
Single population growth models
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Objective

We are given a table with the population census at different time
intervals between a date a and a date b, and want to get an
expression for the population. This allows us to:

I compute a value for the population at any time between the
date a and the date b (interpolation),

I predict a value for the population at a date before a or after b
(extrapolation).
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The US population from 1790 to 1910

Year Population
(millions)

1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192

Year Population
(millions)

1860 31.443
1870 38.558
1880 50.156
1890 62.948
1900 75.995
1910 91.972

The data: US census p. 5



PLOT THE DATA !!! (here, to 1910)

Using MatLab (or Octave), create two vectors using commands
such as

t=1790:10:1910;
Format is

Vector=Initial value:Step:Final value

(semicolumn hides result of the command.)

P=[3929214,5308483,7239881,9638453,12866020,...
17069453,23191876,31443321,38558371,50155783,...
62947714,75994575,91972266];

Here, elements were just listed (... indicates that the line
continues below).

The data: US census p. 6



Then plot using
plot(t,P);
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To get points instead of a line
plot(t,P,’*’);
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First idea

The curve looks like a piece of a parabola. So let us fit a curve of
the form

P(t) = a + bt + ct2.

To do this, we want to minimize

S =
13∑

k=1

(P(tk)− Pk)2 ,

where tk are the known dates, Pk are the known populations, and
P(tk) = a + btk + ct2

k .

A quadratic curve? p. 9



We proceed as in the notes (but note that the role of a, b, c is
reversed):

S = S(a, b, c) =
13∑

k=1

(
a + btk + ct2

k − Pk

)2
is maximal if (necessary condition) ∂S/∂a = ∂S/∂b = ∂S/∂c = 0,
with

∂S

∂a
= 2

13∑
k=1

(a + btk + ct2
k − Pk)

∂S

∂b
= 2

13∑
k=1

(a + btk + ct2
k − Pk)tk

∂S

∂c
= 2

13∑
k=1

(a + btk + ct2
k − Pk)t2

k

A quadratic curve? p. 10



So we want

2
13∑

k=1

(a + btk + ct2
k − Pk) = 0

2
13∑

k=1

(a + btk + ct2
k − Pk)tk = 0

2
13∑

k=1

(a + btk + ct2
k − Pk)t2

k = 0,

that is
13∑

k=1

(a + btk + ct2
k − Pk) = 0

13∑
k=1

(a + btk + ct2
k − Pk)tk = 0

13∑
k=1

(a + btk + ct2
k − Pk)t2

k = 0.

A quadratic curve? p. 11



Rearranging the system

13∑
k=1

(a + btk + ct2
k − Pk) = 0

13∑
k=1

(a + btk + ct2
k − Pk)tk = 0

13∑
k=1

(a + btk + ct2
k − Pk)t2

k = 0,

we get

13∑
k=1

(a + btk + ct2
k ) =

13∑
k=1

Pk

13∑
k=1

(atk + bt2
k + ct3

k ) =
13∑

k=1

Pktk

13∑
k=1

(at2
k + bt3

k + ct4
k ) =

13∑
k=1

Pkt2
k .
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13∑
k=1

(a + btk + ct2
k ) =

13∑
k=1

Pk

13∑
k=1

(atk + bt2
k + ct3

k ) =
13∑

k=1

Pktk

13∑
k=1

(at2
k + bt3

k + ct4
k ) =

13∑
k=1

Pkt2
k ,

after a bit of tidying up, takes the form(
13∑

k=1

1

)
a +

(
13∑

k=1

tk

)
b +

(
13∑

k=1

t2
k

)
c =

13∑
k=1

Pk(
13∑

k=1

tk

)
a +

(
13∑

k=1

t2
k

)
b +

(
13∑

k=1

t3
k

)
c =

13∑
k=1

Pktk(
13∑

k=1

t2
k

)
a +

(
13∑

k=1

t3
k

)
b +

(
13∑

k=1

t4
k

)
c =

13∑
k=1

Pkt2
k .
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So the aim is to solve the linear system
13

13∑
k=1

tk
13∑

k=1

t2
k

13∑
k=1

tk
13∑

k=1

t2
k

13∑
k=1

t3
k

13∑
k=1

t2
k

13∑
k=1

t3
k

13∑
k=1

t4
k


a

b
c

 =



13∑
k=1

Pk

13∑
k=1

Pktk

13∑
k=1

Pkt2
k



A quadratic curve? p. 14



With MatLab (or Octave), getting the values is easy.

I To apply an operation to every element in a vector or matrix,
prefix the operation with a dot, hence

t.^2;

gives, for example, the vector with every element tk squared.

I Also, the function sum gives the sum of the entries of a vector
or matrix.

I When entering a matrix or vector, separate entries on the
same row by , and create a new row by using ;.

A quadratic curve? p. 15



Thus, to set up the problem in the form of solving Ax = b, we
need to do the following:

format long g;
A=[13,sum(t),sum(t.^2);sum(t),sum(t.^2),sum(t.^3);...
sum(t.^2),sum(t.^3),sum(t.^4)];
b=[sum(P);sum(P.*t);sum(P.*(t.^2))];

The format long g command is used to force the display of
digits (normally, what is shown is in “scientific” notation, not very
informative here).

A quadratic curve? p. 16



Then, solve the system using

A\b

We get the following output:

>> A\b
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 1.118391e-020.

ans =

22233186177.8195
-24720291.325476
6872.99686313725

(note that here, Octave gives a solution that is not as good as this
one, provided by MatLab).

A quadratic curve? p. 17



Thus

P(t) = 22233186177.8195−24720291.325476t+6872.99686313725t2

To see what this looks like,

plot(t,22233186177.8195-24720291.325476.*t...
+6872.99686313725.*t.^2);

(note the dots before multiplication and power, since we apply this
function to every entry of t). In fact, to compare with original
data:

plot(t,22233186177.8195-24720291.325476.*t...
+6872.99686313725.*t.^2,t,P,’*’);

Checking our results for the quadratic p. 18



Our first guess, in pictures
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Now we want to generate the table of values, to compare with the
true values and thus compute the error. To do this, we can
proceed directly:

computedP=22233186177.8195-24720291.325476.*t...
+6872.99686313725.*t.^2;

We get

computedP =

Columns 1 through 4:

5633954.39552689 5171628.52739334 6083902.03188705 8370774.90901184

Columns 5 through 8:

12032247.1587601 17068318.7811356 23478989.7761383 31264260.1437798

Columns 9 through 12:

40424129.884037 50958598.9969215 62867667.4824371 76151335.3405762

Column 13:

90809602.5713463

Checking our results for the quadratic p. 20



We can also create an inline function

f=inline(’22233186177.8195-24720291.325476.*t+6872.99686313725.*t.^2’)

f =

Inline function:

f(t) = 22233186177.8195-24720291.325476.*t+6872.99686313725.*t.^2

This function can then easily be used for a single value

octave:24> f(1880)
ans = 50958598.9969215

as well as for vectors..

Checking our results for the quadratic p. 21



(Recall that t has the dates; t in the definition of the function is a
dummy variable, we could have used another letter-.)

octave:25> f(t)

ans =

Columns 1 through 4:

5633954.39552689 5171628.52739334 6083902.03188705 8370774.90901184

Columns 5 through 8:

12032247.1587601 17068318.7811356 23478989.7761383 31264260.1437798

Columns 9 through 12:

40424129.884037 50958598.9969215 62867667.4824371 76151335.3405762

12186176863781.4

Column 13:

90809602.5713463

Checking our results for the quadratic p. 22



Form the vector of errors, and compute sum of errors squared:

octave:26> E=f(t)-P;
octave:27> sum(E.^2)
ans = 12186176863781.4

Quite a large error (12,186,176,863,781.4), which is normal since
we have used actual numbers, not thousands or millions of
individuals, and we are taking the square of the error.

Checking our results for the quadratic p. 23



To present things legibly, one way is to put everything in a matrix..

M=[P;f(t);E;E./P];

This matrix will have each type of information as a row, so to
display it in the form of a table, show its transpose, which is
achieved using the function transpose or the operator ′.

Checking our results for the quadratic p. 24



M’

ans =

3929214 5633954.39552689 1704740.39552689 0.433862954658842

5308483 5171628.52739334 -136854.472606659 -0.0257803354756263

7239881 6083902.03188705 -1155978.96811295 -0.159668227711608

9638453 8370774.90901184 -1267678.09098816 -0.131522983095748

12866020 12032247.1587601 -833772.841239929 -0.0648042550252471

17069453 17068318.7811356 -1134.21886444092 -6.644728828e-05

23191876 23478989.7761383 287113.776138306 0.0123799289086534

31443321 31264260.1437798 -179060.856220245 -0.00569471832254123

38558371 40424129.884037 1865758.88403702 0.0483879073635403

50155783 50958598.9969215 802815.996921539 0.0160064492846526

62947714 62867667.4824371 -80046.5175628662 -0.00127163502018304

75994575 76151335.3405762 156760.340576172 0.00206278330494212

91972266 90809602.5713463 -1162663.42865372 -0.012641456813228

Checking our results for the quadratic p. 25



Now for the big question...

How does our formula do for present times?

f(2006)
ans = 301468584.066013

Actually, quite well: 301,468,584, compared to the 298,444,215
July 2006 estimate, overestimates the population by 3,024,369, a
relative error of approximately 1%.

Checking our results for the quadratic p. 26



The US population from 1790 to 2000 (revised numbers)

Year Population
(millions)

1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.443
1870 38.558
1880 50.156
1890 62.948

Year Population
(millions)

1900 76.212
1910 92.228
1920 106.021
1930 123.202
1940 132.164
1950 151.325
1960 179.323
1970 203.302
1980 226.542
1990 248.709
2000 281.421

Checking our results for the quadratic p. 27



Other similar approaches

Pritchett, 1891:
P = a + bt + ct2 + dt3.

(we have done this one, and found it to be quite good too).
Pearl, 1907:

P(t) = a + bt + ct2 + d ln t.

Finds

P(t) = 9, 064, 900− 6, 281, 430t + 842, 377t2 + 19, 829, 500 ln t.

Some similar curves p. 28
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The logistic curve

Pearl and Reed try

P(t) =
beat

1 + ceat

or

P(t) =
b

e−at + c
.

Population curves – Logistic curve p. 30



The logistic equation

The logistic curve is the solution to the ordinary differential
equation

N ′ = rN

(
1− N

K

)
,

which is called the logistic equation. r is the intrinsic growth rate,
K is the carrying capacity.

This equation was introduced by Pierre-François Verhulst
(1804-1849), in 1844.

Population growth – Logistic equation p. 31



Deriving the logistic equation

The idea is to represent a population with the following
components:

I birth, at the per capita rate b,

I death, at the per capita rate d ,

I competition of individuals with other individuals reduces their
ability to survive, resulting in death.

This gives
N ′ = bN − dN − competition.

Population growth – Logistic equation p. 32



Accounting for competition

Competition describes the mortality that occurs when two
individuals meet.

I In chemistry, if there is a concentration X of one product and
Y of another product, then XY , called mass action, describes
the number of interactions of molecules of the two products.

I Here, we assume that X and Y are of the same type
(individuals). So there are N2 contacts.

I These N2 contacts lead to death of one of the individuals at
the rate c .

Therefore, the logistic equation is

N ′ = bN − dN − cN2.

Population growth – Logistic equation p. 33



Reinterpreting the logistic equation

The equation
N ′ = bN − dN − cN2

is rewritten as
N ′ = (b − d)N − cN2.

I b − d represents the rate at which the population increases
(or decreases) in the absence of competition. It is called the
intrinsic growth rate of the population.

I c is the rate of intraspecific competition. The prefix intra
refers to the fact that the competition is occurring between
members of the same species, that is, within the species.
[We will see later examples of interspecific competition, that
is, between different species.]
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Another (..) interpretation of the logistic equation

We have
N ′ = (b − d)N − cN2.

Factor out an N:

N ′ =
(
(b − d)− cN

)
N.

This gives us another interpretation of the logistic equation.
Writing

N ′

N
= (b − d)− cN,

we have N ′/N, the per capita growth rate of N, given by a
constant, b − d , minus a density dependent inhibition factor, cN.
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Equivalent equations

N ′ = (b − d)N − cN2

=
(
(b − d)− cN

)
N

=
(
r − r

r
cN
)

N, with r = b − d

= rN
(
1− c

r
N
)

= rN

(
1− N

K

)
,

with
c

r
=

1

K
,

that is, K = r/c .
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3 ways to tackle this equation

1. The equation is separable. [explicit method]

2. The equation is a Bernoulli equation. [explicit method]

3. Use qualitative analysis.
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Studying the logistic equation qualitatively

We study

N ′ = rN

(
1− N

K

)
. (ODE1)

For this, write

f (N) = rN

(
1− N

K

)
.

Consider the initial value problem (IVP)

N ′ = f (N), N(0) = N0 > 0. (IVP1)

I f is C 1 (differentiable with continuous derivative) so solutions
to (IVP1) exist and are unique.

Qualitative analysis of the logistic equation p. 38



Equilibria of (ODE1) are points such that f (N) = 0 (so that
N ′ = f (N) = 0, meaning N does not vary). So we solve f (N) = 0
for N. We find two points:

I N = 0

I N = K .

By uniqueness of solutions to (IVP1), solutions cannot cross the
lines N(t) = 0 and N(t) = K .

Qualitative analysis of the logistic equation p. 39



There are several cases.

I N = 0 for some t, then N(t) = 0 for all t ≥ 0, by uniqueness
of solutions.

I N ∈ (0,K ), then rN > 0 and N/K < 1 so 1− N/K > 0,
which implies that f (N) > 0. As a consequence, N(t)
increases if N ∈ (0,K ).

I N = K , then rN > 0 but N/K = 1 so 1− N/K = 0, which
implies that f (N) = 0. As a consequence, N(t) = K for all
t ≥ 0, by uniqueness of solutions.

I N > K , the rN > 0 and N/K > 1, implying that
1− N/K < 0 and in turn, f (N) < 0. As a consequence, N(t)
decreases if N ∈ (K ,+∞).

Qualitative analysis of the logistic equation p. 40



Therefore,

Theorem
Suppose that N0 > 0. Then the solution N(t) of (IVP1) is such
that

lim
t→∞

N(t) = K ,

so that K is the number of individuals that the environment can
support, the carrying capacity of the environment.
If N0 = 0, then N(t) = 0 for all t ≥ 0.

Qualitative analysis of the logistic equation p. 41



The delayed logistic equation

Consider the equation as

N ′

N
= (b − d)− cN,

that is, the per capita rate of growth of the population depends on
the net growth rate b − d , and some density dependent inhibition
cN (resulting of competition).
Suppose that instead of instantaneous inhibition, there is some
delay τ between the time the inhibiting event takes place and the
moment where it affects the growth rate. (For example, two
individuals fight for food, and one later dies of the injuries
sustained when fighting).

The delayed logistic equation p. 42



The delay logistic equation

In the of a time τ between inhibiting event and inhibition, the
equation would be written as

N ′

N
= (b − d)− cN(t − τ).

Using the change of variables introduced earlier, this is written

N ′(t) = rN(t)

(
1− N(t − τ)

K

)
. (DDE1)

Such an equation is called a delay differential equation. It is much
more complicated to study than (ODE1). In fact, some things
remain unknown about (DDE1).

The delayed logistic equation p. 43



Delayed initial value problem

The IVP takes the form

N ′(t) = rN(t)

(
1− N(t − τ)

K

)
,

N(t) = φ(t) for t ∈ [−τ, 0],

(IVP2)

where φ(t) is some continuous function. Hence, initial conditions
(called initial data in this case) must be specific on an interval,
instead of being specified at a point, to guarantee existence and
uniqueness of solutions.
We will not learn how to study this type of equation (this is
graduate level mathematics). I will give a few results.

The delayed logistic equation p. 44



To find equilibria, remark that delay should not play a role, since N
should be constant. Thus, equilibria are found by considering the
equation with no delay, which is (ODE1).

Theorem
Suppose that rτ < 22/7. Then all solutions of (IVP2) with
positive initial data φ(t) tend to K. If rτ > π/2, then K is an
unstable equilibrium and all solutions of (IVP2) with positive
initial data φ(t) on [−τ, 0] are oscillatory.

Note that there is a gray zone between 22/7 and π/2.. The first
part of the theorem was proved in 1945 by Wright. Although there
is very strong numerical evidence that this is in fact true up to
π/2, nobody has yet managed to prove it.
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Discrete-time systems

So far, we have seen continuous-time models, where t ∈ R+.
Another way to model natural phenomena is by using a
discrete-time formalism, that is, to consider equations of the form

xt+1 = f (xt),

where t ∈ N or Z, that is, t takes values in a discrete valued
(countable) set.

Time could for example be days, years, etc.

The logistic map p. 46



The logistic map

The logistic map is, for t ≥ 0,

Nt+1 = rNt

(
1− Nt

K

)
. (DT1)

To transform this into an initial value problem, we need to provide
an initial condition N0 ≥ 0 for t = 0.
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Some mathematical analysis

Suppose we have a system in the form

xt+1 = f (xt),

with initial condition given for t = 0 by x0. Then,

x1 = f (x0)

x2 = f (x1) = f (f (x0))
∆
= f 2(x0)

...

xk = f k(x0).

The f k = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

are called the iterates of f .
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Fixed points

Definition (Fixed point)

Let f be a function. A point p such that f (p) = p is called a fixed
point of f .

Theorem
Consider the closed interval I = [a, b]. If f : I → I is continuous,
then f has a fixed point in I .

Theorem
Let I be a closed interval and f : I → R be a continuous function.
If f (I ) ⊃ I , then f has a fixed point in I .
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Periodic points

Definition (Periodic point)

Let f be a function. If there exists a point p and an integer n such
that

f n(p) = p, but f k(p) 6= p for k < n,

then p is a periodic point of f with (least) period n (or a
n-periodic point of f ).

Thus, p is a n-periodic point of f iff p is a 1-periodic point of f n.
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Stability of fixed points, of periodic points

Theorem
Let f be a continuously differentiable function (that is,
differentiable with continuous derivative, or C 1), and p be a fixed
point of f .

1. If |f ′(p)| < 1, then there is an open interval I 3 p such that
limk→∞ f k(x) = p for all x ∈ I.

2. If |f ′(p)| > 1, then there is an open interval I 3 p such that if
x ∈ I, x 6= p, then there exists k such that f k(x) 6∈ I.

Definition
Suppose that p is a n-periodic point of f , with f ∈ C 1.

I If | (f n)′ (p)| < 1, then p is an attracting periodic point of f .

I If | (f n)′ (p)| > 1, then p is an repelling periodic point of f .
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Parametrized families of functions

Consider the equation (DT1), which for convenience we rewrite as

xt+1 = rxt(1− xt), (DT2)

where r is a parameter in R+, and x will typically be taken in
[0, 1]. Let

fr (x) = rx(1− x).

The function fr is called a parametrized family of functions.
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Bifurcations

Definition (Bifurcation)

Let fµ be a parametrized family of functions. Then there is a
bifurcation at µ = µ0 (or µ0 is a bifurcation point) if there exists
ε > 0 such that, if µ0 − ε < a < µ0 and µ0 < b < µ0 + ε, then the
dynamics of fa(x) are “different” from the dynamics of fb(x).

An example of “different” would be that fa has a fixed point (that
is, a 1-periodic point) and fb has a 2-periodic point.
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Back to the logistic map

Consider the simplified version (DT2),

xt+1 = rxt(1− xt)
∆
= fr (xt).

Are solutions well defined? Suppose x0 ∈ [0, 1], do we stay in
[0, 1]? fr is continuous on [0, 1], so it has a extrema on [0, 1]. We
have

f ′r (x) = r − 2rx = r(1− 2x),

which implies that fr increases for x < 1/2 and decreases for
x > 1/2, reaching a maximum at x = 1/2.

fr (0) = fr (1) = 0 are the minimum values, and f (1/2) = r/4 is the
maximum. Thus, if we want xt+1 ∈ [0, 1] for xt ∈ [0, 1], we need
to consider r ≤ 4.
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I Note that if x0 = 0, then xt = 0 for all t ≥ 1.

I Similarly, if x0 = 1, then x1 = 0, and thus xt = 0 for all t ≥ 1.

I This is true for all t: if there exists tk such that xtk = 1, then
xt = 0 for all t ≥ tk .

I This last case might occur if r = 4, as we have seen.

I Also, if r = 0 then xt = 0 for all t.

For these reasons, we generally consider

x ∈ (0, 1)

and
r ∈ (0, 4).
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Fixed points: existence

Fixed points of (DT2) satisfy x = rx(1− x), giving:

I x = 0;

I 1 = r(1− x), that is, p
∆
=

r − 1

r
.

Note that limr→0+ p = 1− limr→0+ 1/r = −∞, ∂
∂r p = 1/r2 > 0

(so p is an increasing function of r), p = 0 ⇔ r = 1 and
limr→∞ p = 1. So we come to this first conclusion:

I 0 always is a fixed point of fr .

I If 0 < r < 1, then p tales negative values so is not relevant.

I If 1 < r < 4, then p exists.
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Stability of the fixed points
Stability of the fixed points is determined by the (absolute) value
f ′r at these fixed points. We have

|f ′r (0)| = r ,

and

|f ′r (p)| =
∣∣∣∣r − 2r

r − 1

r

∣∣∣∣
= |r − 2(r − 1)|
= |2− r |

Therefore, we have

I if 0 < r < 1, then the fixed point x = p does not exist and
x = 0 is attracting,

I if 1 < r < 3, then x = 0 is repelling, and x = p is attracting,

I if r > 3, then x = 0 and x = p are repelling.
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Another bifurcation
Thus the points r = 1 and r = 3 are bifurcation points. To see
what happens when r > 3, we need to look for period 2 points.

f 2
r (x) = fr (fr (x))

= rfr (x)(1− fr (x))

= r2x(1− x)(1− rx(1− x)). (1)

0 and p are points of period 2, since a fixed point x∗ of f satisfies
f (x∗) = x∗, and so, f 2(x∗) = f (f (x∗)) = f (x∗) = x∗.
This helps localizing the other periodic points. Writing the fixed
point equation as

Q(x)
∆
= f 2

r (x)− x = 0,

we see that, since 0 and p are fixed points of f 2
µ , they are roots of

Q(x). Therefore, Q can be factorized as

Q(x) = x(x − p)(−r3x2 + Bx + C ),
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Substitute the value (r − 1)/r for p in Q, develop Q and (1) and
equate coefficients of like powers gives

Q(x) = x

(
x − r − 1

r

)(
−r3x2 + r2(r + 1)x − r(r + 1)

)
. (2)

We already know that x = 0 and x = p are roots of (2). So we
search for roots of

R(x) := −r3x2 + r2(r + 1)x − r(r + 1).

Discriminant is

∆ = r4(r + 1)2 − 4r4(r + 1)

= r4(r + 1)(r + 1− 4)

= r4(r + 1)(r − 3).

Therefore, R has distinct real roots if r > 3. Remark that for
r = 3, the (double) root is p = 2/3. For r > 3 but very close to 3,
it follows from the continuity of R that the roots are close to 2/3.
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Descartes’ rule of signs

Theorem (Descartes’ rule of signs)

Let p(x) =
∑m

i=0 aix
i be a polynomial with real coefficients such

that am 6= 0. Define v to be the number of variations in sign of the
sequence of coefficients am, . . . , a0. By ’variations in sign’ we mean
the number of values of n such that the sign of an differs from the
sign of an−1, as n ranges from m down to 1. Then

I the number of positive real roots of p(x) is v − 2N for some

integer N satisfying 0 ≤ N ≤ v

2
,

I the number of negative roots of p(x) may be obtained by the
same method by applying the rule of signs to p(−x).
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Example of use of Descartes’ rule

Example

Let
p(x) = x3 + 3x2 − x − 3.

Coefficients have signs + +−−, i.e., 1 sign change. Thus v = 1.
Since 0 ≤ N ≤ 1/2, we must have N = 0. Thus v − 2N = 1 and
there is exactly one positive real root of p(x).
To find the negative roots, we examine
p(−x) = −x3 + 3x2 + x − 3. Coefficients have signs −+ +−, i.e.,
2 sign changes. Thus v = 2 and 0 ≤ N ≤ 2/2 = 1. Thus, there
are two possible solutions, N = 0 and N = 1, and two possible
values of v − 2N. Therefore, there are either two or no negative
real roots. Furthermore, note that
p(−1) = (−1)3 + 3 · (−1)2 − (−1)− 3 = 0, hence there is at least
one negative root. Therefore there must be exactly two.
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Back to the logistic map and the polynomial R ..

We use Descartes’ rule of signs.

I R has signed coefficients −+−, so 2 sign changes imlying 0
or 2 positive real roots.

I R(−x) has signed coefficients −−−, so no negative real
roots.

I Since ∆ > 0, the roots are real, and thus it follows that both
roots are positive.

To show that the roots are also smaller than 1, consider the change
of variables z = x − 1. The polynomial R is transformed into

R2(z) = −r3(z + 1)2 + r2(r + 1)(z + 1)− r(r + 1)

= −r3z2 + r2(1− r)z − r .

For r > 1, the signed coefficients are −−−, so R2 has no root
z > 0, implying in turn that R has no root x > 1.
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Summing up

I If 0 < r < 1, then x = 0 is attracting, p does not exist and
there are no period 2 points.

I At r = 1, there is a bifurcation (called a transcritical
bifurcation).

I If 1 < r < 3, then x = 0 is repelling, p is attracting, and there
are no period 2 points.

I At r = 3, there is another bifurcation (called a
period-doubling bifurcation).

I For r > 3, both x = 0 and x = p are repelling, and there is a
period 2 point.
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This process continues
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The period-doubling cascade to chaos

The logistic map undergoes a sequence of period doubling
bifurcations, called the period-doubling cascade, as r increases
from 3 to 4.

I Every successive bifurcation leads to a doubling of the period.

I The bifurcation points form a sequence, {rn}, that has the
property that

lim n →∞ rn − rn−1

rn+1 − rn

exists and is a constant, called the Feigenbaum constant,
equal to 4.669202. . .

I This constant has been shown to exist in many of the maps
that undergo the same type of cascade of period doubling
bifurcations.
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Chaos

After a certain value of r , there are periodic points with all
periods. In particular, there are periodic points of period 3.

By a theorem (called the Sarkovskii theorem), the presence of
period 3 points implies the presence of points of all periods.

At this point, the system is said to be in a chaotic regime, or
chaotic.
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A word of caution

We have used three different modelling paradigms to describe the
growth of a population in a logistic framework:

I The ODE version has monotone solutions converging to the
carrying capacity K .

I The DDE version has oscillatory solutions, either converging
to K or, if the delay is too large, periodic about K .

I The discrete time version has all sorts of behaviors, and can
be chaotic.

It is important to be aware that the choice of modelling method
is almost as important in the outcome of the model as the precise
formulation/hypotheses of the model.
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