¢; from U([0,1])

Find r, smallest integer s.t.

Zak £) > Gy ai(x(t)) = (ede

J

Effect the next reaction (the one indexed r)
® < t+ Tt

p. 8 — Simulating CTMC (in theory)

Drawing at random from an exponential distribution

If you do not have an exponential distribution random number
generator.. We want 7; from T ~ £(&;), i.e., T has probability
density function

f(x,&) = &re™ L0

Use cumulative distribution function F(x,&;) = [* _f(s,&)ds

F(x, &) = (1 — e)10

which has values in [0, 1]. So draw ¢ from 4/([0,1]) and solve
F(x, &) = ¢ for x

F(x,&)=Cel—e =
Se X =1-¢

S &x=—In(1—-()
o[x= =0

p. 9 — Simulating CTMC (in theory)

Gillespie's algorithm (SIS model with only | eq.)

set t « to and /(t) < I(to)
while t < tf

o L B(P—i)i+i

® Draw 7¢ from T ~ E(&¢)

v [P = 1)i, & /&

Draw (¢ from ([0, 1])

Find pos such that vpos—1 < (¢ < Vpos

switch pos
1. New infection, /(t + 7¢) = I(t) +1
2. End of infectious period, /(t + 7¢) = I(t) — 1

® tt+Ty

p. 10 - Simulating CTMC (in theory)

Sometimes Gillespie goes bad

» Recall that the inter-event time is exponentially distributed

» Critical step of the Gillespie algorithm:

> ¢, < weight of all possible events (propensity)
» Draw 7; from T ~ E(&;)

» So inter-event time 7 — 0 if & very large for some t

» This can cause the simulation to grind to a halt

p. 11 — Simulating CTMC (in theory)

Example: a birth and death process

» Individuals born at per capita rate b

» Individuals die at per capita rate d

P Let's implement this using classic Gillespie

(CODE/simulate-birth-death-CTMC-classic-Gillespie.R on
course GitHub repo)

p. 12 - Simulating CTMC (in theory)

https://raw.githubusercontent.com/julien-arino/R-for-modellers/main/CODE/simulate-birth-death-CTMC-classic-Gillespie.R

Gillespie's algorithm (birth-death model)

set t « to and N(t) + N(to)
while t < tr

&+ (b+ d)N(t)

Draw 7¢ from T ~ £(&;)

v [bN(2), & /&:

Draw (¢ from ([0, 1])

Find pos such that vpos—1 < (¢ < Vpos

switch pos
1. Birth, N(t + 1) = N(t) +1
2. Death, N(t+ 1) = N(t) — 1

¢ttty

p. 13 - Simulating CTMC (in theory)

birth_death = function(b = 0.01, d = 0.01,
N_O 100,
t_0 =0, t_f = 1000) {

Vectors to store time and state.

Initialise with initial condition.
t = t_0 # Initial time

N = N_O # Initial population

We’ll track the current time and state (could also just check
last entry in t and N, but will take more operations)

t_curr = t_0

N_curr = N_O

p. 14 - Simulating CTMC (in theory)

while (t_curr<=t_f) {
xi_t = (b+d)*N_curr
if (N_curr == 0) {
break
}
tau_t = rexp(l, rate = xi_t)
t_curr = t_curr+tau_t
v = c(b*N_curr, xi_t)/xi_t
zeta_t = runif(n = 1)
pos = findInterval(zeta_t, v)+1
switch(pos,

{

N_curr = N_curr+l # Birth
},
{

N_curr = N_curr-1 # Death
b

N = c(N, N_curr)
t = c(t, t_curr)
}
return(data.frame(t = t, N = N))
}

p. 15 — Simulating CTMC (in theory)

Population

80 90 100 110 120

70

Birth—death process, b=0.01, d=0.01

0 200 400 600

Time

800 1000

Population

40 60 80 100

20

Birth—death process, b=0.01, d=0.02

100 200 300

Time

400

Population

40000 60000 80000

20000

Birth—death process, b=0.03, d=0.01

50

100 150 200 250

Time

300

Last one did not go well

» Penultimate slide: sim stopped because the population went
extinct, | did not stop it!

» Last slide: | wanted 1,000 time units (days?)

» Interrupted at t = 333.25 because | “lost patience” (added
something to check step size, see code for the slide)

> At stop time
> N = 79,707
> |t| = |N| = 159,782
> time was moving slowly

p. 19 — Simulating CTMC (in theory)

Aep / siuane Jo laquinN

) o o o)
IS} IS] 1S] S S =)
IS] I IS] o S| S
® & 2 = = o)
| | | | | |
T T T
cT 0T 80

(sAep) dais awi|

300

250

200

150

100

50

Time

Continuous time Markov chains
ODE <+ CTMC

Simulating CTMC (in theory)
Simulating CTMC (in practice)

Parallelising your code in R

Tau-leaping (and packages) to the rescue!

» Approximation method (compared to classic Gillespie, which is
exact)

» Roughly: consider "groups" of events instead of individual
events

> Good news: GillespieSSA2 and adaptivetau, two standard
packages for SSA in R, implement tau leaping

p. 21 - Simulating CTMC (in practice)

adaptivetau or GillespieSSA27

» Both packages do roughly the same thing now (in the past,
GillespieSSA2 was the only only one exporting “events”, but
now both do)

» GillespieSSA2 can precompile stuff, which is faster. Also has
a slightly more compact syntax

» adaptivetau is more robust: precompiling is great but runs
into issues when you are parallelising your code

— | will illustrate using adaptivetau

CODE directory has some GillespieSSA2 examples as well. Both
are very similar!

p. 22 - Simulating CTMC (in practice)

adaptivetau to simulate an SIRS CTMC

Initial setup

library(adaptivetau)

Pop <- 1000

I_0<-2

IC <- c(S = (Pop-I_0), I =I_0, R =0)

params <- list(gamma = 1/5, nu = 1/50)
params$beta <- params$gamma*1.5/(Pop-I_0)

t_f = 100

p. 23 - Simulating CTMC (in practice)

adaptivetau to simulate an SIRS CTMC

Reactions and reaction rates

reactions_names <- c(_ s
_)
reactions_effects <- list(
c(S=-1, I=+1), # new infection
c(I=-1, R=+1), # recovery
c(R=-1, S=+1) # loss of immunity
)
reactions_rates <- function(x, params, t) {
with(as.list(c(x, params)), {
rates <- c(
beta*xS*I, # new infection
gamma*I, # recovery
nu*R # loss of immunity
)
return(rates)
1))
}

p. 24 - Simulating CTMC (in practice)

adaptivetau to simulate an SIRS CTMC

Calling the “solver”

set.seed (1)

sol <- ssa.adaptivetau(
init.values = IC,
transitions = reactions_effects,
rateFunc = reactions_rates,
params = params,
tf = t_f

Beware: set.seed (1) is used for reproducibility. Remove for real
simulations! (E.g., use set.seed (NULL))

p. 25 — Simulating CTMC (in practice)

Simulation output

time S

0.0000000 998
0.7551818 997
0.8523781 997
2.8140734 997
3.6220576 996

5.56801782 995

W N=E N WN
N MR OO | X

Can be useful to convert to a data.frame for convenience (e.g., to
use sol$time instead of sol[,"time"])

p. 26 — Simulating CTMC (in practice)

08

09

T
oy

Qdouslenald

0c

100

80

60

40

20

Time (days)

Important options to ssa.adaptivetau

> Not an option per se: calling ssa.exact instead of
ssa.tauleap uses the exact SSA algorithm (traditional
Gillespie algorithm) instead of tau-leaping

» Both ssa.exact and ssa.tauleap have a
reportTransitions, which, when set to TRUE, returns the
transitions that occurred at each time step

p. 28 — Simulating CTMC (in practice)

adaptivetau to simulate an SIRS CTMC

Playing with options

set.seed (1)

sol <- ssa.exact(
init.values = IC,
transitions = reactions_effects,
rateFunc = reactions_rates,
params = params,
tf = t_f,
reportTransitions = TRUE

p. 29 — Simulating CTMC (in practice)

Transitions in the simulation

Calling with reportTransitions = TRUE returns the solution as a
list with fields dynamics and transitions

dynamics is the output we had before

transitions is a matrix with the corresponding events. That's
where having the transition names is useful:

> colnames(sol$transitions) <- reactions_names

ensures we have the names of the transitions in the output matrix

p. 30 — Simulating CTMC (in practice)

Why are transitions useful?

Let’s take the example of an SLIAR model

What is going on?

p. 31 - Simulating CTMC (in practice)

00¢€

T
00¢

Qdouslenald

00T

100

80

60

40

20

Time (days)

Who is doing the infecting?

We can go further if we look at transitions in detail

p. 33 - Simulating CTMC (in practice)

Using transitions — The not so good way

reactions_names <- c(_ s

reactions_effects <- list(
c(S=-1, L=+1), # new infection
c(L=-1, I=+1), # L to I

reactions_rates <- function(x, params, t) {
with(as.list(c(x, params)), {
rates <- c(
beta*S* (I+eta*A), # new infection I
(1-p)*epsilon*L, # L to I

p. 34 - Simulating CTMC (in practice)

Using transitions — The good way

reactions_names <- c(

= = s

reactions_effects <- list(
c(S=-1, L=+1), # new infection I
c(S=-1, L=+1), # new infection A
c(L=-1, I=+1), # L to I

reactions_rates <- function(x, params, t) {
with(as.list(c(x, params)), {
rates <- c(
beta*S*I, # new infection I
beta*S*etax*A, # new infection A
(1-p)*epsilon*L, # L to I

p. 35 — Simulating CTMC (in practice)

Representing transition results as epi diagrams

We use the libraries incidence2 and ggplot2

Need to make a “line list” from the transitions, i.e., a matrix with
columns time, value and event

See the code in the Rnw source of these slides and in
CODE/functions-useful.R

p. 36 — Simulating CTMC (in practice)

Number of events

1504

100
50
0- |
1970-01-01 1970-02-01 1970-03-01 1970-04-01

Date

Type of event
. New infections from A
. New infections from |

Continuous time Markov chains
ODE <+ CTMC

Simulating CTMC (in theory)
Simulating CTMC (in practice)

Parallelising your code in R

Parallelisation

To run multiple realisations, it is a good idea to parallelise your
code, since CTMC simulations are embarrassingly parallel

Write a function, e.g., run_one_sim that .. runs one simulation,
then call it from within a parLapply statement

Note: if you want to compute the mean trajectory of the
realisations, you will need to interpolate solutions, since event times
are different in each realisation

On the GitHub repo for the course, see
| CODE/SIS—CTMC—parallel.R
> CODE/SIS-CTMC-parallel-multiple-RO.R

p. 38 — Parallelising your code in R

https://raw.githubusercontent.com/julien-arino/R-for-modellers/main/CODE/SIS-CTMC-parallel.R
https://raw.githubusercontent.com/julien-arino/R-for-modellers/main/CODE/SIS-CTMC-parallel-multiple-R0.R

Set parameters

We store even the IC in there.. In parallel computations, this
can be useful

params = list(

Pop = 1000,
I.0=2,

t_f = 100,
gamma = 1/5,
nu = 1/50,
RO = 1.5)

params$beta <- params$gammaxparams$R0/ (params$Pop-params$I_0)
params$IC <- c(S = (params$Pop-params$I_0),

I = params$I_0, R = 0)
params$reactions_names <- c(_ s

_)
params$reactions_effects <- list(
c(S=-1, I=+1), # new infection
c(I=-1, R=+1), # recovery
c(R=-1, S=+1) # loss of immunity

p. 39 — Parallelising your code in R

library(parallel)
run_one_sim = function(params) {
with(as.list(params), {
set.seed(NULL) # avoid reproducibility here
sol <- ssa.exact(
init.values = IC,
transitions = reactions_effects,
rateFunc = reactions_rates,
params = params,
tf = t_f,
reportTransitions = TRUE
)
Interpolate result (just I will do)
wanted_t = seq(from = 0, to = t_f, by = 0.01)
sol$interp_I = approx(x = sol$dynamicsl[, 1,

y = sol$dynamics[,],
xout = wanted_t)
names (sol$interp_I) = c(5)
Return result
return(sol)
1))

}

p. 40 — Parallelising your code in R

if (FALSE) {
SIMS = lapply(1:50, function(x) run_one_sim(params))
} else {
nb_cores <- detectCores()-1
if (nb_cores > 124) {
nb_cores = 124
}
cl <- makeCluster(nb_cores)
clusterEvalQ(cl,q{
library(adaptivetau)
1))
clusterExport (cl,
c(o

-),
envir = .GlobalEnv)
SIMS = parLapply(cl = cl,
X =1:100,
fun = function(x) run_one_sim(params))

stopCluster(cl)

. 41 — Parallelising your code in R

Prevalence

150

100

50

Time (days)

Benefit of parallelisation

Run the parallel code for 100 sims between tictoc::tic() and
tictoc::toc(), giving 0.498 sec elapsed, then the sequential
version

tictoc::tic()
SIMS = lapply(X = 1:params$number_sims,

FUN = function(x) run_one_sim(params))
tictoc::toc()

which gives 2.107 sec elapsed on a 8T Intel(R) Core(TM) i5-8265U
CPU @ 1.60GHz (parallel is 4.23x faster)

p. 43 — Parallelising your code in R

Some words of caution — Overheads

» Overheads (setting up the cluster, providing data to workers,
etc.) can be significant. For small numbers of simulations,
overheads can be larger than the gains

» Be careful in particular if the function to be parallelised is very
fast

» Setup time increases with more cores

In the example, we have the following
» Serial version (all included): 2.107 sec elapsed

» Parallel version:

» Time for the parallel part: 0.498 sec elapsed
» OQverall, including setup: 0.968 sec elapsed

p. 44 — Parallelising your code in R

Some words of caution — RAM usage

» Beware of RAM usage: each worker will have to have a copy
of the data, so if the data is large or you have many workers
(cores/threads on your computer), this can be a problem

> Also, about RAM usage: results can quickly become large, so
you may have to select what to keep and what to discard or
save intermediate results to disk (it is fine to write to disk
from a worker or to run a certain number of simulations, save
the results and then run the next batch, without restarting the
cluster)

p. 45 — Parallelising your code in R

Amdahl’s law

1
Slatency (5) - (]_—p)——|—p/s

where
» Siatency IS the theoretical speedup of the execution of the whole
task
> s is the speedup of the part of the task that benefits from
improved system resources

> p is the proportion of execution time that the part benefiting
from improved resources originally occupied

p. 46 — Parallelising your code in R

	Continuous time Markov chains
	ODE CTMC
	Simulating CTMC (in theory)
	Simulating CTMC (in practice)
	Parallelising your code in R

