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Some probability theory

We suppose that a system can be in two states, S1 and S2.

I At time t = 0, the system is in state S1.

I An event happens at some time t = τ , which triggers the
switch from state S1 to state S2.

A random variable is a variable that takes random values, that is, a
mapping from random experiments to numbers.

Let us call T the random variable

“time spent in state S1 before switching into state S2”
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These states can be anything:
I S1: working, S2: broken;
I S1: infected, S2: recovered;
I S1: alive, S2: dead;
I . . .

We take a collection of objects or individuals that are in state S1

and want some law for the distribution of the times spent in S1,
i.e., a law for T .

For example, we make light bulbs and would like to tell our
customers that on average, our light bulbs last 200 years..

For this, we conduct an infinite number of experiments, and
observe the time that it takes, in every experiment, to switch
between S1 and S2.

From this, we deduce a model, which in this context is called a
probability distribution.

Time spent in a state p. 3



S1 S2

time
0

S1 S2

S1

S1

S1

S1

S1

S2

S2

S2

S2

S2

S1 S2

Time spent in a state p. 4



Discrete versus continuous random variables

We assume that T is a continuous random variable, that is, T
takes continuous values. Examples of continuous r.v.:

I height or age of a person (if measured very precisely)

I distance

I time

Another type of random variables are discrete random variables,
which take values in a denumerable set. Examples of discrete r.v.:

I heads or tails on a coin toss

I the number rolled on a dice

I height of a person, if expressed rounded without subunits, age
of a person in years (without subunits)
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Probability

A probability is a function P, with values in [0, 1].

Gives the likelihood of an event occurring, among all the events
that are possible, in that particular setting. For example,
P (getting heads when tossing a coin) = 1/2 and
P (getting tails when tossing a coin) = 1/2.
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Probability density function
Since T is continuous, it has a continuous probability density
function, f .

I f ≥ 0,
I

∫ +∞
−∞ f (s)ds = 1.

I P (a ≤ T ≤ b) =
∫ b
a f (t)dt.

t

f(t)

a b
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Cumulative distribution function
The cumulative distribution function (c.d.f.) is a function F (t)
that characterizes the distribution of T , and defined by

F (s) = P (T ≤ s) =

∫ s

−∞
f (x)dx .

t

f(t)

s
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Properties of the c.d.f.

I Since f is a nonnegative function, F is nondecreasing.

I Since f is a probability density function,
∫ +∞
−∞ f (s)ds = 1, and

thus limt→∞ F (t) = 1.

t

f(t)

F(t)
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Mean value

For a continuous random variable T with probability density
function f , the mean value of T , denoted T̄ or E (T ), is given by

E (T ) =

∫ +∞

−∞
tf (t)dt.
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Survival function

Another characterization of the distribution of the random variable
T is through the survival (or sojourn) function.

The survival function of state S1 is given by

S(t) = 1− F (t) = P (T > t) (1)

This gives a description of the sojourn time of a system in a
particular state (the time spent in the state).

S is a nonincreasing function (since S = 1− F with F a c.d.f.),
and S(0) = 1 (since T is a positive random variable).
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The average sojourn time τ in state S1 is given by

τ = E (T ) =

∫ ∞

0
tf (t)dt

Assuming that limt→∞ tS(t) = 0 (which is verified for most
probability distributions),

τ =

∫ ∞

0
S(t)dt
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The exponential distribution

The random variable T has an exponential distribution if its
probability density function takes the form

f (t) =

{
0 if t < 0,

θe−θt if t ≥ 0,
(2)

with θ > 0. Then the survival function for state S1 is of the form
S(t) = e−θt , for t ≥ 0, and the average sojourn time in state S1 is

τ =

∫ ∞

0
e−θtdt =

1

θ
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If on the other hand, for some constant ω > 0,

S(t) =

{
1, 0 ≤ t ≤ ω
0, ω < t

which means that T has a Dirac delta distribution δω(t), then the
average sojourn time is a constant, namely

τ =

∫ ω

0
dt = ω

These two distributions can be regarded as extremes.
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A model for a cohort with one cause of death

We consider a population consisting of individuals born at the
same time (a cohort), for example, the same year.

We suppose

I At time t = 0, there are initially N0 > 0 individuals.

I All causes of death are compounded together.

I The time until death, for a given individual, is a random
variable T , with continuous probability density distribution
f (t) and survival function P(t).
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The model

Denote N(t) the population at time t ≥ 0. Then

N(t) = N0P(t). (3)

I N0P(t) gives the proportion of N0, the initial population, that
is still alive at time t.
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Case where T is exponentially distributed

Suppose that T has an exponential distribution with mean 1/d (or
parameter d), f (t) = de−dt . Then the survival function is
P(t) = e−dt , and (3) takes the form

N(t) = N0e
−dt . (4)

Now note that

d

dt
N(t) = −dN0e

−dt

= −dN(t),

with N(0) = N0.

⇒ The ODE N ′ = −dN makes the assumption that the life
expectancy at birth is exponentially distributed.
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Case where T has a Dirac delta distribution

Suppose that T has a Dirac delta distribution at t = ω, giving the
survival function

P(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

Then (3) takes the form

N(t) =

{
N0, 0 ≤ t ≤ ω,

0, t > ω.
(5)

All individuals survive until time ω, then they all die at time ω.

Here, we have N ′ = 0 everywhere except at t = ω, where it is
undefined.
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Models of diseases

Consider

I a disease,

I a population of individuals who can be infected by this disease.

Both can be anything:

I a human population subject to influenza,

I an animal population subject to foot and mouth disease,

I a rumor spreading in a human population,

I inovation spreading through businesses,

I a computer virus spreading on the internet,

I . . .
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Status of individuals

Suppose that individuals can be identified with respect to their
epidemiological status:

I susceptible to the disease,

I infected by the disease,

I recovered from the disease,

I . . .

These states are clearly of the type we were discussing before.
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An SIS model

Consider a disease that confers no immunity. In this case,
individuals are either

I susceptible to the disease, with the number of such individuals
at time t denoted by S(t),

I or infected by the disease (and are also infective in the sense
that they propagate the disease), with the number of such
individuals at time t denoted by I (t).

We want to model the evolution with time of S and I (t is omitted
unless necessary).

Extremely important: State all your hypotheses.
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Hypotheses

I Individuals typically recover from the disease.

I The disease does not confer immunity.

I There is no birth or death.

I Infection is of standard incidence type

Once your hypotheses are stated, detail them if need be.
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Recovery and No immunity

Individuals recover from the disease: the infection is not
permanent.

Upon recovery from the disease, an individual becomes susceptible
again immediately.

Good description for diseases that confer no immunity, e.g.,

I the cold,

I gonorrhea,

I . . .
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No birth or death

Suppose that

I the time period of interest is short,

I the population is large enough,

then it is reasonable to assume that the total population is
constant, in the absence of disease.

For mild diseases (cold, etc.), there are very little risks of dying
from the disease. We assume no disease-induced death.

Hence N ≡ N(t) = S(t) + I (t) is the (constant) total population.
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Standard incidence

New infectives result from random contacts between susceptible
and infective individuals, described using standard incidence:

β
SI

N
,

I βSI/N is a rate (per unit time),

I β is the transmission coefficient, giving probability of
transmission of the disease in case of a contact, times the
number of such contacts made by an infective per unit time.
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Recovery

We have not yet stated our hypotheses on the recovery process..

Traditional epidemiological models assume recovery from disease
with a rate constant γ.

Here, assume that, of the individuals who have become infective at
time t0, a fraction P(t − t0) remain infective at time t ≥ t0.

Thus, considered for t ≥ 0, the function P(t) is a survival function.
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A flow diagram for the model

This is the flow diagram of our model:

S I


SI
N

Pt 

It details the flows of individuals between the compartments in the
system.

It is extremely useful to rapidly understand what processes are
modelled.
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Reducing the dimension of the problem

To formulate our model, we would in principle require an equation
for S and an equation for I .

But we have

S(t) + I (t) = N, or equivalently, S(t) = N − I (t).

N is constant (equal total population at time t = 0), so we can
deduce the value of S(t), once we know I (t), from the equation
S(t) = N − I (t).

We only need to consider 1 equation. Do this when possible!
(nonlinear systems are hard, one less equation can make a lot of
difference)
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Model for infectious individuals

Integral equation for the number of infective individuals:

I (t) = I0(t) +

∫ t

0
β

(N − I (u))I (u)

N
P(t − u)du (6)

I I0(t) number of individuals who were infective at time t = 0
and still are at time t.

I I0(t) is nonnegative, nonincreasing, and such that
limt→∞ I0(t) = 0.

I P(t − u) proportion of individuals who became infective at
time u and who still are at time t.

I β(N − I (u))S(u)/N is βS(u)I (u)/N with S(u) = N − I (u),
from the reduction of dimension.

Sojourn times in an SIS disease transmission model p. 32



Expression under the integral

Integral equation for the number of infective individuals:

I (t) = I0(t) +

∫ t

0
β

(N − I (u))I (u)

N
P(t − u)du (6)

The term

β
(N − I (u))I (u)

N
P(t − u)

I β(N − I (u))I (u)/N is the rate at which new infectives are
created, at time u,

I multiplying by P(t − u) gives the proportion of those who
became infectives at time u and who still are at time t.

Summing over [0, t] gives the number of infective individuals at
time t.
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Case of an exponentially distributed time to recovery

Suppose that P(t) is such that the sojourn time in the infective
state has an exponential distribution with mean 1/γ, i.e.,
P(t) = e−γt .

Then the initial condition function I0(t) takes the form

I0(t) = I0(0)e−γt ,

with I0(0) the number of infective individuals at time t = 0. This
is obtained by considering the cohort of initially infectious
individuals, giving a model such as (3).

Equation (6) becomes

I (t) = I0(0)e−γt +

∫ t

0
β

(N − I (u))I (u)

N
e−γ(t−u)du. (7)
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Taking the time derivative of (7) yields

I ′(t) = −γI0(0)e−γt − γ

∫ t

0
β

(N − I (u))I (u)

N
e−γ(t−u)du

+ β
(N − I (t))I (t)

N

= −γ

(
I0(0)e−γt +

∫ t

0
β

(N − I (u))I (u)

N
e−γ(t−u)du

)
+ β

(N − I (t))I (t)

N

= β
(N − I (t))I (t)

N
− γI (t),

which is the classical logistic type ordinary differential equation
(ODE) for I in an SIS model without vital dynamics (no birth or
death).
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Case of a step function survival function

Consider case where the time spent infected has survival function

P(t) =

{
1, 0 ≤ t ≤ ω,

0, t > ω.

i.e., the sojourn time in the infective state is a constant ω > 0.
In this case (6) becomes

I (t) = I0(t) +

∫ t

t−ω
β

(N − I (u))I (u)

N
du. (8)

Here, it is more difficult to obtain an expression for I0(t). It is
however assumed that I0(t) vanishes for t > ω.
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When differentiated, (8) gives, for t ≥ ω,

I ′(t) = I ′0(t) + β
(N − I (t))I (t)

N
− β

(N − I (t − ω)) I (t − ω)

N
.

Since I0(t) vanishes for t > ω, this gives the delay differential
equation (DDE)

I ′(t) = β
(N − I (t))I (t)

N
− β

(N − I (t − ω))I (t − ω)

N
.
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Conclusion

I The time of sojourn in classes (compartments) plays an
important role in determining the type of model that we deal
with.

I All ODE models, when they use terms of the form κX , make
the assumption that the time of sojourn in compartments is
exponentially distributed.

I At the other end of the spectrum, delay delay differential with
discrete delay make the assumption of a constant sojourn
time, equal for all individuals.

I Both can be true sometimes.. but reality is often somewhere
in between.
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Survival function, S(t) = P (T > t), for an exponential
distribution with mean 80 years.
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