Continuous time Markov chains R for modellers – Vignette 21

Julien Arino

June 2024

Outline

Continuous time Markov chains

 $\mathsf{ODE}\leftrightarrow\mathsf{CTMC}$

Simulating CTMC (in theory)

Simulating CTMC (in practice)

Parallelising your code in R

Continuous time Markov chains

 $\mathsf{ODE} \leftrightarrow \mathsf{CTMC}$

Simulating CTMC (in theory)

Simulating CTMC (in practice)

Parallelising your code in R

Continuous-time Markov chains

CTMC similar to DTMC except in way they handle time between events (transitions)

DTMC: transitions occur each Δt

CTMC: $\Delta t
ightarrow 0$ and transition times follow an exponential distribution parametrised by the state of the system

CTMC are roughly equivalent to ODE

p. 1. – Continuous time Markov chains

Continuous time Markov chains

 $\mathsf{ODE} \leftrightarrow \mathsf{CTMC}$

Simulating CTMC (in theory)

Simulating CTMC (in practice)

Parallelising your code in R

Converting your compartmental ODE model to CTMC

Easy as π :)

- Compartmental ODE model focuses on flows into and out of compartments
- ODE model has as many equations as there are compartments
- Compartmental CTMC model focuses on transitions
- CTMC model has as many transitions as there are arrows between (or into or out of) compartments

ODE to CTMC : focus on different components

SIS without demography

Transition	Effect	Weight	Probability
$S \rightarrow S-1, I \rightarrow I+1$	new infection	β SI	$\frac{\beta SI}{\beta SI + \gamma I}$
S ightarrow S+1, $I ightarrow I-1$	recovery of an in- fectious	γI	$\frac{\gamma I}{\beta S I + \gamma I}$

States are S, I

p. 4 – ODE \leftrightarrow CTMC

SIS with demography

Transition	Effect	Weight	Probability
$S \rightarrow S + 1$	birth of a suscepti- ble	b	$\frac{b}{b+d(S+I)+\beta SI+\gamma I}$
S ightarrow S-1	death of a suscep- tible	dS	$\frac{dS}{b+d(S+I)+\beta SI+\gamma I}$
$S \rightarrow S - 1, I \rightarrow I + 1$	new infection	βSI	$\frac{\beta SI}{b+d(S+I)+\beta SI+\gamma I}$
$I \rightarrow I - 1$	death of an infec- tious	dl	$\frac{dI}{b+d(S+I)+\beta SI+\gamma I}$
$S \rightarrow S + 1, I \rightarrow I - 1$	recovery of an in- fectious	γI	$\frac{\gamma I}{b+d(S+I)+\beta SI+\gamma I}$

States are S, I

 $p. 5 - ODE \leftrightarrow CTMC$

Kermack & McKendrick model

Transition	Effect	Weight	Probability
$S \rightarrow S - 1, I \rightarrow I + 1$	new infection	β SI	$\frac{\beta SI}{\beta SI + \gamma I}$
$I \rightarrow I - 1, \ R \rightarrow R + 1$	recovery of an in- fectious	γI	$\frac{\gamma I}{\beta S I + \gamma I}$

States are S, I, R

 $p. 6 - ODE \leftrightarrow CTMC$

Continuous time Markov chains

 $\mathsf{ODE} \leftrightarrow \mathsf{CTMC}$

Simulating CTMC (in theory)

Simulating CTMC (in practice)

Parallelising your code in R

Gillespie's algorithm

A.k.a. the stochastic simulation algorithm (SSA)

Derived in 1976 by Daniel Gillespie

Generates possible solutions for CTMC

Extremely simple, so worth learning how to implement; there are however packages that you can use (see later)

Gillespie's algorithm

Suppose system has state x(t) with initial condition $x(t_0) = x_0$ and propensity functions a_i of elementary reactions

set
$$t \leftarrow t_0$$
 and $\mathsf{x}(t) \leftarrow \mathsf{x}_0$
while $t \leq t_f$

- $\xi_t \leftarrow \sum_j a_j(\mathbf{x}(t))$
- Draw τ_t from $T \sim \mathcal{E}(\xi_t)$
- Draw ζ_t from $\mathcal{U}([0,1])$
- Find r, smallest integer s.t.

$$\sum_{k=1}^r a_k(\mathsf{x}(t)) > \zeta_t \sum_j a_j(\mathsf{x}(t)) = \zeta_t \xi_t$$

- Effect the next reaction (the one indexed r)
- $t \leftarrow t + \tau_t$

Drawing at random from an exponential distribution

If you do not have an exponential distribution random number generator. We want τ_t from $T \sim \mathcal{E}(\xi_t)$, i.e., T has probability density function

$$f(x,\xi_t) = \xi_t e^{-\xi_t x} \mathbb{1}_{x \ge 0}$$

Use cumulative distribution function $F(x,\xi_t) = \int_{-\infty}^{x} f(s,\xi_t) ds$

$$F(x,\xi_t) = (1 - e^{-\xi_t x}) \mathbb{1}_{x \ge 0}$$

which has values in [0,1]. So draw ζ from $\mathcal{U}([0,1])$ and solve $F(x,\xi_t) = \zeta$ for x

$$F(x,\xi_t) = \zeta \Leftrightarrow 1 - e^{-\xi_t x} = \zeta$$
$$\Leftrightarrow e^{-\xi_t x} = 1 - \zeta$$
$$\Leftrightarrow \xi_t x = -\ln(1 - \zeta)$$
$$\Leftrightarrow \boxed{x = \frac{-\ln(1 - \zeta)}{\xi_t}}$$

Gillespie's algorithm (SIS model with only I eq.)

set
$$t \leftarrow t_0$$
 and $I(t) \leftarrow I(t_0)$
while $t \leq t_f$

- $\xi_t \leftarrow \beta (P^* i)i + \gamma i$
- Draw τ_t from $T \sim \mathcal{E}(\xi_t)$
- $v \leftarrow \left[\beta (P^{\star} i)i, \xi_t\right] / \xi_t$
- Draw ζ_t from $\mathcal{U}([0,1])$
- Find pos such that $v_{pos-1} \leq \zeta_t \leq v_{pos}$
- switch *pos*
 - 1. New infection, $I(t + \tau_t) = I(t) + 1$
 - 2. End of infectious period, $I(t + \tau_t) = I(t) 1$

•
$$t \leftarrow t + \tau_t$$

Sometimes Gillespie goes bad

Recall that the inter-event time is exponentially distributed

Critical step of the Gillespie algorithm:
 ξ_t ← weight of all possible events (*propensity*)
 Draw τ_t from T ~ ε(ξ_t)

• So inter-event time $au_t
ightarrow 0$ if ξ_t very large for some t

This can cause the simulation to grind to a halt

Example: a birth and death process

Individuals born at per capita rate b

Individuals die at per capita rate d

Let's implement this using classic Gillespie

(CODE/simulate-birth-death-CTMC-classic-Gillespie.R on course GitHub repo)

Gillespie's algorithm (birth-death model)

set
$$t \leftarrow t_0$$
 and $N(t) \leftarrow N(t_0)$
while $t \leq t_f$

- $\xi_t \leftarrow (b+d)N(t)$
- Draw τ_t from $T \sim \mathcal{E}(\xi_t)$
- $v \leftarrow [bN(t), \xi_t] / \xi_t$
- Draw ζ_t from $\mathcal{U}([0,1])$
- Find pos such that $v_{pos-1} \leq \zeta_t \leq v_{pos}$
- switch *pos*
 - 1. Birth, $N(t + \tau_t) = N(t) + 1$
 - 2. Death, $N(t+ au_t) = N(t) 1$

•
$$t \leftarrow t + \tau_t$$

```
birth_death = function(b = 0.01, d = 0.01)
                       N_0 = 100,
                       t = 0, t = 1000 {
 # Vectors to store time and state.
  # Initialise with initial condition.
  t = t_0 # Initial time
 N = N_0 \# Initial population
  # We'll track the current time and state (could also just check
  # last entry in t and N, but will take more operations)
  t_curr = t_0
 N \text{ curr} = N 0
```

```
while (t curr<=t f) {</pre>
  xi_t = (b+d) * N_curr
  if (N_curr == 0) {
    break
  }
  tau_t = rexp(1, rate = xi_t)
  t_curr = t_curr+tau_t
  v = c(b*N_curr, xi_t)/xi_t
  zeta_t = runif(n = 1)
  pos = findInterval(zeta_t, v)+1
  switch(pos,
           N_curr = N_curr+1 # Birth
         },
         Ł
           N_curr = N_curr - 1 \# Death
         })
 N = c(N, N_curr)
  t = c(t, t_curr)
}
return(data.frame(t = t, N = N))
```

Birth-death process, b=0.01, d=0.01

Birth-death process, b=0.01, d=0.02

Time

Birth-death process, b=0.03, d=0.01

Time

Last one did not go well

- Penultimate slide: sim stopped because the population went extinct, I did not stop it!
- Last slide: I wanted 1,000 time units (days?)

Interrupted at t = 333.25 because I "lost patience" (added something to check step size, see code for the slide)

At stop time
 N = 79,707
 |t| = |N| = 159,782
 time was moving slowly

Time

Continuous time Markov chains

 $\mathsf{ODE} \leftrightarrow \mathsf{CTMC}$

Simulating CTMC (in theory)

Simulating CTMC (in practice)

Parallelising your code in R

Tau-leaping (and packages) to the rescue!

 Approximation method (compared to classic Gillespie, which is exact)

 Roughly: consider "groups" of events instead of individual events

 Good news: GillespieSSA2 and adaptivetau, two standard packages for SSA in R, implement tau leaping

adaptivetau or GillespieSSA2?

- Both packages do roughly the same thing now (in the past, GillespieSSA2 was the only only one exporting "events", but now both do)
- GillespieSSA2 can precompile stuff, which is faster. Also has a slightly more compact syntax
- adaptivetau is more robust: precompiling is great but runs into issues when you are parallelising your code
- \implies | will illustrate using adaptivetau

CODE directory has some GillespieSSA2 examples as well. Both are very similar!

adaptivetau to simulate an SIRS CTMC Initial setup

```
library(adaptivetau)
Pop <- 1000
I_0 <- 2
IC <- c(S = (Pop-I_0), I = I_0, R = 0)
params <- list(gamma = 1/5, nu = 1/50)
params$beta <- params$gamma*1.5/(Pop-I_0)
t f = 100</pre>
```

adaptivetau to simulate an SIRS CTMC

Reactions and reaction rates

```
reactions_names <- c("new_infection",</pre>
                      "recovery",
                      "loss_immunity")
reactions effects <- list(</pre>
  c(S=-1, I=+1), # new infection
  c(I=-1, R=+1), \# recovery
  c(R=-1, S=+1) # loss of immunity
)
reactions_rates <- function(x, params, t) {</pre>
  with(as.list(c(x, params)), {
    rates <- c(
      beta*S*I, # new infection
      gamma*I, # recovery
      nu*R # loss of immunity
    return(rates)
  })
```

adaptivetau to simulate an SIRS CTMC Calling the "solver"

```
set.seed(1)
sol <- ssa.adaptivetau(
    init.values = IC,
    transitions = reactions_effects,
    rateFunc = reactions_rates,
    params = params,
    tf = t_f
)</pre>
```

Beware: set.seed(1) is used for reproducibility. Remove for real simulations! (E.g., use set.seed(NULL))

```
p. 25 - Simulating CTMC (in practice)
```

Simulation output

time	S		R
0.0000000	998	2	0
0.7551818	997	3	0
0.8523781	997	2	1
2.8140734	997	1	2
3.6220576	996	2	2
5.5801782	995	3	2

Can be useful to convert to a data.frame for convenience (e.g., to use sol\$time instead of sol[,"time"])

Time (days)

Prevalence

Important options to ssa.adaptivetau

Not an option per se: calling ssa.exact instead of ssa.tauleap uses the exact SSA algorithm (traditional Gillespie algorithm) instead of tau-leaping

Both ssa.exact and ssa.tauleap have a reportTransitions, which, when set to TRUE, returns the transitions that occurred at each time step

adaptivetau to simulate an SIRS CTMC Playing with options

```
set.seed(1)
sol <- ssa.exact(
    init.values = IC,
    transitions = reactions_effects,
    rateFunc = reactions_rates,
    params = params,
    tf = t_f,
    reportTransitions = TRUE
)</pre>
```

Transitions in the simulation

Calling with reportTransitions = TRUE returns the solution as a list with fields dynamics and transitions

dynamics is the output we had before

transitions is a matrix with the corresponding events. That's where having the transition names is useful:

> colnames(sol\$transitions) <- reactions_names
ensures we have the names of the transitions in the output matrix</pre>

Why are transitions useful?

Let's take the example of an SLIAR model

What is going on?

p. 31 - Simulating CTMC (in practice)

Time (days)

Prevalence

Who is doing the infecting?

We can go further if we look at transitions in detail

Using transitions – The not so good way

```
reactions_names <- c("new_infection",</pre>
                      "L to I".
. .
reactions effects <- list(
  c(S=-1, L=+1), # new infection
  c(L=-1, I=+1), # L to I
. .
reactions_rates <- function(x, params, t) {</pre>
  with(as.list(c(x, params)), {
    rates <- c(
      beta*S*(I+eta*A), # new infection I
      (1-p)*epsilon*L, # L to I
. .
```

Using transitions - The good way

```
reactions_names <- c("new_infection_I",</pre>
                     "new_infection_A".
                     "L to I".
. .
reactions effects <- list(
  c(S=-1, L=+1), # new infection I
  c(S=-1, L=+1), # new infection A
 c(L=-1, I=+1), # L to I
. .
reactions_rates <- function(x, params, t) {</pre>
  with(as.list(c(x, params)), {
    rates <- c(
      beta*S*I, # new infection I
      beta*S*eta*A, # new infection A
      (1-p)*epsilon*L, # L to I
. .
```

Representing transition results as epi diagrams

We use the libraries incidence2 and ggplot2

Need to make a "line list" from the transitions, i.e., a matrix with columns time, value and event

See the code in the Rnw source of these slides and in CODE/functions-useful.R

p. 36 - Simulating CTMC (in practice)

Continuous time Markov chains

 $\mathsf{ODE} \leftrightarrow \mathsf{CTMC}$

Simulating CTMC (in theory)

Simulating CTMC (in practice)

Parallelising your code in R

Parallelisation

To run multiple realisations, it is a good idea to parallelise your code, since CTMC simulations are *embarrassingly parallel*

Write a function, e.g., run_one_sim that .. runs one simulation, then call it from within a parLapply statement

Note: if you want to compute the mean trajectory of the realisations, you will need to interpolate solutions, since event times are different in each realisation

On the GitHub repo for the course, see

- CODE/SIS-CTMC-parallel.R
- CODE/SIS-CTMC-parallel-multiple-RO.R

```
# Set parameters
# We store even the IC in there.. In parallel computations, this
# can be useful
params = list(
 Pop = 1000,
 I 0 = 2.
  t_f = 100,
  gamma = 1/5.
 nu = 1/50.
 R0 = 1.5)
params$beta <- params$gamma*params$R0/(params$Pop-params$I_0)</pre>
params; IC <- c(S = (params; Pop-params; I_0),
                I = params \$ I_0, R = 0
params$reactions_names <- c("new_infection",</pre>
                              "recovery".
                              "loss_immunity")
params$reactions_effects <- list(</pre>
  c(S=-1, I=+1), # new infection
  c(I=-1, R=+1), \# recovery
  c(R=-1, S=+1) # loss of immunity
)
```

```
library(parallel)
run_one_sim = function(params) {
  with(as.list(params), {
    set.seed(NULL) # avoid reproducibility here
    sol <- ssa.exact(</pre>
      init.values = IC,
      transitions = reactions_effects,
      rateFunc = reactions_rates,
      params = params,
      tf = t_f,
      reportTransitions = TRUE
    )
    # Interpolate result (just I will do)
    wanted_t = seq(from = 0, to = t_f, by = 0.01)
    sol$interp_I = approx(x = sol$dynamics[,"time"],
                           y = sol$dynamics[,"I"],
                          xout = wanted t)
    names(sol$interp_I) = c("time", "I")
    # Return result
   return(sol)
  })
```

```
if (FALSE) {
  SIMS = lapply(1:50, function(x) run_one_sim(params))
} else {
  nb_cores <- detectCores()-1</pre>
  if (nb_cores > 124) {
    nb cores = 124
  }
  cl <- makeCluster(nb_cores)</pre>
  clusterEvalQ(cl,{
    library(adaptivetau)
  })
  clusterExport(cl,
                 c("params",
                   "run_one_sim",
                   "reactions_rates"),
                 envir = .GlobalEnv)
  SIMS = parLapply(cl = cl,
                    X = 1:100,
                    fun = function(x) run_one_sim(params))
  stopCluster(cl)
}
```


Time (days)

Prevalence

Benefit of parallelisation

Run the parallel code for 100 sims between tictoc::tic() and tictoc::toc(), giving 0.498 sec elapsed, then the sequential version

which gives 2.107 sec elapsed on a 8T Intel(R) Core(TM) i5-8265U CPU @ 1.60GHz (parallel is $4.23 \times$ faster)

Some words of caution - Overheads

- Overheads (setting up the cluster, providing data to workers, etc.) can be significant. For small numbers of simulations, overheads can be larger than the gains
- Be careful in particular if the function to be parallelised is very fast
- Setup time increases with more cores

In the example, we have the following

- Serial version (all included): 2.107 sec elapsed
- Parallel version:
 - Time for the parallel part: 0.498 sec elapsed
 - Overall, including setup: 0.968 sec elapsed

Some words of caution - RAM usage

Beware of RAM usage: each worker will have to have a copy of the data, so if the data is large or you have many workers (cores/threads on your computer), this can be a problem

Also, about RAM usage: results can quickly become large, so you may have to select what to keep and what to discard or save intermediate results to disk (it is fine to write to disk from a worker or to run a certain number of simulations, save the results and then run the next batch, without restarting the cluster)

Amdahl's law

$$S_{ ext{latency}}(s) = rac{1}{(1-p)+p/s}$$

where

- S_{latency} is the theoretical speedup of the execution of the whole task
- s is the speedup of the part of the task that benefits from improved system resources
- p is the proportion of execution time that the part benefiting from improved resources originally occupied