A few epidemic models

Introduction to the analysis of nonlinear systems
of ordinary differential equations



SIS model without vital dynamics



A SIS model

Consider a disease that confers no immunity. In this case,
individuals are either
» susceptible to the disease, with the number of such individuals
at time t denoted by S(t),
» or infected by the disease (and are also infective in the sense
that they propagate the disease), with the number of such
individuals at time t denoted by /(t).

We want to model the evolution with time of S and / (t is omitted
unless necessary).
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Hypotheses

» Individuals recover from the disease at the per capita rate ~.

» The disease does not confer immunity.
» There is no birth or death.

» Infection is of standard incidence type, 3 = SI/N.

(for details, see slides on residence time)
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Flow diagram of the model
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The evolution of /(t) is described by the following equation (see
slides on residence time):

(N=1NI

I"'=3 N 1.

Develop and reorder the terms, giving

B2
I'=(B—) -1 1
(5 - - 1)
This is a logistic-type equation. It can be solved as a Bernoulli
equation or as a separable equation, giving, for an initial number of

infectives /(0) = Iy,

(B — )Nl
(B — v)Ne=(B=1t + By (1 — e~ (5-7t)

I(t) =

SIS model without vital dynamics

p.



From S = N — I, we deduce that the solution (S(t), /(t)) for the
complete system, with initial condition S(0) + /(0) = So + lp = N

is, for t > 0,
N (B — )Nl
S(t) =N (B —7)Ne= (=1t + By (1 — e~ (B-)t)
and
/(t) — (ﬂ - V)NIO

(B —v)Ne=(B=t 4 Bl (1 — e~ (F=)1)
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Behavior of the solutions

Consider only / for the moment.

(8 — )Nk
(8 —~)Ne= (7=t 4 Bl (1 — e=(3-)t)

I(t) =

So
> If 5—~ >0, then e~ (Pt 0 as t — oo, and therefore

Jim 15 = U= B2y <1 - ;) v,

> If 3—~ <0, then e~ (¥t — o0 at t — oo. This implies
that the denominator in /(t) tends to —oo as t — oo, and so

tlim I(t) =0, with /(t) > 0 for all t.

> If 5=+, then I(t) =0 for all t.

SIS model without vital dynamics

p.



The basic reproduction number

Define the basic reproduction number (the average number of
people that an infectious individual will infect, when introduced in
a population of susceptibles) as

Ro="
Y
We have
(Ro<le (B—7)<0)and (Ro>1< (6—7)>0).

Therefore, previous cases can be rewritten
> If Ro < 1, then lim_ /(t) = 0.
» If Rp > 1, then

lime—ool (t) = <1 - 1) N.

(the case Ro = 1 is usually omitted)
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Plotting this in Maple

> f:=R->piecewise(R<1,0,R>1, (1-1/R)*1000);
> plot (£(R) ,R=0..10);

800
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SIR model of Kermack and McKendrick



A Contribution to the Mathematical Theory of Epidemics.
By W. O. Kermack and A. G. McKENDRICK.

(Communicated by Sir Gilbert Walker, F.R.S.—Received May 13, 1927.)

(From the Laboratory of the Royal College of Physicians, Edinburgh.)

Introduction.

(1). One of the most striking features in the study of epidemics is the difficulty
of finding a causal factor which appears to be adequate to account for the
magnitude of the frequent epidemics of disease which visit almost every popula-
tion. It was with a view to obtaining more insight regarding the effects of the
various factors which govern the spread of contagious epidemics that the present
investigation was undertaken. Reference may here be made to the work of Ross
and Hudson (1915-17) in which the same problem is attacked. The problem is
here carried to a further stage, and it is considered from a point of view which
is in one sense more general. The problem may be summarised as follows :
One (or more) infected person is introduced into a community of individuals,
more or less susceptible to the disease in question. The disease spreads from
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In this case the equations are

L

& y

dy _
7 ly (
& _

dt I

and as beforex + y 4 2z = N.
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Kermack and McKendrick

In 1927, Kermack and McKendrick started publishing a series of
papers on epidemic models. In the first of their papers, they have
this model as a particular case:

S'=-p3SI
I"'=3SI —~I (2)
R =~l
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In this case the equations are

B _
dt Y
dy _
EZ-—ny lyr
‘-;lz:
dt -
and as before z + y + 2z = N
Thus
(N —2z—2)
dt
and @_——-x whence log %o
dz z
Thus

g: l<N—:voc—l-z—~z>.

Since it is impossible from this equation to obtain z as an explicit function of

¢, we may expand the exponential term in powers of ‘lfz, and we shall assume

that %z is small compared with unity.



Analyzing the system

First, note (as KMK) that the total population in the system is
constant. This is deduced from the fact that

N' = (S+1+R) =—BSl + Sl — I + I = 0.

Since this is true for all values of t, we have N constant.
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Let us ignore the R equation for now. We can compute

d _didt 1" _ v
dS ~dtdS S 3S

This gives
ug:s-%ms+&

which, considering the initial condition (Sp, Ip), is,

mg:s—%m5+b—(%—%m%y

This gives a curve in the (S, /) plane.
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/(5):5—%|n5+/0—(50—%mso).

Typically, assume S =~ N and / > 0 small. Let us denote
We want to find the value of S when | — 0. Then

/0—%|n50:500—%|n500
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The SIRS model — Assumptions (1/2)

» Like KMK, individuals are S, | or R.
» Infection is 3SI (mass action) or 3SI/N (proportional
incidence).

» Different interpretation of the R class: R stands for
“removed”, individuals who are immune to the disease
following recovery.

» Recovery from the disease (movement from | class to R class)
occurs at the per capita rate 7.
(Time spent in | before recovery is exponentially distributed.)

» Immunity can be lost: after some time, R individuals revert
back to S individuals.

» Time spent in R class before loss of immunity is exponentially
distributed, with mean 1/v.
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The SIRS model — Assumptions (2/2)

» There is birth and death of individuals:

» No vertical transmission of the disease (mother to child) or of
immunity, so all birth is into the S class.
Birth occurs at the rate 1.

» Individuals in all classes die of at the per capita rate d, i.e., the
average life duration is exponentially distributed with mean
1/d.

» The disease is lethal: infected individuals are subject to
additional mortality at the per capita rate §.

Note that birth and death can have different interpretations:
» birth and death in the classical sense,

» but also, entering the susceptible population and leaving it.
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Flow diagrams for the models

Mass action

Standard incidence
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SIRS models

Mass action

S'=N+vR—p3Sl—dS
I"=pBSlI—(d+6+7)l
R' =~ —(d+v)R

Proportional incidence

S'=N+vR—p3Sl—dS
I"=pBSlI—(d+6+7)l
R' =~I —(d+ V)R,

where N =S+ + R.

SIRS model with demography
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SIRS model with mass action incidence

Consider (3):

S'=N+wvR —BSI —dS
I'=BSl - (d+6+7)l
R =~ —(d+v)R
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Steps of the analysis

1. Assess well-posedness of the system:

1.1 Determine whether solutions exist and are unique.
1.2 Determine whether solutions remain in a realistic region and
are bounded.

2. Find the equilibria of the system.
3. Determine the local stability properties of the equilibria.

4. Determine the global stability properties of the equilibria
(much harder, often not possible).
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Existence and uniqueness of solutions

Theorem (Cauchy-Lipschitz)

Consider the equation x' = f(x), with x € R", and suppose that

f € CL. Then there exists a unique solution of x' = f(x) such that
x(tp) = xo, where to € R and xo € R", defined on the largest
interval J > ty on which f € CL.
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Equilibria

Definition (Equilibrium point)

Consider a differential equation

with x € R” and f : R" — R"”. Then x* is an equilibrium
(solution) of (5) if f(x*) = 0.
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Linearization

Consider x* an equilibrium of (5). For simplicity, assume here that

x* =0 (it is always possible to do this, by considering y = x — x*).

Taylor's theorem:
F(x) = DF(O)x + 3DF(0)(x, ) + -+

where Df(0) is the Jacobian matrix of f evaluated at 0.
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Stability of equilibria

Definition (Stable and unstable EP)

Let ¢ be the flow of (5), assumed to be defined for all t € R. An
equilibrium x* of (5) is (locally) stable if for all € > 0, there exists
d > 0 such that for all x € Ns5(x*) and t > 0, there holds

d(x) € No(x¥).

The equilibrium point is unstable if it is not stable.

Definition (Asymptotically stable EP)

Let ¢ be the flow of (5) is (locally) asymptotically stable if there
exists 0 > 0 such that for all x € NV5(x*) and t > 0, there holds

lim ¢:(x) = x™.

t—o0

Clearly, Asymtotically Stable = Stable.
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Hyperbolic EPs, sinks, sources

Definition (Sink)

An equilibrium point x* of (5) is hyperbolic if none of the
eigenvalues of the matrix Df (x*) (Jacobian matrix of f evaluated
at x*) have zero real parts.

Definition (Sink)
An equilibrium point x* of (5) is a sink if all the eigenvalues of the
matrix Df (x*) have negative real parts.

Definition (Source)

An equilibrium point x* of (5) is a source if all the eigenvalues of
the matrix Df (x*) have positive real parts.
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Theorem
If x* is a sink of (5) and for all the eigenvalues \; of the matrix
Df (x*)
R(Nj) < —a <0,

where R(\) denotes the real part of A, then for a given € > 0,
there exists 6 > 0 such that for all x € N3(x*), the flow ¢+(x) of
(5) satisfies

[@e(x) = x*|| < ee™

for all t > 0.

Theorem
If x* is a stable equilibrium point of (5), no eigenvalue of Df (x*)
has positive real part.
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