Shallow water

Partial differential equations



Model formulation



Spatial domain

We consider the motion of a body of water that is infinite in the z
direction, with or without boundary in the x direction, and the
vertical direction of gravity taken as the y direction.

1

From now on, suppose z direction uniform (the same for all z), so
ignore z except for the sake of argument.

Model formulation

p.



» Water depth at rest, H, small compared to distance Ly over
which significant changes can occur in the x direction.

» Undisturbed water surface, y = 0.

» Moving upper free surface y = 7, measured from y = 0.
» Sea floor y = —H.

Model formulation

p.



» u velocity in the x direction. Assume independent of depth y.

» p mass density of water.

» p(x,y,t) pressure in fluid at point (x,y) at time t. In water,
magnitude at any (x, y) is same in all directions.

Fluid motion independent of z, so
> u=u(x,t)

> n=n(x,t).

Model formulation

p.



Take a cylindrical water column, with base area A, between y; and
y2 > .

Area A4

Force equilibrium in the y direction in this cylinder requires balance
of weight of water column and pressure differential between
bottom face y = y; and top face y = y».

Model formulation

p.



Weight of water column:

[] [ o
A n

Pressure differential:

// (p(x,y2,t) = p(x, y1,t)) dxdz
A

So we must have

/ / f(—pg) dydxdz = / / (P(x, y2,t) = p(x, 1, ) dxdz
A n A

Model formulation

p.



//f(_pg) ddedZ:// (P(x, y2,t) = p(x, 1, ) dxdz
A n A

is equivalent to

¥2
/// ((9[) -i-pg) dydxdz =0
Ay
A n

This must be true for any water column, i.e., any A, y1, y».
Therefore,
op
dy
(otherwise, we would be able to find a water column where the
integrand is positive, leading to a positive value of the integral on
that column).

+pg=0

Model formulation

p.



Water is incompressible

If you force a body of water to deform, the volume of that body of
water remains constant, i.e., water is an incompressible fluid.

= p, the density, is a constant, and from

gﬁ +pg=0
we get

p=—pgy +C,
so if p is measured relative to the pressure above the free upper
surface y =7,

p=pg(n—y)

Model formulation



Water accumulation

Consider a fixed volume V,

Model formulation

V={z1<z< 2, <x<xo,—H <y <n}

A
y

A

(x,1)
/ n

Z)

X

p.



Water enters V through x; face and leaves V through x; face.

nlx,1)
b

A

Z

X2

\J

X x

>

Rate of water accumulation in V is

d Z X2 n d X2
— dydxdz = Az— hd
dt/zl / /H” yoxaz Zdt/xl P

with Az = z, — 71, and h(x,t) = n+ H the height of water at
time t at spatial location x.

Model formulation
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Water flux

Net flux of water entering V through its faces x = x; and x = x is

b

n(x,t)

X2

X x

7

TN

There is no flux through y = —H and y =1, and no net flux
through z = z; and z = 2.

Model formulation

22N
- [/ / u dydz] = —Az[puhl?
z1 —H

X=X1 X=X2

p.

11



Conservation of mass

Of course, the mass must conserve in V, so the two expressions
must be equal, i.e.,

X2
d x
p /ph dx + [publ2 =0

X1

Model formulation
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Newton's second law for deformable media (Euler): rate of
increase of horizontal momentum (in the x direction) in V must
equal the sum of the net influx of momentum into the volume and
the net horizontal force acting on the column.

(Momentum: product of mass and velocity of an object).

Rate of increase of momentum

d Zy Xp M d X2
dt///pu dydxdz:Azdt/puhdx
H

Z1 X1 — X1

Model formulation
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Momentum flux

Net influx of momentum through faces x = x; and x = xy is

z N z 1N
//(pu)u dydz — //(pu)u dydz
1 —H =x1 1 —H

=-Az [pu2 h] 2

X X=X

There is no flux through y = —H and y = 1, and no net flux
through z = z; and z = .

Model formulation
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Forces acting on V

Ignore friction at y = —H. Then only contributions to horizontal
forces come from pressure at x = x; and x = x», so net horizontal
forces acting on V is

X2

z n n
//pdydz = - AZ/pg(n—y)dy
z1 —H —H

X1 X1

n :|X2
—Hl

X2

1,
5)’)

[—AZPg(ny -

X2

1
= [—2Angh2]

X1

Model formulation
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Conclusion from Newton's second law

X2

X

d 1

— h ’h+ Zpgh?| =

dt/pu dx + [pu —{—2pg ]Xl 0
X1

Model formulation
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The general model

Pressure magnitude:
p=rg(n—y)
Horizontal velocity:

X2

d x
dt/ph dx + [puh]l =0

X1

Free surface height:

d | 1,1
— /puh dx + |pulh+ Zpgh®*| =0
dt 2 ™

X1

Model formulation
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Case of smooth solutions



Suppose u and h are smooth (with continuous first order partial
derivatives), then (2) and (3) take a much simpler form,

2 (0h 0
/Xl <8t+8x(Uh)> dx =0

and (0 0 1
il (42 T k2 _
/X1 ( t(uh)—i— X(u h—|—2gh )) dx =0

Since the intervals of integration [x1, x2] are arbitrary, and that the
integrands are continuous, we have

and

Case of smooth solutions
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We write

and

as

and

Case of smooth solutions

oh 0
at(Uh)+ aX(u h+ 2gh )=0

1
(uh)¢ + (v®h + Egh2)x =0
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From (4),
he = —(uh)x = —(uxh + uhy)

Equation (5) can be rewritten as
2, 1 o
(5)<:>uth—{—uht—|—(u h+§gh )XZO

< urh — u(uxh + uhy) 4 2uuych + u’hy + ghhy =0

& urh — uuxh — Uy + 2uuych + VA + ghhy =0
& urh + uuch 4 ghhy =0

Therefore, provided h # 0, we get

he + (uh)x = 0 (62)
us + uuy + ghy =0 (6b)

which describes the evolution of u and h.

Case of smooth solutions

p.
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The model for smooth solutions

he + (uh)x = 0 (62)
ur + uuy +ghy =0 (6b)

If —oo < x < o0, then all we need is an initial condition, i.e.,
functions describing the initial state of v and h:

u(x,0) = up(x), h(x,0) = ho(x), —00 < X < 00.

If x has a boundary, then we need boundary conditions.

Case of smooth solutions
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Linearization



Suppose the bottom is flat (H is constant), and that the deviation
from the undisturbed depth H is small compared to H itself, then

h=(H+QO=HO+ S ~H  h=Co  ho=C

If |u| is also small, then wuy can be neglected. Then we can

linearize
he + (uh)x = 0 (62)
uy + uuy + ghy =0, (6b)
getting
Ce + Hue =0 (7a)

vt + 8¢ =0 (7b)

Linearization
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Differentiate (7b) with respect to x:
U + gCXX =0

and therefore,
Utx = _gCXX (8)

Differentiate (7a) with respect to t:
Cet + Huxe =0 (9)

If u has continuous second-order partial derivatives, then from
Clairaut’s theorem, u, = uy. Therefore, substituting (8) into (9),

Ctt - HGCXX =0

that is
Cet = C2<xx, c? = Hg

Linearization
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The one-dimensional wave equation (1)

The partial differential equation

Ctt = C2Cxx (10)

with ¢ = Hg, is the one-dimensional wave equation. Initial
conditions are given by

((x,0) = ho(x) — H = (o(x)
Ct(x,0) = —Huy(x,0) = —H[up(x)]x = vo(x)

Linearization
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The one-dimensional wave equation (2)

Things can also be expressed in terms of u. Using the same type of
simplification used before for (, we get

Ut = C2 Uxx (11)
with ¢® = Hg. Initial conditions are given by

u(x,0) = up(x)
u(x,0) = —gC(x,0) = —glho(x)]x = vo(x)

Linearization
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Traveling wave solutions



Traveling wave solutions

This was obtained by d'Alembert. Consider
_ 2
U = C Uxx (11)
Note that this can be written as
ot Ox ot Ox N
This implies that for any F, G, the sum
u(x, t) = F(x — ct) + G(x + ct)

satisfies (11).

Traveling wave solutions



Derivation of the solution

Introduce the new variables
a=x—ct and b=x+ct

We have

Ou_ou ou  ou__ du u
Ox Oda Ob ot 0a 0b

02 _(a a>2 Pu  , Pu  Fu

02" = \eatap) "~ 92 %0200 T 902

o2~ da  0b B 0a®>  0adb = 0Ob?

Traveling wave solutions
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So the equation

U = C2UXX (11)
is written )
o“u
4 =0
0adb
Integrate with respect to b:
du
9 £(a)

and thus

G(b)

x—ct)+G(x+ct)

u(x,t) = u(a, b) = / a)da+ G(b
= F(a)
F(

Traveling wave solutions

p.
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Set
u(x,0) = f(x)  u(x,0) = g(x)

Then d'Alembert’s formula gives

u(x,t) =

f(x—ct)+f(x+ct)+ 1 /X+Ctg(s)ds

2 2c

—ct

Traveling wave solutions
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Case of a Dirac delta initial condition

Suppose up(x) = 0 and vp(x) = d(x), for —oo < x < oo, with ¢
the Dirac delta,
if x=0
JOER SAR
0  otherwise.

Therefore,

1

xX+ct
o 1) = o /_Ct 5(z)dz = % (H(x+ ct) — H(x — ct)} |

with H the Heaviside function,

if
H(x) = 0 ifx<O
1 ifx>0.

Traveling wave solutions
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For simplicity, take ¢ = 1. This gives

u(x,t) = %{H(X +t)—H(x—1t)},

Traveling wave solutions
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t
x+t=0 t, x—t=0

>
x

A
H(x+t))
>

! -
—H(x—1t))

A H(x+t)—H(x—1t)
>

Traveling wave solutions



As t increases, we move further up in the top graph in (x, t)-space,
resulting in a wider and wider square pulse.

A

Traveling wave solutions
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