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We conduct an experiment with a set of r outcomes,

S = {S1, . . . ,Sr}.

The experiment is repeated n times (with n large, potentially
infinite).

The system has no memory: the next state depends only on the
present state.

The probability of Sj occurring on the next step, given that Si

occurred on the last step, is

pij = p(Sj |Si ).
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Suppose that Si is the current state, then one of S1, . . . ,Sr must
be the next state; therefore,

pi1 + pi2 + · · ·+ pir = 1, 1 ≤ i ≤ r .

(Note that some of the pij can be zero, all that is needed is that∑r
j=1 pij = 1 for all i .)
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Markov chain

Definition
An experiment with finite number of possible outcomes S1, . . . ,Sr

is repeated. The sequence of outcomes is a Markov chain if there
is a set of r2 numbers {pij} such that the conditional probability of
outcome Sj on any experiment given outcome Si on the previous
experiment is pij , i.e., for 1 ≤ i , j ≤ r , n = 1, . . .,

pij = Pr(Sj on experiment n + 1|Si on experiment n).

The outcomes S1, . . . ,Sr are the states, and the pij are the
transition probabilities. The matrix P = [pij ] is the transition
matrix.
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Transition matrix
The matrix

P =


p11 p12 · · · p1r

p21 p22 · · · p2r

pr1 pr2 · · · prr


has

I nonnegative entries, pij ≥ 0

I entries less than 1, pij ≤ 1

I row sum 1, which we write

r∑
j=1

pij = 1, i = 1, . . . , r

or, using the notation 1lT = (1, . . . , 1),

P1l = 1l
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Simple Mendelian inheritance

A certain trait is determined by a specific pair of genes, each of
which may be two types, say G and g .

One individual may have:

I GG combination (dominant)

I Gg or gG , considered equivalent genetically (hybrid)

I gg combination (recessive)

In sexual reproduction, offspring inherit one gene of the pair from
each parent.
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Basic assumption of Mendelian genetics

Genes inherited from each parent are selected at random,
independently of each other. This determines probability of
occurrence of each type of offspring. The offspring

I of two GG parents must be GG ,

I of two gg parents must be gg ,

I of one GG and one gg parent must be Gg ,

I other cases must be examined in more detail.
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GG and Gg parents

G G G g

G g

Parents

G G G gG G Offspring

Offspring has probability

I
1

2
of being GG

I
1

2
of being Gg
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Gg and Gg parents

G g G g

G g

Parents

g G g gG G Offspring

Offspring has probability

I
1

4
of being GG

I
1

2
of being Gg

I
1

4
of being gg
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gg and Gg parents

g g G g

g g

Parents

g G g gg G Offspring

Offspring has probability

I
1

2
of being Gg

I
1

2
of being gg
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General case

Let pi (n) be the probability that the state Si will occur on the nth

repetition of the experiment, 1 ≤ i ≤ r .

Since one the states Si must occur on the nth repetition,

p1(n) + p2(n) + · · ·+ pr (n) = 1.
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Let pi (n + 1) be the probability that state Si , 1 ≤ i ≤ r , occurs on
(n + 1)th repetition of the experiment.

There are r ways to be in state Si at step n + 1:

1. Step n is S1. Probability of getting S1 on nth step is p1(n),
and probability of having Si after S1 is p1i . Therefore, by
multiplication principle, P(Si |S1) = p1ip1(n).

2. We get S2 on step n and Si on step (n + 1). Then
P(Si |S2) = p2ip2(n).

..

r. Probability of occurrence of Si at step n + 1 if Sr at step n is
P(Si |Sr ) = pripr (n).

Therefore, pi (n + 1) is sum of all these,

pi (n + 1) = P(Si |S1) + · · ·+ P(Si |Sr )

= p1ip1(n) + · · ·+ pripr (n)
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Therefore,

p1(n + 1) = p11p1(n) + p21p2(n) + · · ·+ pr1pr (n)

...

pk(n + 1) = p1kp1(n) + p2kp2(n) + · · ·+ prkpr (n)

...

pr (n + 1) = p1rp1(n) + p2rp2(n) + · · ·+ prrpr (n)

(1)
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In matrix form

p(n + 1) = p(n)P, n = 1, 2, 3, . . . (2)

where p(n) = (p1(n), p2(n), . . . , pr (n)) is a (row) probability vector
and P = (pij) is a r × r transition matrix,

P =


p11 p12 · · · p1r

p21 p22 · · · p2r

pr1 pr2 · · · prr


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So, what we have is

(p1(n + 1), . . . , pr (n + 1)) =

(p1(n), . . . , pr (n))


p11 p12 · · · p1r

p21 p22 · · · p2r

pr1 pr2 · · · prr


It is easy to check that this gives the same expression as (1).
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For our genetic model..

Consider a process of continued matings.

I Start with an individual of known or unknown genetic
character and mate it with a hybrid.

I Assume that there is at least one offspring; choose one of
them at random and mate it with a hybrid.

I Repeat this process through a number of generations.

The genetic type of the chosen offspring in successive generations
can be represented by a Markov chain, with states GG , Gg and gg .
So there are 3 possibles states S1 = GG , S2 = Gg and S3 = gg .
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We have

↗ GG Gg gg

GG 0.5 0.5 0
Gg 0.25 0.5 0.25
gg 0 0.5 0.5

The transition probabilities are thus

P =

 1
2

1
2 0

1
4

1
2

1
4

0 1
2

1
2


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Stochastic matrices

Definition (Stochastic matrix)

The nonnegative r × r matrix M is stochastic if
∑r

j=1 aij = 1 for
all i = 1, 2, . . . , r .

Theorem
Let M be a stochastic matrix M. Then all eigenvalues λ of M are
such that |λ| ≤ 1. Furthermore, λ = 1 is an eigenvalue of M.

To see that 1 is an eigenvalue, write the definition of a stochastic
matrix, i.e., M has row sums 1. In vector form, M1l = 1l. Now
remember that λ is an eigenvalue of M, with associated
eigenvector v , iff Mv = λv . So, in the expression M1l = 1l, we read
an eigenvector, 1l, and an eigenvalue, 1.
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Long “time” behavior

Let p(0) be the initial distribution (row) vector. Then

p(1) = p(0)P

p(2) = p(1)P

= (p(0)P)P

= p(0)P2

Iterating, we get that for any n,

p(n) = p(0)Pn

Therefore,

lim
n→+∞

p(n) = lim
n→+∞

p(0)Pn = p(0) lim
n→+∞

Pn
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Additional properties of stochastic matrices

Theorem
If M,N are stochastic matrices, then MN is a stochastic matrix.

Theorem
If M is a stochastic matrix, then for any k ∈ N, Mk is a stochastic
matrix.
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Regular Markov chain

Definition (Regular Markov chain)

A regular Markov chain is one in which Pk is positive for some
integer k > 0, i.e., Pk has only positive entries, no zero entries.

Definition
A nonnegative matrix M is primitive if, and only if, there is an
integer k > 0 such that Mk is positive.

Theorem
A Markov chain is regular if, and only if, the transition matrix P is
primitive.
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Important result for regular Markov chains

Theorem
If P is the transition matrix of a regular Markov chain, then

1. the powers Pn approach a stochastic matrix W ,

2. each row of W is the same (row) vector w = (w1, . . . ,wr ),

3. the components of w are positive.

So if the Markov chain is regular,

lim
n→+∞

p(n) = p(0) lim
n→+∞

Pn = p(0)W
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Left and right eigenvectors

Let M be an r × r matrix, u, v be two column vectors, λ ∈ R.
Then, if

Mu = λu,

u is the (right) eigenvector corresponding to λ, and if

vTM = λvT

then v is the left eigenvector corresponding to λ. Note that to a
given eigenvalue there corresponds one left and one right
eigenvector.
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The vector w is in fact the left eigenvector corresponding to the
eigenvalue 1 of P. (We already know that the (right) eigenvector
corresponding to 1 is 1l.)

To see this, remark that, if p(n) converges, then p(n + 1) = p(n)P,
so w is a fixed point of the system. We thus write

wP = w

and solve for w , which amounts to finding w as the left
eigenvector corresponding to the eigenvalue 1.

Alternatively, we can find w as the (right) eigenvector associated
to the eigenvalue 1 for the transpose of P,

PTwT = wT
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Now remember that when you compute an eigenvector, you get a
result that is the eigenvector, to a multiple.

So the expression you obtain for w might have to be normalized
(you want a probability vector). Once you obtain w , check that
the norm ‖w‖ defined by

‖w‖ = w1 + · · ·+ wr

is equal to one. If not, use

w

‖w‖
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Back to genetics..

The Markov chain is here regular. Indeed, take the matrix P,

P =

 1
2

1
2 0

1
4

1
2

1
4

0 1
2

1
2


and compute P2:

P2 =

 3
8

1
2

1
8

1
4

1
2

1
4

1
8

1
2

3
8


As all entries are positive, P is primitive and the Markov chain is
regular.
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Another way to check regularity:

Theorem
A matrix M is primitive if the associated connection graph is
strongly connected, i.e., that there is a path between any pair (i , j)
of states, and that there is at least one positive entry on the
diagonal of M.

This is checked directly on the transition graph

GG Gg

gg

0.5
0.5

0.5

0.5

0.5

0.25

0.25
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Compute the left eigenvector associated to 1 by solving

(w1,w2,w3)

 1
2

1
2 0

1
4

1
2

1
4

0 1
2

1
2

 = (w1,w2,w3)

1

2
w1 +

1

4
w2 = w1 (3a)

1

2
w1 +

1

2
w2 +

1

2
w3 = w2 (3b)

1

4
w2 +

1

2
w3 = w3 (3c)

From (3a), w1 = w2/2, and from (3c), w3 = w2/2. Substituting
these values into (3b),

1

4
w2 +

1

2
w2 +

1

4
w2 = w2,

that is, w2 = w2, i.e., w2 can take any value. So w = (1
4 ,

1
2 ,

1
4).
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Mating with a GG individual

Suppose now that we conduct the same experiment, but mate each
new generation with a GG individual instead of a Gg individual.
Transition table is

↗ GG Gg gg

GG 1 0 0
Gg 0.5 0.5 0
gg 0 1 0

The transition probabilities are thus

P =

 1 0 0
1
2

1
2 0

0 1 0


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New transition graph

GG Gg

gg

1 0.5

1

0.5

Clearly:

I we leave gg after one iteration, and can never return,

I as soon as we leave Gg , we can never return,

I can never leave GG as soon as we get there.
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Absorbing states, absorbing chains

Definition
A state Si in a Markov chain is absorbing if whenever it occurs on
the nth generation of the experiment, it then occurs on every
subsequent step. In other words, Si is absorbing if pii = 1 and
pij = 0 for i 6= j .

Definition
A Markov chain is said to be absorbing if it has at least one
absorbing state, and if from every state it is possible to go to an
absorbing state.

In an absorbing Markov chain, a state that is not absorbing is
called transient.
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Some questions on absorbing chains

Suppose we have a chain like the following:

1 2 3 4

1. Does the process eventually reach an absorbing state?

2. Average number of times spent in a transient state, if starting
in a transient state?

3. Average number of steps before entering an absorbing state?

4. Probability of being absorbed by a given absorbing state,
when there are more than one, when starting in a given
transient state?
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Reaching an absorbing state

Answer to question 1:

Theorem
In an absorbing Markov chain, the probability of reaching an
absorbing state is 1.
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Standard form of the transition matrix

For an absorbing chain with k absorbing states and r − k transient
states, the transition matrix can be written as

P =

(
Ik 0
R Q

)
with following meaning,

Absorbing states Transient states
Absorbing states Ik 0
Transient states R Q

with Ik the k × k identity matrix, 0 an k × (r − k) matrix of zeros,
R an (r − k)× k matrix and Q an (r − k)× (r − k) matrix.
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The matrix Ir−k − Q is invertible. Let

I N = (Ir−k − Q)−1 be the fundamental matrix of the Markov
chain

I Ti be the sum of the entries on row i of N

I B = NR.

Answers to our remaining questions:

2. Nij is the average number of times the process is in the jth
transient state if it starts in the ith transient state.

3. Ti is the average number of steps before the process enters an
absorbing state if it starts in the ith transient state.

4. Bij is the probability of eventually entering the jth absorbing
state if the process starts in the ith transient state.
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Back to genetics..

The matrix is already in standard form,

P =

 1 0 0
1
2

1
2 0

0 1 0

 =

(
I1 0
R Q

)

with I1 = 1, 0 = (0 0) and

R =

(
1
2
0

)
Q =

(
1
2 0
1 0

)
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We have

I2 − Q =

(
1 0
0 1

)
−
(

1
2 0
1 0

)
=

(
1
2 0
−1 1

)
so

N = (I2 − Q)−1 = 2

(
1 0
1 1

2

)
=

(
2 0
2 1

)
Then

T = N1l =

(
2
3

)
and

B = NR =

(
2 0
2 1

)(
1
2
0

)
=

(
1
1

)
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The drunk man’s walk, 1.0

I chain of states S1, . . . ,Sp

I if in state i = 2, . . . , p − 1, probability 1/2 of going left (to
i − 1) and 1/2 of going right (to i + 1)

I if in state 1, probability 1 of going to 2

I if in state p, probability 1 of going to p − 1
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The transition matrix for DMW 1.0

P =



0 1 0 0 0 · · · 0
1
2 0 1

2 0
0 1

2 0 1
2

...
. . .

. . .
. . .

...

1
2 0 1

2
0 1 0


Clearly a primitive matrix, so this is an regular Markov chain.
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We need to solve wTP = wT , that is,

1

2
w2 = w1

w1 +
1

2
w3 = w2

1

2
w2 +

1

2
w4 = w3

1

2
w3 +

1

2
w5 = w4

...

1

2
wp−3 +

1

2
wp−1 = wp−2

1

2
wp−2 + wp = wp−1

1

2
wp−1 = wp
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Express everything in terms of w1:

w2 = 2w1

w1 +
1

2
w3 = w2 ⇔ w3 = 2(w2 − w1) = 2w1

1

2
w2 +

1

2
w4 = w3 ⇔ w4 = 2(w3 −

1

2
w2) = 2(w3 − w1) = 2w1

1

2
w3 +

1

2
w5 = w4 ⇔ w5 = 2(w4 −

1

2
w3) = 2(w4 − w1) = 2w1

...

1

2
wp−3 +

1

2
wp−1 = wp−2 ⇔ wp−1 = 2w1

1

2
wp−2 + wp = wp−1 ⇔ wp = wp−1 −

1

2
wp−2 = w1

1

2
wp−1 = wp (confirms that wp = w1)
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So we get
wT = (w1, 2w1, . . . , 2w1,w1)

We have

p∑
i=1

wi = w1 +

(
p−1∑
i=2

2w1

)
+ w1

= 2w1 +

p−1∑
i=2

2w1

=

p−1∑
i=1

2w1

= 2w1

p−1∑
i=1

1

= 2w1(p − 1)
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Since
p∑

i=1

wi = 2w1(p − 1)

to get a probability vector, we need to take

w1 =
1

2(p − 1)

So

wT =

(
1

2(p − 1)
,

1

p − 1
, . . . ,

1

p − 1
,

1

2(p − 1)

)
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