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Principle

I One main chamber (vessel), in which some microorganisms
(bacteria, plankton), typically unicellular, are put, together
with liquid and nutrient.

I Contents are stirred, so nutrient and organisms are well-mixed.

I Organisms consume nutrient, grow, multiply.
I Two major modes of operation:

I Batch mode: let the whole thing sit.
I Continuous flow mode: there is an input of fresh water and

nutrient, and an outflow the comprises water, nutrient and
organisms, to keep the volume constant.
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A very popular tool

I Study of the growth of micro-organisms as a function of
nutrient, in a very controlled setting.

I Very good reproducibility of experiments.

I Used in all sorts of settings. Fundamental science, but also,
for production of products.
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Modelling principles – Batch mode

I Organisms (concentration denoted x) are in the main vessel.

I Limiting substrate (concentration in the vessel denoted S).

I Homogeneous mixing.

I Organisms uptake nutrient at the rate µ(S), a function of the
concentration of nutrient around them.
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Model for batch mode – No organism death

First, assume no death of organisms. Model is

S ′ = −µ(S)x (1a)

x ′ = µ(S)x (1b)

with initial conditions S(0) ≥ 0 and x(0) > 0, and where µ(S) is
such that

I µ(0) = 0 (no substrate, no growth)

I µ(S) ≥ 0 for all S ≥ 0

I µ(S) bounded for S ≥ 0
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The Monod curve

Typical form for µ(S) is the Monod curve,

µ(S) = µmax
S

KS + S
(2)

I µmax maximal growth rate

I KS half-saturation constant
(µ(KS) = µmax/2).

From now on, assume Monod function.
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Equilibria

To compute the equilibria, suppose S ′ = x ′ = 0, giving

µ(S)x = −µ(S)x = 0

This implies µ(S) = 0 or x = 0. Note that µ(S) = 0 ⇔ S = 0, so
the system is at equilibrium if S = 0 or x = 0.

This is a complicated situation, as it implies that there are lines of
equilibria (S = 0 and any x , and x = 0 and any S), so that the
equilibria are not isolated (arbitrarily small neighborhoods of one
equilibrium contain other equilibria), and therefore, studying the
linearization is not possible.
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Here, some analysis is however possible. Consider

dx

dS
=

dx

dt

dt

dS
= −µ(S)x

µ(S)x
= −1

This implies that we can find the solution

x(S) = C − S ,

or, supposing the initial condition is (S(0), x(0)) = (S0, x0), that
is, x(S0) = x0,

x(S) = S0 + x0 − S
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Model for batch mode – Organism death

Assume death of organisms at per capita rate d . Model is

S ′ = −µ(S)x (3a)

x ′ = µ(S)x − dx (3b)
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Equilibria

S ′ = 0⇔ µ(S)x = 0
x ′ = 0⇔ (µ(S)− d)x = 0.
So we have x = 0 or µ(S) = d . So x = 0 and any value of S , and
S such that µ(S) = d and x = 0. One such particular value is
(S , x) = (0, 0).

This is once again a complicated situation, since there are lines of
equilibria. Intuitively, most solutions will go to (0, 0). This is
indeed the case (we will not show it).
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Modelling principles – Continuous flow mode

I Organisms (concentration denoted x) are in the main vessel.

I Limiting substrate (concentration in the vessel denoted S) is
input (at rate D and concentration S0).

I There is an outflow of both nutrient and organisms (at same
rate D as input).

I Homogeneous mixing.

I Residence time in device is assumed small compared to
lifetime (or time to division) ⇒ no death considered.
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Schematic representation
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Model for continuous flow mode

Model is

S ′ = D(S0 − S)− µ(S)x (4a)

x ′ = µ(S)x − Dx (4b)

with initial conditions S(0) ≥ 0 and x(0) ≥ 0, and D,S0 > 0.
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Seeking equilibria

Setting S ′ = x ′ = 0, we get

0 = D(S0 − S)− µmax
S

KS + S
x

0 =

(
µmax

S

KS + S
− D

)
x
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Phase plane analysis

I In R2, nullclines are curves.

I Nullclines are the level set 0 of the vector field. If we have

x ′1 = f1(x1, x2)

x ′2 = f2(x1, x2)

then the nullclines for x1 are the curves defined by

{(x1, x2) ∈ R2 : f1(x1, x2) = 0}

those for x2 are

{(x1, x2) ∈ R2 : f2(x1, x2) = 0}

I On the nullcline associated to one state variable, this state
variable has zero derivative.

I Equilibria lie at the intersections of nullclines for both state
variables (in R2).
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Nullclines for x
Nullclines are given by

0 = D(S0 − S)− µmax
S

KS + S
x (5a)

0 =

(
µmax

S

KS + S
− D

)
x (5b)

From (5b), nullclines for x are x = 0 and

µmax
S

KS + S
− D = 0

Write the latter as

µmax
S

KS + S
− D = 0⇔ µmaxS = D(KS + S)

⇔ (µmax − D)S = DKS

⇔ S =
DKS

µmax − D
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Nullcline for x

So, for x , there are two nullclines:

I The line x = 0.

I The line S =
DKS

µmax − D
.

For the line S = DKS/(µmax − D), we deduce a condition:

I If µmax − D > 0, that is, if µmax > D, i.e., the maximal
growth rate of the cells is larger than the rate at which they
leave the chemostat due to washout, then the nullcline
intersects the first quadrant.

I If µmax < D, then the nullcline does not intersect the first
quadrant.
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Nullclines for S

Nullclines are given by

0 = D(S0 − S)− µmax
S

KS + S
x (5a)

0 =

(
µmax

S

KS + S
− D

)
x (5b)

Rewrite (5a),

D(S0 − S)− µmax
S

KS + S
x = 0⇔ µmaxSx = D(S0 − S)(KS + S)

⇔ x =
D(S0 − S)(KS + S)

µmaxS

⇔ x =
D

m

(
S0KS

S
− S + S0 − KS

)
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Nullcline for S : S intercept

The equation for the nullcline for S is

x = Γ(S)
∆
=

D

m

(
S0K

S
− S + S0 − K

)
We look for the intercepts. First, S intercept:

Γ(S) = 0 ⇔ S0KS

S
− S + S0 − KS = 0

⇔ S0K

S
= S − S0 + K

⇔ S0KS = S2 + (KS − S0)S

⇔ S2 + (K − S0)S − S0KS = 0

Roots of this degree 2 polynomial are −KS (< 0) and S0.
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Nullcline for S : x intercept

x intercept is found at Γ(0). But this is not defined (division by
S = 0), so consider

lim
S→0+

Γ(S) = lim
S→0+

D

m

(
S0K

S
− S + S0 − K

)
=

D

m

(
lim

S→0+

S0K

S
− S + S0 − K

)
=

D

m

(
lim

S→0+

(
S0K

S

)
+ lim

S→0+

(
−S + S0 − K

))
=

D

m

(
+∞+ S0 − K

)
= +∞.
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Maple for help

Maple has a plot function, implicitplot (part of the plots
library), that is very useful for nullclines (d is used instead of D,
because maple does not allow to change D without using
unprotect).

> with(plots):
> d := 0.4; S0 := 1; mu := 0.7; K := 2;
> implicitplot(d*(S0-S)-mu*S/(K+S)*x=0,S=0..10,x=0..10)
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Stability of the equilibria

Continous flow mode p. 25



Conservation of mass

Summing the equations in (4), we get

(S + x)′ = D
(
S0 − (S + x)

)
Denote M = S + x the total organic mass in the chemostat. Then

M ′ = D(S0 −M)

This is a linear equation in M. Solving it (e.g., integrating factor),
we find

M(t) = S0 − e−Dt
(
S0 −M(0)

)
,

and so
lim

t→∞
M(t) = S0.

This is called the mass conservation principle.
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Implication of mass conservation

Not as strong as what we had in the SIS epidemic model, where
the total number of individuals was constant. Here, the mass is
asymptotically constant.

But we can still use it, using the theory of asymptotically
autonomous differential equations. Too complicated for here, just
remember that often, it is allowed to use the limit of a variable
rather than the variable itself, provided you know that the
convergence occurs.
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