
Identification of parameters

Regression and Numerical integration

Statement of the problem

Case of the logistic equation

Using nonlinear regression

Using simulations

Objective

We are given a table with the population census at different time
intervals between a date a and a date b, and we have a model to
describe the evolution of this population

We want to find parameters of the model so that solutions of the
model fit the data as well as possible

Statement of the problem p. 2

Sources of uncertainty

I Some parameters are known with reasonable accuracy. Others
are known within a range of possible values

I Data is obtained through measurement, and this measurement
is not necessarily very precise

I Data is usually intrinsically “noisy”

I The model you have is usually wrong (all models are wrong,
the problem is to find one that is not too wrong, i.e., capable
of answering your question)

Be aware of these limitations

Statement of the problem p. 3

The US population from 1790 to 2000 (revised numbers)

Year Population
(millions)

1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.443
1870 38.558
1880 50.156
1890 62.948

Year Population
(millions)

1900 76.212
1910 92.228
1920 106.021
1930 123.202
1940 132.164
1950 151.325
1960 179.323
1970 203.302
1980 226.542
1990 248.709
2000 281.421

Case of the logistic equation p. 4

The logistic equation

r the intrinsic growth rate of the population, K the carrying
capacity,

N ′ = rN

(
1− N

K

)
(Logistic)

Case of the logistic equation p. 5

Parameter identification

To identify parameters, we can use nonlinear regression. With
the logistic equation, there are two methods:

1. Since the solution N(t) to (Logistic) is known, we can use
nonlinear regression directly on N(t)

2. We use nonlinear regression on the constructed (simulated)
solution to (Logistic)

Case of the logistic equation p. 6

Finding the solution of (Logistic) using maple

eq := diff(N(t),t) = r*N(t)*(1-N(t)/K)

d

dt
N(t) = rN(t)

(
1− N(t)

K

)
Solve without specifying an initial condition:

dsolve(eq, N(t))

N(t) =
K

1 + e−rt C1K

Solve with initial condition N(0) = C :

dsolve({eq, N(t0) = C}, N(t))

N(t) =
CKe−rt0

Ce−rt0 + e−rtK − e−rtC

Using nonlinear regression p. 7

We use the solution

N(t) =
N0Ke−rt0

N0e−rt0 + e−rt(K − N0)

(we have replaced C by N0)

To reduce the number of parameters to find, we assume that the
initial point is (t0, N0) = (1790, 3.929), the first data point

Note that we are working in millions (this is important later)

Using nonlinear regression p. 8

Write the points as (tk , Nk), k = 2, . . . , 22 –there are 22 data
points, but we use the first as (t0, N0) or, to make things more
convenient to write, (t1, N1). We want to minimize

S =
22∑

k=2

(N(tk)− Nk)2 ,

where tk are the known dates, Nk are the known populations, and

N(tk) =
N0Ke−rt0

N0e−rt0 + e−rtk (K − N0)

Using nonlinear regression p. 9

Emphasize dependence on r , K :

S(r , K) =
22∑

k=2

(
N0Ke−rt0

N0e−rt0 + e−rtk (K − N0)
− Nk

)2

This is maximal if (necessary condition) ∂S/∂r = ∂S/∂K = 0.

Using nonlinear regression p. 10

We have, for a given k = 2, . . . , 22,

1

2

∂

∂r

(
N0Ke−rt0

N0e−rt0 + e−rtk (K − N0)
− Nk

)2

=

K (Nk(N0 − K)e−rtk + N0e
−rt0(K − Nk)) N0e

−r(t0+tk)(t0 − tk)(N0 − K)

(N0e−rt0 + e−rtk (K − N0))3

and

1

2

∂

∂K

(
N0Ke−rt0

N0e−rt0 + e−rtk (K − N0)
− Nk

)2

=

(e−rt0 − e−rtk) (Nk(N0 − K)e−rtk + N0e
−rt0(K − Nk)) N0

2e−rt0

(N0e−rt0 + e−rtk (K − N0))3

Using nonlinear regression p. 11

So ∂S/∂r = 0⇔(
Nk(N0 − K)e−rtk + N0e

−rt0(K − Nk)
)
N0e

−r(t0+tk)(t0−tk)(N0−K) = 0

(provided (N0e
−rt0 + e−rtk (K − N0))

3 6= 0)

That is ∂S/∂r = 0⇔

Nk(N0 − K)e−rtk + N0e
−rt0(K − Nk) = 0 (*)

or
t0 − tk = 0 or N0 − K = 0

The case t0 = tk cannot happen, since k = 2, . . . , 22 (and we
assume we do not have two different measurements for one time
value). So we have either K = N0 or (*)

Using nonlinear regression p. 12

Solving (*) for r , we get

r = −
ln
(

N0(K−Nk)
Nk (K−N0)

)
tk − t0

=
ln
(

Nk (K−N0)
N0(K−Nk)

)
tk − t0

Using nonlinear regression p. 13

Also ∂S/∂K = 0⇔(
e−rt0 − e−rtk

) (
Nk(N0 − K)e−rtk + N0e

−rt0(K − Nk)
)

= 0

(provided (N0e
−rt0 + e−rtk (K − N0))

3 6= 0)

That is, ∂S/∂K = 0⇔

e−rt0 − e−rtk = 0

or
Nk(N0 − K)e−rtk + N0e

−rt0(K − Nk) = 0 (**)

The first condition implies t0 = tk , which is impossible. So we are
left with (**), which is the same equation as (*)

Using nonlinear regression p. 14

So this is a difficult problem.. (see the theory for nonlinear least
squares if you are interested)

So we use plan B: numerics directly..

Using nonlinear regression p. 15

What we need to do

Let us forget that we know the explicit solution to (Logistic)

I The solution to (Logistic) can be approximated numerically

I We can construct one such numerical solution for given values
of r and K

I We then can see “how far off” that solution is from our data
points

I We change the parameters r and K a little, find out “how far
off” the new solution is from the data points

I And repeat until we have found a solution that is better than
others..

Using simulations p. 16

Finding the numerical solution to (Logistic)

We can use

I matlab

I octave

I scilab

I maple

I mathematica

I many others..

matlab, octave and scilab are recommended because of the
“philosophy”

Using simulations p. 17

Using matlab

In matlab (and octave) the philosophy is very close to the
“natural” way one proceeds with an ode: given the ODE

x ′ = f (t, x)

we must define the right hand side (RHS) function (the vector
field) f (t, x), and use it to compute the (numerical) solution

Using simulations p. 18

Reminder: Euler’s method

The solution to the initial value problem

x ′ = f (t, x)

x(t0) = x0

can be approximated numerically by the following sequence:

tk+1 = tk + h

xk+1 = xk + hf (tk , xk)

for a time step h > 0 and with first term (t0, x0)

Using simulations p. 19

Back to matlab

The techniques (a.k.a. “numerical solvers”) in matlab are much
more advanced, but the idea is the same: approximate the solution
to an ODE by using a numerical algorithm the uses information on
the “shape” of the vector field

We need two files:

1. a RHS function defining f (t, x)

2. a function or command line statement that “calls” the RHS
function with a numerical solver

Using simulations p. 20

The RHS function

For the logistic equation, we could define the following function

function dN=rhs_logistic(t,N,p)
% This function returns the value of dN/dt
% at the point (t,N), using parameters in the
% structure p

dN=p.r*N*(1-N/p.K);

which we save in a file called, say, rhs_logistic.m

Note that t is required in the function arguments even if not used
in the RHS function, i.e., even if f is autonomous

Using simulations p. 21

Using structures

The variable p is defined as a structure. This is a very useful
construct in many programming languages. Think of it as a
container:

>> p.K=100;
>> p.r=2;
>> p
p =

K: 100
r: 2

Pros: p is passed to the function as one parameter, instead of a list
of parameters. Cons: do not forget p. in front of the parameter

We will see later why structures are useful

Using simulations p. 22

Invoking the numerical solver

The call is of the form (from the help):

ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb

Solve initial value problems for ordinary differential
equations

Syntax
[T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

where solver is one of ode45, ode23, ode113, ode15s,
ode23s, ode23t, or ode23tb

Typically, you can use ode45

Using simulations p. 23

Computing the numerical solution to the logistic

We call our solver as follows:

tspan=[1790 2000]; %The time span of the solution
IC=3.929; %The initial condition (in 1790)
p.K=300; %Set the parameters
p.r=0.5;
[t,N]=ode45(@rhs_logistic,tspan,IC,[],p);

(The one before last argument, [], represents the options
structure. Here we are not modifying any option, and so pass an
empty vector)

Save this file as, say, call_solver.m

After running it, we have a vector t of times (covering tspan) and
a vector N of solution

Using simulations p. 24

Plotting the solution

plot(t,N)

gives

1750 1800 1850 1900 1950 2000
0

50

100

150

200

250

300

350

Using simulations p. 25

Tightening the x-axis

plot(t,N)
xlim([t(1) t(end)])

gives

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000
0

50

100

150

200

250

300

350

Using simulations p. 26

Using Octave

The syntax in Octave is almost identical to the matlab syntax. In
fact, if you use the additional programs in the forge repository, a
function ode45 is defined

However, the functions (in octave) do not implement the use of a
parameter by default, so a work-around must be used

Using simulations p. 27

	Statement of the problem
	Case of the logistic equation
	Using nonlinear regression
	Using simulations

