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Partial differential equations



Model formulation
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Spatial domain
We consider the motion of a body of water that is infinite in the z
direction, with or without boundary in the x direction, and the
vertical direction of gravity taken as the y direction.
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From now on, suppose z direction uniform (the same for all z), so
ignore z except for the sake of argument.
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I Water depth at rest, H, small compared to distance L0 over
which significant changes can occur in the x direction.

I Undisturbed water surface, y = 0.

I Moving upper free surface y = η, measured from y = 0.

I Sea floor y = −H.
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I u velocity in the x direction. Assume independent of depth y .

I ρ mass density of water.

I p(x , y , t) pressure in fluid at point (x , y) at time t. In water,
magnitude at any (x , y) is same in all directions.

Fluid motion independent of z , so

I u = u(x , t)

I η = η(x , t).
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Take a cylindrical water column, with base area A, between y1 and
y2 > y1.
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Force equilibrium in the y direction in this cylinder requires balance
of weight of water column and pressure differential between
bottom face y = y1 and top face y = y2.
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Weight of water column:

∫∫
A

y2∫
y1

(−ρg) dydxdz

Pressure differential:∫∫
A

(p(x , y2, t)− p(x , y1, t)) dxdz

So we must have∫∫
A

y2∫
y1

(−ρg) dydxdz =

∫∫
A

(p(x , y2, t)− p(x , y1, t)) dxdz
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∫∫
A

y2∫
y1

(−ρg) dydxdz =

∫∫
A

(p(x , y2, t)− p(x , y1, t)) dxdz

is equivalent to

∫∫
A

y2∫
y1

(
∂p

∂y
+ ρg

)
dydxdz = 0

This must be true for any water column, i.e., any A, y1, y2.
Therefore,

∂p

∂y
+ ρg = 0

(otherwise, we would be able to find a water column where the
integrand is positive, leading to a positive value of the integral on
that column).
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Water is incompressible

If you force a body of water to deform, the volume of that body of
water remains constant, i.e., water is an incompressible fluid.

⇒ ρ, the density, is a constant, and from

∂p

∂y
+ ρg = 0

we get
p = −ρgy + C ,

so if p is measured relative to the pressure above the free upper
surface y = η,

p = ρg(η − y)
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Water accumulation

Consider a fixed volume V ,

V = {z1 ≤ z ≤ z2, x1 ≤ x ≤ x2,−H ≤ y ≤ η}
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Water enters V through x1 face and leaves V through x2 face.
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Rate of water accumulation in V is

d

dt

∫ z2

z1

∫ x2

x1

∫ η

−H
ρ dydxdz = ∆z

d

dt

∫ x2

x1

ρh dx ,

with ∆z = z2 − z1, and h(x , t) = η + H the height of water at
time t at spatial location x .
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Water flux
Net flux of water entering V through its faces x = x1 and x = x2 is
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[∫ z2

z1

∫ η

−H
u dydz

]
x=x1

−
[∫ z2

z1

∫ η

−H
u dydz

]
x=x2

= −∆z [ρuh]x2
x1

There is no flux through y = −H and y = η, and no net flux
through z = z1 and z = z2.
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Conservation of mass

Of course, the mass must conserve in V , so the two expressions
must be equal, i.e.,

d

dt

x2∫
x1

ρh dx + [ρuh]x2
x1

= 0
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Newton’s second law for deformable media (Euler): rate of
increase of horizontal momentum (in the x direction) in V must
equal the sum of the net influx of momentum into the volume and
the net horizontal force acting on the column.

(Momentum: product of mass and velocity of an object).

Rate of increase of momentum

d

dt

z2∫
z1

x2∫
x1

η∫
−H

ρu dydxdz = ∆z
d

dt

x2∫
x1

ρuhdx
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Momentum flux

Net influx of momentum through faces x = x1 and x = x2 is z2∫
z1

η∫
−H

(ρu)u dydz


x=x1

−

 z2∫
z1

η∫
−H

(ρu)u dydz


x=x2

= −∆z
[
ρu2h

]x2

x1

There is no flux through y = −H and y = η, and no net flux
through z = z1 and z = z2.
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Forces acting on V

Ignore friction at y = −H. Then only contributions to horizontal
forces come from pressure at x = x1 and x = x2, so net horizontal
forces acting on V is z2∫

z1

η∫
−H

p dydz

x2

x1

= −

∆z

η∫
−H

ρg(η − y) dy

x2

x1

=

[
−∆zρg(ηy − 1

2
y2)

∣∣∣∣η
−H

]x2

x1

=

[
−1

2
∆zρgh2

]x2

x1
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Conclusion from Newton’s second law

d

dt

x2∫
x1

ρuh dx +

[
ρu2h +

1

2
ρgh2

]x2

x1

= 0
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The general model

Pressure magnitude:
p = ρg(η − y) (1)

Horizontal velocity:

d

dt

x2∫
x1

ρh dx + [ρuh]x2
x1

= 0 (2)

Free surface height:

d

dt

x2∫
x1

ρuh dx +

[
ρu2h +

1

2
ρgh2

]x2

x1

= 0 (3)
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Suppose u and h are smooth (with continuous first order partial
derivatives), then (2) and (3) take a much simpler form,∫ x2

x1

(
∂h

∂t
+

∂

∂x
(uh)

)
dx = 0

and ∫ x2

x1

(
∂

∂t
(uh) +

∂

∂x
(u2h +

1

2
gh2)

)
dx = 0

Since the intervals of integration [x1, x2] are arbitrary, and that the
integrands are continuous, we have

∂h

∂t
+

∂

∂x
(uh) = 0

and
∂

∂t
(uh) +

∂

∂x
(u2h +

1

2
gh2) = 0

Case of smooth solutions p. 19



We write
∂h

∂t
+

∂

∂x
(uh) = 0

and
∂

∂t
(uh) +

∂

∂x
(u2h +

1

2
gh2) = 0

as

ht + (uh)x = 0 (4)

and

(uh)t + (u2h +
1

2
gh2)x = 0 (5)
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From (4),
ht = −(uh)x = −(uxh + uhx)

Equation (5) can be rewritten as

(5) ⇔ uth + uht + (u2h +
1

2
gh2)x = 0

⇔ uth − u(uxh + uhx) + 2uuxh + u2hx + ghhx = 0

⇔ uth − uuxh −���u2hx + 2uuxh +���u2hx + ghhx = 0

⇔ uth + uuxh + ghhx = 0

Therefore, provided h 6= 0, we get

ht + (uh)x = 0 (6a)

ut + uux + ghx = 0 (6b)

which describes the evolution of u and h.
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The model for smooth solutions

ht + (uh)x = 0 (6a)

ut + uux + ghx = 0 (6b)

If −∞ < x < ∞, then all we need is an initial condition, i.e.,
functions describing the initial state of u and h:

u(x , 0) = u0(x), h(x , 0) = h0(x), −∞ < x < ∞.

If x has a boundary, then we need boundary conditions.
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Suppose the bottom is flat (H is constant), and that the deviation
from the undisturbed depth H is small compared to H itself, then

h = (H + ζ) = H(1 +
ζ

H
) ' H, ht = ζt , hx = ζx .

If |u| is also small, then uux can be neglected. Then we can
linearize

ht + (uh)x = 0 (6a)

ut + uux + ghx = 0, (6b)

getting

ζt + Hux = 0 (7a)

ut + gζx = 0 (7b)
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Differentiate (7b) with respect to x :

utx + gζxx = 0

and therefore,
utx = −gζxx (8)

Differentiate (7a) with respect to t:

ζtt + Huxt = 0 (9)

If u has continuous second-order partial derivatives, then from
Clairaut’s theorem, utx = uxt . Therefore, substituting (8) into (9),

ζtt − HGζxx = 0

that is
ζtt = c2ζxx , c2 = Hg
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The one-dimensional wave equation (1)

The partial differential equation

ζtt = c2ζxx (10)

with c2 = Hg , is the one-dimensional wave equation. Initial
conditions are given by

ζ(x , 0) = h0(x)− H ≡ ζ0(x)

ζt(x , 0) = −Hux(x , 0) = −H[u0(x)]x ≡ ν0(x)
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The one-dimensional wave equation (2)

Things can also be expressed in terms of u. Using the same type of
simplification used before for ζ, we get

utt = c2uxx (11)

with c2 = Hg . Initial conditions are given by

u(x , 0) = u0(x)

ut(x , 0) = −gζx(x , 0) = −g [h0(x)]x ≡ v0(x)
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Traveling wave solutions

This was obtained by d’Alembert. Consider

utt = c2uxx (11)

Note that this can be written as(
∂

∂t
− c

∂

∂x

) (
∂

∂t
+ c

∂

∂x

)
u = 0

This implies that for any F ,G , the sum

u(x , t) = F (x − ct) + G (x + ct)

satisfies (11).
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Derivation of the solution

Introduce the new variables

a = x − ct and b = x + ct

We have

∂u

∂x
=

∂u

∂a
+

∂u

∂b

∂u

∂t
= −c

∂u

∂a
+ c

∂u

∂b

∂2

∂x2
u =

(
∂

∂a
+

∂

∂b

)2

u =
∂2u

∂a2
+ 2

∂2u

∂a∂b
+

∂2u

∂b2

∂2

∂t2
u =

(
−c

∂

∂a
+ c

∂

∂b

)2

u = c2

(
∂2u

∂a2
− 2

∂2u

∂a∂b
+

∂2u

∂b2

)
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So the equation
utt = c2uxx (11)

is written

4
∂2u

∂a∂b
= 0

Integrate with respect to b:

∂u

∂a
= ξ(a)

and thus

u(x , t) = u(a, b) =

∫
ξ(a)da + G (b)

= F (a) + G (b)

= F (x − ct) + G (x + ct)
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Set
u(x , 0) = f (x) ut(x , 0) = g(x)

Then d’Alembert’s formula gives

u(x , t) =
f (x − ct) + f (x + ct)

2
+

1

2c

∫ x+ct

x−ct
g(s)ds
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Case of a Dirac delta initial condition

Suppose u0(x) = 0 and v0(x) = δ(x), for −∞ < x < ∞, with δ
the Dirac delta,

δ(x) =

{
∞ if x = 0

0 otherwise.

Therefore,

u(x , t) =
1

2c

∫ x+ct

x−ct
δ(z)dz =

1

2c
{H(x + ct)− H(x − ct)} ,

with H the Heaviside function,

H(x) =

{
0 if x < 0

1 if x > 0.
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For simplicity, take c = 1. This gives

u(x , t) =
1

2
{H(x + t)− H(x − t)} ,
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As t increases, we move further up in the top graph in (x , t)-space,
resulting in a wider and wider square pulse.
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