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Regression

See Dr. Berry’s notes.
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Discrete-time systems

So far, we have seen continuous-time models, where t ∈ R+.
Another way to model natural phenomena is by using a
discrete-time formalism, that is, to consider equations of the form

xt+1 = f (xt),

where t ∈ N or Z, that is, t takes values in a discrete valued
(countable) set.

Time could for example be days, years, etc.
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Some mathematical analysis

Suppose we have a system in the form

xt+1 = f (xt),

with initial condition given for t = 0 by x0. Then,

x1 = f (x0)

x2 = f (x1) = f (f (x0))
∆
= f 2(x0)

...

xk = f k(x0).

The f k = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

are called the iterates of f .
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Fixed points

Definition 1 (Fixed point)

Let f be a function. A point p such that f (p) = p is called a fixed
point of f .

Theorem 2
Consider the closed interval I = [a, b]. If f : I → I is continuous,
then f has a fixed point in I .

Theorem 3
Let I be a closed interval and f : I → R be a continuous function.
If f (I ) ⊃ I , then f has a fixed point in I .
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Periodic points

Definition 4 (Periodic point)

Let f be a function. If there exists a point p and an integer n such
that

f n(p) = p, but f k(p) 6= p for k < n,

then p is a periodic point of f with (least) period n (or a
n-periodic point of f ).

Thus, p is a n-periodic point of f iff p is a 1-periodic point of f n.
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Stability of fixed points, of periodic points

Theorem 5
Let f be a continuously differentiable function (that is,
differentiable with continuous derivative, or C 1), and p be a fixed
point of f .

1. If |f ′(p)| < 1, then there is an open interval I 3 p such that
limk→∞ f k(x) = p for all x ∈ I.

2. If |f ′(p)| > 1, then there is an open interval I 3 p such that if
x ∈ I, x 6= p, then there exists k such that f k(x) 6∈ I.

Definition 6
Suppose that p is a n-periodic point of f , with f ∈ C 1.

I If | (f n)′ (p)| < 1, then p is an attracting periodic point of f .

I If | (f n)′ (p)| > 1, then p is an repelling periodic point of f .

Discrete time systems p. 10



Parametrized families of functions

Consider a system
xt+1 = f (xt)

which depends on a parameter r . We write

xt+1 = fr (xt).

The function fr is called a parametrized family of functions.
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Bifurcations

Definition 7 (Bifurcation)

Let fµ be a parametrized family of functions. Then there is a
bifurcation at µ = µ0 (or µ0 is a bifurcation point) if there exists
ε > 0 such that, if µ0 − ε < a < µ0 and µ0 < b < µ0 + ε, then the
dynamics of fa(x) are “different” from the dynamics of fb(x).

An example of “different” would be that fa has a fixed point (that
is, a 1-periodic point) and fb has a 2-periodic point.
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Steps of the analysis

1. Assess well-posedness of the system:

1.1 Determine whether solutions exist and are unique.
1.2 Determine whether solutions remain in a realistic region and

are bounded.

2. Find the equilibria of the system.

3. Determine the local stability properties of the equilibria.

4. Determine the global stability properties of the equilibria
(much harder, often not possible).
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Existence and uniqueness of solutions

Theorem 8 (Cauchy-Lipschitz)

Consider the equation x ′ = f (x), with x ∈ Rn, and suppose that
f ∈ C 1. Then there exists a unique solution of x ′ = f (x) such that
x(t0) = x0, where t0 ∈ R and x0 ∈ Rn, defined on the largest
interval J 3 t0 on which f ∈ C 1.
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Equilibria

Definition 9 (Equilibrium point)

Consider a differential equation

x ′ = f (x), (1)

with x ∈ Rn and f : Rn → Rn. Then x∗ is an equilibrium
(solution) of (1) if f (x∗) = 0.
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Linearization

Consider x∗ an equilibrium of (1). For simplicity, assume here that
x∗ = 0 (it is always possible to do this, by considering y = x − x∗).

Taylor’s theorem:

f (x) = Df (0)x +
1

2
D2f (0)(x , x) + · · · ,

where Df (0) is the Jacobian matrix of f evaluated at 0.
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What is stability?

Definition 10 (Stable and unstable EP)

Let φt be the flow of (1), assumed to be defined for all t ∈ R. An
equilibrium x∗ of (1) is (locally) stable if for all ε > 0, there exists
δ > 0 such that for all x ∈ Nδ(x

∗) and t ≥ 0, there holds

φt(x) ∈ Nε(x
∗).

The equilibrium point is unstable if it is not stable.

Definition 11 (Asymptotically stable EP)

Let φt be the flow of (1) is (locally) asymptotically stable if there
exists δ > 0 such that for all x ∈ Nδ(x

∗) and t ≥ 0, there holds

lim
t→∞

φt(x) = x∗.

Clearly, Asymtotically Stable ⇒ Stable.
Systems of ODEs p. 18



Hyperbolic EPs, sinks, sources

Definition 12 (Sink)

An equilibrium point x∗ of (1) is hyperbolic if none of the
eigenvalues of the matrix Df (x∗) (Jacobian matrix of f evaluated
at x∗) have zero real parts.

Definition 13 (Sink)

An equilibrium point x∗ of (1) is a sink if all the eigenvalues of the
matrix Df (x∗) have negative real parts.

Definition 14 (Source)

An equilibrium point x∗ of (1) is a source if all the eigenvalues of
the matrix Df (x∗) have positive real parts.
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Theorem 15
If x∗ is a sink of (1) and for all the eigenvalues λj of the matrix
Df (x∗)

<(λj) < −α < 0,

where <(λ) denotes the real part of λ, then for a given ε > 0,
there exists δ > 0 such that for all x ∈ Nδ(x

∗), the flow φt(x) of
(1) satisfies

‖φt(x)− x∗‖ ≤ εe−αt

for all t ≥ 0.

Theorem 16
If x∗ is a stable equilibrium point of (1), no eigenvalue of Df (x∗)
has positive real part.
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Phase plane analysis

I In R2, nullclines are curves.

I Nullclines are the level set 0 of the vector field. If we have

x ′1 = f1(x1, x2)

x ′2 = f2(x1, x2)

then the nullclines for x1 are the curves defined by

{(x1, x2) ∈ R2 : f1(x1, x2) = 0}

those for x2 are

{(x1, x2) ∈ R2 : f2(x1, x2) = 0}

I On the nullcline associated to one state variable, this state
variable has zero derivative.

I Equilibria lie at the intersections of nullclines for both state
variables (in R2).
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Linear ODEs

Definition 17 (Linear ODE)

A linear ODE is a differential equation taking the form

d

dt
x = A(t)x + B(t), (LNH)

where A(t) ∈Mn(R) with continuous entries, B(t) ∈ Rn with real
valued, continuous coefficients, and x ∈ Rn. The associated IVP
takes the form

d

dt
x = A(t)x + B(t)

x(t0) = x0.
(2)
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Types of systems

I x ′ = A(t)x + B(t) is linear nonautonomous (A(t) depends on
t) nonhomogeneous (also called affine system).

I x ′ = A(t)x is linear nonautonomous homogeneous.

I x ′ = Ax + B, that is, A(t) ≡ A and B(t) ≡ B, is linear
autonomous nonhomogeneous (or affine autonomous).

I x ′ = Ax is linear autonomous homogeneous.
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Existence and uniqueness of solutions

Theorem 18 (Existence and Uniqueness)

Solutions to (2) exist and are unique on the whole interval over
which A and B are continuous.
In particular, if A,B are constant, then solutions exist on R.
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Autonomous linear systems

Consider the autonomous affine system

d

dt
x = Ax + B, (A)

and the associated homogeneous autonomous system

d

dt
x = Ax . (L)
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Exponential of a matrix

Definition 19 (Matrix exponential)

Let A ∈Mn(K) with K = R or C. The exponential of A, denoted
eAt , is a matrix in Mn(K), defined by

eAt = I +
∞∑

k=1

tk

k!
Ak ,

where I is the identity matrix in Mn(K).
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Properties of the matrix exponential

I eAt1eAt2 = eA(t1+t2) for all t1, t2 ∈ R. 1

I AeAt = eAtA for all t ∈ R.

I (eAt)−1 = e−At for all t ∈ R.

I The unique solution φ of (L) with φ(t0) = x0 is given by

φ(t) = eA(t−t0)x0.
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Computing the matrix exponential

Let P be a nonsingular matrix in Mn(R). We transform the IVP

d

dt
x = Ax

x(t0) = x0

(L IVP)

using the transformation x = Py or y = P−1x .

The dynamics of y is

y ′ = (P−1x)′

= P−1x ′

= P−1Ax

= P−1APy

The initial condition is y0 = P−1x0.
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We have thus transformed IVP (L IVP) into

d

dt
y = P−1APy

y(t0) = P−1x0

(L IVP y)

From the earlier result, we then know that the solution of
(L IVP y) is given by

ψ(t) = eP−1AP(t−t0)P−1x0,

and since x = Py , the solution to (L IVP) is given by

φ(t) = PeP−1AP(t−t0)P−1x0.

So everything depends on P−1AP.
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The cases

I P−1AP is diagonal, the solution to (L IVP) is given by

φ(t) = P

eλ1t 0
. . .

0 eλnt

 P−1x0.

I P−1AP is not diagonal, then use Jordan form (slightly more
complicated).
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Theorem 20
For all (t0, x0) ∈ R× Rn, there is a unique solution x(t) to
(L IVP) defined for all t ∈ R. Each coordinate function of x(t) is a
linear combination of functions of the form

tkeαt cos(βt) and tkeαt sin(βt)

where α+ iβ is an eigenvalue of A and k is less than the algebraic
multiplicity of the eigenvalue.
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Generalized eigenvectors, nilpotent matrix

Definition 21 (Generalized eigenvectors)

Let A ∈Mr (R). Suppose λ is an eigenvalue of A with multiplicity
m ≤ n. Then, for k = 1, . . . ,m, any nonzero solution v of

(A− λI)kv = 0

is called a generalized eigenvector of A.

Definition 22 (Nilpotent matrix)

Let A ∈Mn(R). A is nilpotent (of order k) if Aj 6= 0 for
j = 1, . . . , k − 1, and Ak = 0.
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Jordan normal form

Theorem 23 (Jordan normal form)

Let A ∈Mn(R) have eigenvalues λ1, . . . , λn, repeated according
to their multiplicities.

I Then there exists a basis of generalized eigenvectors for Rn.

I And if {v1, . . . , vn} is any basis of generalized eigenvectors for
Rn, then the matrix P = [v1 · · · vn] is invertible, and A can be
written as

A = S + N,

where
P−1SP = diag(λj),

the matrix N = A− S is nilpotent of order k ≤ n, and S and
N commute, i.e., SN = NS.
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Theorem 24
Under conditions of the Jordan normal form Theorem, the linear
system x ′ = Ax with initial condition x(0) = x0, has solution

x(t) = Pdiag
(
eλj t

)
P−1

(
I + Nt + · · · t

k

k!
Nk

)
x0.

The result is particularly easy to apply in the following case.

Theorem 25 (Case of an eigenvalue of multiplicity n)

Suppose that λ is an eigenvalue of multiplicity n of A ∈Mn(R).
Then S = diag(λ), and the solution of x ′ = Ax with initial value
x0 is given by

x(t) = eλt

(
I + Nt + · · · t

k

k!
Nk

)
x0.

In the simplified case, we do not need the matrix P (the basis of
generalized eigenvectors).
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A variation of constants formula

Theorem 26 (Variation of constants formula)

Consider the IVP

x ′ = Ax + B(t) (3a)

x(t0) = x0, (3b)

where B : R → Rn a smooth function on R, and let eA(t−t0) be
matrix exponential associated to the homogeneous system
x ′ = Ax. Then the solution φ of (3) is given by

φ(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)B(s)ds. (4)
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Checking that a given function is solution to a PDE

Give a PDE, to check that a given function is solution to the PDE,
you need to check that it satisfies the PDE.

For example, consider the wave equation

utt = c2uxx (5)

To check that

ξ(x , t) = F (x − ct) + G (x + ct)

satisfies (24), we need to compute ξtt , ξxx , and verify that

ξtt = c2ξxx
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By the chain rule, we have

∂

∂t
ξ(x , t) = −cF ′(x − ct) + cG ′(x + ct)

and thus

∂2

∂t2
ξ(x , t) = c2F ′′(x − ct) + c2G ′′(x + ct)

Also, by the chain rule,

∂

∂x
ξ(x , t) = F ′(x − ct) + G ′(x + ct)

and thus
∂2

∂t2
ξ(x , t) = F ′′(x − ct) + G ′(x + ct)
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So we have

ξtt = c2F ′′(x − ct) + c2G ′′(x + ct)

= c2(F ′′(x − ct) + G ′′(x + ct))

= c2ξxx

which implies that

ξ(x , t) = F (x − ct) + G (x + ct)

satisfies (24).
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Probability, random variable

A probability is a function P, with values in [0, 1].

A random variable X is a variable taking random values. If the
values are in a continuous space (R,Rn, etc.), then the variable is
continuous. Otherwise (N,Z, etc.), the variable is discrete.
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Probability density function
Suppose T is a continuous random variable. Then it has a
continuous probability density function, f .

I f ≥ 0,
I

∫ +∞
−∞ f (s)ds = 1.

I P (a ≤ T ≤ b) =
∫ b
a f (t)dt.

t

f(t)

a b
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Cumulative distribution function
The cumulative distribution function (c.d.f.) is a function F (t)
that characterizes the distribution of T , and defined by

F (s) = P (T ≤ s) =

∫ s

−∞
f (x)dx .

t

f(t)

s
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Properties of the c.d.f.

I Since f is a nonnegative function, F is nondecreasing.

I Since f is a probability density function,
∫ +∞
−∞ f (s)ds = 1, and

thus limt→∞ F (t) = 1.

t

f(t)

F(t)

Some elementary probability p. 45



Mean value

For a continuous random variable T with probability density
function f , the mean value of T , denoted T̄ or E (T ), is given by

E (T ) =

∫ +∞

−∞
tf (t)dt.
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Survival function

Another characterization of the distribution of the random variable
T is through the survival (or sojourn) function.

The survival function of state S1 is given by

S(t) = 1− F (t) = P (T > t) (6)

This gives a description of the sojourn time of a system in a
particular state (the time spent in the state).

S is a nonincreasing function (since S = 1− F with F a c.d.f.),
and S(0) = 1 (since T is a positive random variable).
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The average sojourn time τ in state S1 is given by

τ = E (T ) =

∫ ∞

0
tf (t)dt

Assuming that limt→∞ tS(t) = 0 (which is verified for most
probability distributions),

τ =

∫ ∞

0
S(t)dt
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We conduct an experiment with a set of r outcomes,

S = {S1, . . . ,Sr}.

The experiment is repeated n times (with n large, potentially
infinite).

The system has no memory: the next state depends only on the
present state.

The probability of Sj occurring on the next step, given that Si

occurred on the last step, is

pij = p(Sj |Si ).

Markov chains p. 50



Markov chain

Definition 27
An experiment with finite number of possible outcomes S1, . . . ,Sr

is repeated. The sequence of outcomes is a Markov chain if there
is a set of r2 numbers {pij} such that the conditional probability of
outcome Sj on any experiment given outcome Si on the previous
experiment is pij , i.e., for 1 ≤ i , j ≤ r , n = 1, . . .,

pij = Pr(Sj on experiment n + 1|Si on experiment n).

The outcomes S1, . . . ,Sr are the states, and the pij are the
transition probabilities. The matrix P = [pij ] is the transition
matrix.
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Transition matrix
The matrix

P =


p11 p12 · · · p1r

p21 p22 · · · p2r

pr1 pr2 · · · prr


has

I nonnegative entries, pij ≥ 0

I entries less than 1, pij ≤ 1

I row sum 1, which we write

r∑
j=1

pij = 1, i = 1, . . . , r

or, using the notation 1lT = (1, . . . , 1),

P1l = 1l
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Repetition of the process

Let pi (n) be the probability that the state Si will occur on the nth

repetition of the experiment, 1 ≤ i ≤ r . Then

p(n + 1) = p(n)P, n = 1, 2, 3, . . . (7)

where p(n) = (p1(n), p2(n), . . . , pr (n)) is a (row) probability vector
and P = (pij) is a r × r transition matrix,

P =


p11 p12 · · · p1r

p21 p22 · · · p2r

pr1 pr2 · · · prr


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Stochastic matrices

Definition 28 (Stochastic matrix)

The nonnegative r × r matrix M is stochastic if
∑r

j=1 aij = 1 for
all i = 1, 2, . . . , r .

Theorem 29
Let M be a stochastic matrix M. Then all eigenvalues λ of M are
such that |λ| ≤ 1. Furthermore, λ = 1 is an eigenvalue of M.

To see that 1 is an eigenvalue, write the definition of a stochastic
matrix, i.e., M has row sums 1. In vector form, M1l = 1l. Now
remember that λ is an eigenvalue of M, with associated
eigenvector v , iff Mv = λv . So, in the expression M1l = 1l, we read
an eigenvector, 1l, and an eigenvalue, 1.
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Long “time” behavior

Let p(0) be the initial distribution (row) vector. Then

p(1) = p(0)P

p(2) = p(1)P

= (p(0)P)P

= p(0)P2

Iterating, we get that for any n,

p(n) = p(0)Pn

Therefore,

lim
n→+∞

p(n) = lim
n→+∞

p(0)Pn = p(0) lim
n→+∞

Pn
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Additional properties of stochastic matrices

Theorem 30
If M,N are stochastic matrices, then MN is a stochastic matrix.

Theorem 31
If M is a stochastic matrix, then for any k ∈ N, Mk is a stochastic
matrix.
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Regular Markov chain

Definition 32 (Regular Markov chain)

A regular Markov chain is one in which Pk is positive for some
integer k > 0, i.e., Pk has only positive entries, no zero entries.

Definition 33
A nonnegative matrix M is primitive if, and only if, there is an
integer k > 0 such that Mk is positive.

Theorem 34
A Markov chain is regular if, and only if, the transition matrix P is
primitive.
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Important result for regular Markov chains

Theorem 35
If P is the transition matrix of a regular Markov chain, then

1. the powers Pn approach a stochastic matrix W ,

2. each row of W is the same (row) vector w = (w1, . . . ,wr ),

3. the components of w are positive.

So if the Markov chain is regular,

lim
n→+∞

p(n) = p(0) lim
n→+∞

Pn = p(0)W
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Left and right eigenvectors

Let M be an r × r matrix, u, v be two column vectors, λ ∈ R.
Then, if

Mu = λu,

u is the (right) eigenvector corresponding to λ, and if

vTM = λvT

then v is the left eigenvector corresponding to λ. Note that to a
given eigenvalue there corresponds one left and one right
eigenvector.
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The vector w is in fact the left eigenvector corresponding to the
eigenvalue 1 of P. (We already know that the (right) eigenvector
corresponding to 1 is 1l.)

To see this, remark that, if p(n) converges, then p(n + 1) = p(n)P,
so w is a fixed point of the system. We thus write

wP = w

and solve for w , which amounts to finding w as the left
eigenvector corresponding to the eigenvalue 1.

Alternatively, we can find w as the (right) eigenvector associated
to the eigenvalue 1 for the transpose of P,

PTwT = wT
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Now remember that when you compute an eigenvector, you get a
result that is the eigenvector, to a multiple.

So the expression you obtain for w might have to be normalized
(you want a probability vector). Once you obtain w , check that
the norm ‖w‖ defined by

‖w‖ = w1 + · · ·+ wr

is equal to one. If not, use

w

‖w‖
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Absorbing states, absorbing chains

Definition 36
A state Si in a Markov chain is absorbing if whenever it occurs on
the nth generation of the experiment, it then occurs on every
subsequent step. In other words, Si is absorbing if pii = 1 and
pij = 0 for i 6= j .

Definition 37
A Markov chain is said to be absorbing if it has at least one
absorbing state, and if from every state it is possible to go to an
absorbing state.

In an absorbing Markov chain, a state that is not absorbing is
called transient.
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Some questions on absorbing chains

Suppose we have a chain like the following:

1 2 3 4

1. Does the process eventually reach an absorbing state?

2. Average number of times spent in a transient state, if starting
in a transient state?

3. Average number of steps before entering an absorbing state?

4. Probability of being absorbed by a given absorbing state,
when there are more than one, when starting in a given
transient state?
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Reaching an absorbing state

Answer to question 1:

Theorem 38
In an absorbing Markov chain, the probability of reaching an
absorbing state is 1.
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Standard form of the transition matrix

For an absorbing chain with k absorbing states and r − k transient
states, the transition matrix can be written as

P =

(
Ik 0
R Q

)
with following meaning,

Absorbing states Transient states
Absorbing states Ik 0
Transient states R Q

with Ik the k × k identity matrix, 0 an k × (r − k) matrix of zeros,
R an (r − k)× k matrix and Q an (r − k)× (r − k) matrix.
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The matrix Ir−k − Q is invertible. Let

I N = (Ir−k − Q)−1 be the fundamental matrix of the Markov
chain

I Ti be the sum of the entries on row i of N

I B = NR.

Answers to our remaining questions:

2. Nij is the average number of times the process is in the jth
transient state if it starts in the ith transient state.

3. Ti is the average number of steps before the process enters an
absorbing state if it starts in the ith transient state.

4. Bij is the probability of eventually entering the jth absorbing
state if the process starts in the ith transient state.

Markov chains p. 68



Modelling topics

Single population dynamics and the logistic situation

Time of residence in a state – Exponential distribution

Epidemic models

The chemostat

Traffic flow

Shallow water waves

A simple genetic model
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The US population from 1790 to 1910

Year Population
(millions)

1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192

Year Population
(millions)

1860 31.443
1870 38.558
1880 50.156
1890 62.948
1900 75.995
1910 91.972
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First idea

The curve looks like a piece of a parabola. So let us fit a curve of
the form

P(t) = a + bt + ct2.

To do this, we want to minimize

S =
13∑

k=1

(P(tk)− Pk)2 ,

where tk are the known dates, Pk are the known populations, and
P(tk) = a + btk + ct2

k .
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Our first guess, in pictures
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which turned out to work quite well

How does our formula do for present times?

f(2006)
ans = 301468584.066013

301,468,584, compared to the 298,444,215 July 2006 estimate,
overestimates the population by 3,024,369, a relative error of
approximately 1%.
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The logistic equation

The logistic curve is the solution to the ordinary differential
equation

N ′ = rN

(
1− N

K

)
,

which is called the logistic equation. r is the intrinsic growth rate,
K is the carrying capacity.

This equation was introduced by Pierre-François Verhulst
(1804-1849), in 1844.
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Reinterpreting the logistic equation

The equation
N ′ = bN − dN − cN2

is rewritten as
N ′ = (b − d)N − cN2.

I b − d represents the rate at which the population increases
(or decreases) in the absence of competition. It is called the
intrinsic growth rate of the population.

I c is the rate of intraspecific competition. The prefix intra
refers to the fact that the competition is occurring between
members of the same species, that is, within the species.
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Equivalent equations

N ′ = (b − d)N − cN2

=
(
(b − d)− cN

)
N

=
(
r − r

r
cN

)
N, with r = b − d

= rN
(
1− c

r
N

)
= rN

(
1− N

K

)
,

with
c

r
=

1

K
,

that is, K = r/c .
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Studying the logistic equation qualitatively

We study

N ′ = rN

(
1− N

K

)
. (ODE1)

For this, write

f (N) = rN

(
1− N

K

)
.

Consider the initial value problem (IVP)

N ′ = f (N), N(0) = N0 > 0. (IVP1)

I f is C 1 (differentiable with continuous derivative) so solutions
to (IVP1) exist and are unique.
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Equilibria of (ODE1) are points such that f (N) = 0 (so that
N ′ = f (N) = 0, meaning N does not vary). So we solve f (N) = 0
for N. We find two points:

I N = 0

I N = K .

By uniqueness of solutions to (IVP1), solutions cannot cross the
lines N(t) = 0 and N(t) = K .
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There are several cases.

I N = 0 for some t, then N(t) = 0 for all t ≥ 0, by uniqueness
of solutions.

I N ∈ (0,K ), then rN > 0 and N/K < 1 so 1− N/K > 0,
which implies that f (N) > 0. As a consequence, N(t)
increases if N ∈ (0,K ).

I N = K , then rN > 0 but N/K = 1 so 1− N/K = 0, which
implies that f (N) = 0. As a consequence, N(t) = K for all
t ≥ 0, by uniqueness of solutions.

I N > K , the rN > 0 and N/K > 1, implying that
1− N/K < 0 and in turn, f (N) < 0. As a consequence, N(t)
decreases if N ∈ (K ,+∞).
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Therefore,

Theorem 39
Suppose that N0 > 0. Then the solution N(t) of (IVP1) is such
that

lim
t→∞

N(t) = K ,

so that K is the number of individuals that the environment can
support, the carrying capacity of the environment.
If N0 = 0, then N(t) = 0 for all t ≥ 0.
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The delayed logistic equation

Consider the equation as

N ′

N
= (b − d)− cN,

that is, the per capita rate of growth of the population depends on
the net growth rate b − d , and some density dependent inhibition
cN (resulting of competition).
Suppose that instead of instantaneous inhibition, there is some
delay τ between the time the inhibiting event takes place and the
moment where it affects the growth rate. (For example, two
individuals fight for food, and one later dies of the injuries
sustained when fighting).
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The delay logistic equation

In the of a time τ between inhibiting event and inhibition, the
equation would be written as

N ′

N
= (b − d)− cN(t − τ).

Using the change of variables introduced earlier, this is written

N ′(t) = rN(t)

(
1− N(t − τ)

K

)
. (DDE1)

Such an equation is called a delay differential equation. It is much
more complicated to study than (ODE1). In fact, some things
remain unknown about (DDE1).
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Delayed initial value problem

The IVP takes the form

N ′(t) = rN(t)

(
1− N(t − τ)

K

)
,

N(t) = φ(t) for t ∈ [−τ, 0],

(IVP2)

where φ(t) is some continuous function. Hence, initial conditions
(called initial data in this case) must be specific on an interval,
instead of being specified at a point, to guarantee existence and
uniqueness of solutions.
We will not learn how to study this type of equation (this is
graduate level mathematics). I will give a few results.
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To find equilibria, remark that delay should not play a role, since N
should be constant. Thus, equilibria are found by considering the
equation with no delay, which is (ODE1).

Theorem 40
Suppose that rτ < 22/7. Then all solutions of (IVP2) with
positive initial data φ(t) tend to K. If rτ > π/2, then K is an
unstable equilibrium and all solutions of (IVP2) with positive
initial data φ(t) on [−τ, 0] are oscillatory.

Note that there is a gray zone between 22/7 and π/2.. The first
part of the theorem was proved in 1945 by Wright. Although there
is very strong numerical evidence that this is in fact true up to
π/2, nobody has yet managed to prove it.
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The logistic map

The logistic map is, for t ≥ 0,

Nt+1 = rNt

(
1− Nt

K

)
. (DT1)

To transform this into an initial value problem, we need to provide
an initial condition N0 ≥ 0 for t = 0.
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Consider the simplified version (??),

xt+1 = rxt(1− xt)
∆
= fr (xt).

Are solutions well defined? Suppose x0 ∈ [0, 1], do we stay in
[0, 1]? fr is continuous on [0, 1], so it has a extrema on [0, 1]. We
have

f ′r (x) = r − 2rx = r(1− 2x),

which implies that fr increases for x < 1/2 and decreases for
x > 1/2, reaching a maximum at x = 1/2.

fr (0) = fr (1) = 0 are the minimum values, and f (1/2) = r/4 is the
maximum. Thus, if we want xt+1 ∈ [0, 1] for xt ∈ [0, 1], we need
to consider r ≤ 4.
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I Note that if x0 = 0, then xt = 0 for all t ≥ 1.

I Similarly, if x0 = 1, then x1 = 0, and thus xt = 0 for all t ≥ 1.

I This is true for all t: if there exists tk such that xtk = 1, then
xt = 0 for all t ≥ tk .

I This last case might occur if r = 4, as we have seen.

I Also, if r = 0 then xt = 0 for all t.

For these reasons, we generally consider

x ∈ (0, 1)

and
r ∈ (0, 4).
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Fixed points: existence

Fixed points of (??) satisfy x = rx(1− x), giving:

I x = 0;

I 1 = r(1− x), that is, p
∆
=

r − 1

r
.

Note that limr→0+ p = 1− limr→0+ 1/r = −∞, ∂
∂r p = 1/r2 > 0

(so p is an increasing function of r), p = 0 ⇔ r = 1 and
limr→∞ p = 1. So we come to this first conclusion:

I 0 always is a fixed point of fr .

I If 0 < r < 1, then p tales negative values so is not relevant.

I If 1 < r < 4, then p exists.
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Stability of the fixed points
Stability of the fixed points is determined by the (absolute) value
f ′r at these fixed points. We have

|f ′r (0)| = r ,

and

|f ′r (p)| =
∣∣∣∣r − 2r

r − 1

r

∣∣∣∣
= |r − 2(r − 1)|
= |2− r |

Therefore, we have

I if 0 < r < 1, then the fixed point x = p does not exist and
x = 0 is attracting,

I if 1 < r < 3, then x = 0 is repelling, and x = p is attracting,

I if r > 3, then x = 0 and x = p are repelling.
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Another bifurcation
Thus the points r = 1 and r = 3 are bifurcation points. To see
what happens when r > 3, we need to look for period 2 points.

f 2
r (x) = fr (fr (x))

= rfr (x)(1− fr (x))

= r2x(1− x)(1− rx(1− x)). (8)

0 and p are points of period 2, since a fixed point x∗ of f satisfies
f (x∗) = x∗, and so, f 2(x∗) = f (f (x∗)) = f (x∗) = x∗.
This helps localizing the other periodic points. Writing the fixed
point equation as

Q(x)
∆
= f 2

r (x)− x = 0,

we see that, since 0 and p are fixed points of f 2
µ , they are roots of

Q(x). Therefore, Q can be factorized as

Q(x) = x(x − p)(−r3x2 + Bx + C ),
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Substitute the value (r − 1)/r for p in Q, develop Q and (8) and
equate coefficients of like powers gives

Q(x) = x

(
x − r − 1

r

) (
−r3x2 + r2(r + 1)x − r(r + 1)

)
. (9)

We already know that x = 0 and x = p are roots of (9). So we
search for roots of

R(x) := −r3x2 + r2(r + 1)x − r(r + 1).

Discriminant is

∆ = r4(r + 1)2 − 4r4(r + 1)

= r4(r + 1)(r + 1− 4)

= r4(r + 1)(r − 3).

Therefore, R has distinct real roots if r > 3. Remark that for
r = 3, the (double) root is p = 2/3. For r > 3 but very close to 3,
it follows from the continuity of R that the roots are close to 2/3.
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We use Descartes’ rule of signs.

I R has signed coefficients −+−, so 2 sign changes imlying 0
or 2 positive real roots.

I R(−x) has signed coefficients −−−, so no negative real
roots.

I Since ∆ > 0, the roots are real, and thus it follows that both
roots are positive.

To show that the roots are also smaller than 1, consider the change
of variables z = x − 1. The polynomial R is transformed into

R2(z) = −r3(z + 1)2 + r2(r + 1)(z + 1)− r(r + 1)

= −r3z2 + r2(1− r)z − r .

For r > 1, the signed coefficients are −−−, so R2 has no root
z > 0, implying in turn that R has no root x > 1.
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Summing up

I If 0 < r < 1, then x = 0 is attracting, p does not exist and
there are no period 2 points.

I At r = 1, there is a bifurcation (called a transcritical
bifurcation).

I If 1 < r < 3, then x = 0 is repelling, p is attracting, and there
are no period 2 points.

I At r = 3, there is another bifurcation (called a
period-doubling bifurcation).

I For r > 3, both x = 0 and x = p are repelling, and there is a
period 2 point.
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This process continues
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The period-doubling cascade to chaos

The logistic map undergoes a sequence of period doubling
bifurcations, called the period-doubling cascade, as r increases
from 3 to 4.

I Every successive bifurcation leads to a doubling of the period.

I The bifurcation points form a sequence, {rn}, that has the
property that

lim n →∞ rn − rn−1

rn+1 − rn

exists and is a constant, called the Feigenbaum constant,
equal to 4.669202. . .

I This constant has been shown to exist in many of the maps
that undergo the same type of cascade of period doubling
bifurcations.

Single population dynamics and the logistic situation p. 106



3.54 3.545 3.55 3.555 3.56 3.565 3.57 3.575 3.58
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Bifurcation diagram for the discrete logistic map

r

x *

Single population dynamics and the logistic situation p. 107



Chaos

After a certain value of r , there are periodic points with all
periods. In particular, there are periodic points of period 3.

By a theorem (called the Sarkovskii theorem), the presence of
period 3 points implies the presence of points of all periods.

At this point, the system is said to be in a chaotic regime, or
chaotic.
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The exponential distribution

The random variable T has an exponential distribution if its
probability density function takes the form

f (t) =

{
0 if t < 0,

θe−θt if t ≥ 0,
(10)

with θ > 0. Then the survival function for state S1 is of the form
S(t) = e−θt , for t ≥ 0, and the average sojourn time in state S1 is

τ =

∫ ∞

0
e−θtdt =

1

θ
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A model for a cohort with one cause of death

We consider a population consisting of individuals born at the
same time (a cohort), for example, the same year.

We suppose

I At time t = 0, there are initially N0 > 0 individuals.

I All causes of death are compounded together.

I The time until death, for a given individual, is a random
variable T , with continuous probability density distribution
f (t) and survival function P(t).
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The model

Denote N(t) the population at time t ≥ 0. Then

N(t) = N0P(t). (11)

I N0P(t) gives the proportion of N0, the initial population, that
is still alive at time t.
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Case where T is exponentially distributed

Suppose that T has an exponential distribution with mean 1/d (or
parameter d), f (t) = de−dt . Then the survival function is
P(t) = e−dt , and (11) takes the form

N(t) = N0e
−dt . (12)

Now note that

d

dt
N(t) = −dN0e

−dt

= −dN(t),

with N(0) = N0.

⇒ The ODE N ′ = −dN makes the assumption that the life
expectancy at birth is exponentially distributed.

Time of residence in a state – Exponential distribution p. 114



Time of residence in a state – Exponential distribution
A cohort model
Sojourn times in an SIS disease transmission model

Time of residence in a state – Exponential distribution p. 115



An SIS model

Consider a disease that confers no immunity. In this case,
individuals are either

I susceptible to the disease, with the number of such individuals
at time t denoted by S(t),

I or infected by the disease (and are also infective in the sense
that they propagate the disease), with the number of such
individuals at time t denoted by I (t).

Assumptions:

I Individuals typically recover from the disease.

I The disease does not confer immunity.

I There is no birth or death.

I Infection is of standard incidence type
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A flow diagram for the model

This is the flow diagram of our model:

S I


SI
N

Pt 
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Reducing the dimension of the problem

To formulate our model, we would in principle require an equation
for S and an equation for I .

But we have

S(t) + I (t) = N, or equivalently, S(t) = N − I (t).

N is constant (equal total population at time t = 0), so we can
deduce the value of S(t), once we know I (t), from the equation
S(t) = N − I (t).

We only need to consider 1 equation. Do this when possible!
(nonlinear systems are hard, one less equation can make a lot of
difference)
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Model for infectious individuals

Integral equation for the number of infective individuals:

I (t) = I0(t) +

∫ t

0
β

(N − I (u))I (u)

N
P(t − u)du (13)

I I0(t) number of individuals who were infective at time t = 0
and still are at time t.

I I0(t) is nonnegative, nonincreasing, and such that
limt→∞ I0(t) = 0.

I P(t − u) proportion of individuals who became infective at
time u and who still are at time t.

I β(N − I (u))S(u)/N is βS(u)I (u)/N with S(u) = N − I (u),
from the reduction of dimension.

Time of residence in a state – Exponential distribution p. 119



Case of an exponentially distributed time to recovery

Suppose that P(t) is such that the sojourn time in the infective
state has an exponential distribution with mean 1/γ, i.e.,
P(t) = e−γt .

Then the initial condition function I0(t) takes the form

I0(t) = I0(0)e−γt ,

with I0(0) the number of infective individuals at time t = 0. This
is obtained by considering the cohort of initially infectious
individuals, giving a model such as (11).

Equation (13) becomes

I (t) = I0(0)e−γt +

∫ t

0
β

(N − I (u))I (u)

N
e−γ(t−u)du. (14)
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Taking the time derivative of (14) yields

I ′(t) = β
(N − I (t))I (t)

N
− γI (t),

which is the classical logistic type ordinary differential equation
(ODE) for I in an SIS model without vital dynamics (no birth or
death).
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Conclusion

I The time of sojourn in classes (compartments) plays an
important role in determining the type of model that we deal
with.

I All ODE models, when they use terms of the form κX , make
the assumption that the time of sojourn in compartments is
exponentially distributed.

I At the other end of the spectrum, delay delay differential with
discrete delay make the assumption of a constant sojourn
time, equal for all individuals.

I Both can be true sometimes.. but reality is often somewhere
in between.
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A SIS model

Consider a disease that confers no immunity. In this case,
individuals are either

I susceptible to the disease, with the number of such individuals
at time t denoted by S(t),

I or infected by the disease (and are also infective in the sense
that they propagate the disease), with the number of such
individuals at time t denoted by I (t).

We want to model the evolution with time of S and I (t is omitted
unless necessary).
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Hypotheses

I Individuals recover from the disease at the per capita rate γ.

I The disease does not confer immunity.

I There is no birth or death.

I Infection is of standard incidence type, β = SI/N.
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Flow diagram of the model

S I

 SI
N

 I

Epidemic models p. 127



The evolution of I (t) is described by the following equation (see
slides on residence time):

I ′ = β
(N − I )I

N
− γI .

Develop and reorder the terms, giving

I ′ = (β − γ)I − β

N
I 2 (15)
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The basic reproduction number
Define the basic reproduction number (the average number of
people that an infectious individual will infect, when introduced in
a population of susceptibles) as

R0 =
β

γ

We have

(R0 < 1 ⇔ (β − γ) < 0) and (R0 > 1 ⇔ (β − γ) > 0) .

Then

I If R0 < 1, then limt→∞ I (t) = 0.

I If R0 > 1, then

limt→∞I (t) =

(
1− 1

R0

)
N.

(the case R0 = 1 is usually omitted)
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Kermack and McKendrick

In 1927, Kermack and McKendrick started publishing a series of
papers on epidemic models. In the first of their papers, they have
this model as a particular case:

S ′ = −βSI

I ′ = βSI − γI

R ′ = γI

(16)
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Analyzing the system

First, note (as KMK) that the total population in the system is
constant. This is deduced from the fact that

N ′ = (S + I + R)′ = −βSI + βSI − γI + γI = 0.

Since this is true for all values of t, we have N constant.

Epidemic models p. 133



Let us ignore the R equation for now. We can compute

dI

dS
=

dI

dt

dt

dS
=

I ′

S ′
=

γ

βS
− 1

This gives

I (S) = S − γ

β
lnS + K ,

which, considering the initial condition (S0, I0), is,

I (S) = S − γ

β
lnS + I0 − (S0 −

γ

β
lnS0).

This gives a curve in the (S , I ) plane.
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I (S) = S − γ

β
lnS + I0 − (S0 −

γ

β
lnS0).

Typically, assume S ≈ N and I > 0 small. Let us denote
S∞ = limt→∞ S(t).
We want to find the value of S when I → 0. Then

I0 −
γ

β
lnS0 = S∞ −

γ

β
lnS∞
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Epidemic models
SIS model without vital dynamics
SIR model of Kermack and McKendrick
SIRS model with demography
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The SIRS model – Assumptions (1/2)

I Like KMK, individuals are S, I or R.

I Infection is βSI (mass action) or βSI/N (proportional
incidence).

I Different interpretation of the R class: R stands for
“removed”, individuals who are immune to the disease
following recovery.

I Recovery from the disease (movement from I class to R class)
occurs at the per capita rate γ.
(Time spent in I before recovery is exponentially distributed.)

I Immunity can be lost: after some time, R individuals revert
back to S individuals.

I Time spent in R class before loss of immunity is exponentially
distributed, with mean 1/ν.
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The SIRS model – Assumptions (2/2)

I There is birth and death of individuals:
I No vertical transmission of the disease (mother to child) or of

immunity, so all birth is into the S class.
Birth occurs at the rate Π.

I Individuals in all classes die of at the per capita rate d , i.e., the
average life duration is exponentially distributed with mean
1/d .

I The disease is lethal: infected individuals are subject to
additional mortality at the per capita rate δ.

Note that birth and death can have different interpretations:

I birth and death in the classical sense,

I but also, entering the susceptible population and leaving it.

Epidemic models p. 138



Flow diagrams for the models

Mass action

S I R SI  I

R



dS dRd I

Standard incidence

S I R

SI
N  I

R



dS dRd I
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SIRS model with mass action incidence

Consider the model with mass action incidence,

S ′ = Π + νR − βSI − dS

I ′ = βSI − (d + δ + γ)I

R ′ = γI − (d + ν)R
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Outline

Single population dynamics and the logistic situation

Time of residence in a state – Exponential distribution

Epidemic models

The chemostat
Batch mode
Continous flow mode

Traffic flow

Shallow water waves

A simple genetic model
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A chemostat
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Principle

I One main chamber (vessel), in which some microorganisms
(bacteria, plankton), typically unicellular, are put, together
with liquid and nutrient.

I Contents are stirred, so nutrient and organisms are well-mixed.

I Organisms consume nutrient, grow, multiply.
I Two major modes of operation:

I Batch mode: let the whole thing sit.
I Continuous flow mode: there is an input of fresh water and

nutrient, and an outflow the comprises water, nutrient and
organisms, to keep the volume constant.
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The chemostat
Batch mode
Continous flow mode
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Model for batch mode – No organism death

First, assume no death of organisms. Model is

S ′ = −µ(S)x (17a)

x ′ = µ(S)x (17b)

with initial conditions S(0) ≥ 0 and x(0) > 0, and where µ(S) is
such that

I µ(0) = 0 (no substrate, no growth)

I µ(S) ≥ 0 for all S ≥ 0

I µ(S) bounded for S ≥ 0
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The Michaelis-Menten curve

Typical form for µ(S) is the Michaelis-Menten (MM) curve,

µ(S) = µmax
S

KS + S
(18)

I µmax maximal growth rate

I KS half-saturation constant
(µ(KS) = µmax/2).
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From now on, assume MM function.
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Equilibria

To compute the equilibria, suppose S ′ = x ′ = 0, giving

µ(S)x = −µ(S)x = 0

This implies µ(S) = 0 or x = 0. Note that µ(S) = 0 ⇔ S = 0, so
the system is at equilibrium if S = 0 or x = 0.

This is a complicated situation, as it implies that there are lines of
equilibria (S = 0 and any x , and x = 0 and any S), so that the
equilibria are not isolated (arbitrarily small neighborhoods of one
equilibrium contain other equilibria), and therefore, studying the
linearization is not possible.
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Here, some analysis is however possible. Consider

dx

dS
=

dx

dt

dt

dS
= −µ(S)x

µ(S)x
= −1

This implies that we can find the solution

x(S) = C − S ,

or, supposing the initial condition is (S(0), x(0)) = (S0, x0), that
is, x(S0) = x0,

x(S) = S0 + x0 − S
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S

x
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Model for batch mode – Organism death

Assume death of organisms at per capita rate d . Model is

S ′ = −µ(S)x (19a)

x ′ = µ(S)x − dx (19b)
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Equilibria

S ′ = 0 ⇔ µ(S)x = 0
x ′ = 0 ⇔ (µ(S)− d)x = 0.
So we have x = 0 or µ(S) = d . So x = 0 and any value of S , and
S such that µ(S) = d and x = 0. One such particular value is
(S , x) = (0, 0).

This is once again a complicated situation, since there are lines of
equilibria. Intuitively, most solutions will go to (0, 0). This is
indeed the case (we will not show it).
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The chemostat
Batch mode
Continous flow mode

The chemostat p. 151



Modelling principles – Continuous flow mode

I Organisms (concentration denoted x) are in the main vessel.

I Limiting substrate (concentration in the vessel denoted S) is
input (at rate D and concentration S0).

I There is an outflow of both nutrient and organisms (at same
rate D as input).

I Homogeneous mixing.

I Residence time in device is assumed small compared to
lifetime (or time to division) ⇒ no death considered.
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Schematic representation
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Model for continuous flow mode

Model is

S ′ = D(S0 − S)− µ(S)x (20a)

x ′ = µ(S)x − Dx (20b)

with initial conditions S(0) ≥ 0 and x(0) ≥ 0, and D,S0 > 0.
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Equilibria

Existence: done in class using nullclines.

Stability: done in class using Jacobian matrix.
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Traffic flow
ODE model
DDE model
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Hypotheses

I N cars in total.

I Road is the x-axis.

I xn(t) position of the nth car at time t.

I vn(t)
∆
= x ′n(t) velocity of the nth car at time t.

xx3x2x1

v1 v2 v3

0

I All cars start with the same initial speed v0 before time t = 0.
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Moving frame coordinates

To make computations easier, express velocity of cars in a
reference frame moving at speed u0.

Remark that here, speed=velocity, since movement is
1-dimensional.

Let
un(t) = vn(t)− u0.

Then un(t) = 0 for t ≤ 0, and un is the speed of the nth car in the
moving frame coordinates.
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Modeling driver behavior
Assume that

I Driver adjusts his/her speed according to relative speed
between his/her car and the car in front.

I This adjustment is a linear term, equal to λ for all drivers.

I First car: evolution of speed remains to be determined.

I Second car:
u′2 = λ(u1 − u2).

I Third car:
u′3 = λ(u2 − u3)

I Thus, for n = 1, . . . ,N − 1,

u′n+1 = λ(un − un+1). (21)
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This can be solved using linear cascades: if u1(t) is known, then

u′2 = λ(u1(t)− u2)

is a linear first-order nonhomogeneous equation. Solution
(integrating factors, or variation of constants) is

u2(t) = λe−λt

∫ t

0
u1(s)e

λsds

Then use this function u2(t) in u′3 to get u3(t),

u3(t) = λe−λt

∫ t

0
u2(s)e

λsds
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Example

Suppose driver of car 1 follows this function

u1(t) = α sin(ωt)

that is, ω-periodic, 0 at t = 0 (we want all cars to start with speed
relative to the moving reference equal to 0), and with amplitude α.

Then

u2(t) =
λα

λ2 + ω2

(
ωe−λt + λ sin(ωt)− ω cos(ωt)

)
.

When t →∞, first term goes to 0, we are left with a ω-periodic
term.
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Using the theory of linear systems

Consider the case of 3 cars. Let

X =

(
u2

u3

)
Then the system can be written as

X ′ =

(
−λ 0
λ −λ

)
U +

(
λu1(t)

0

)
which we write for short as X ′ = AX + B(t).
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The matrix A has the eigenvalue −λ with multiplicity 2. Its Jordan
form is

J =

(
−λ 1
0 −λ

)
with matrix of change of basis

P =

(
0 1
λ 0

)
which is such that P−1AP = J.
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Because −λ is an eigenvalue with multiplicity 2 (same as the size
of the matrix), we can use the simplified theorem, and only need N.

We have

N = A− S

=

(
−λ 0
λ −λ

)
−

(
−λ 0
0 −λ

)
=

(
0 0
λ 0

)
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Clearly, N2 = 0, so, by the theorem in the simplified case,

x(t) = e−λt (I + Nt) x0

But we know that solutions are unique, and that the solution to
the differential equation is given by x(t) = eAtx0. This means that

eAt = e−λt (I + Nt)

= e−λt

((
1 0
0 1

)
+

(
0 0
λt 0

))
= e−λt

(
1 0
λt 1

)
=

(
e−λt 0
λte−λt e−λt

)
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Now notice that the solution to

X ′ = AX

is trivially established here, since

X (0) =

(
u2(0)
u3(0)

)
=

(
0
0

)
,

and thus
X (t) = eAt0 = 0.

eAt does however play a role in the solution (fortunately), since it
is involved in the variation of constants formula:

X (t) = eAtX0 +

∫ t

0
eA(t−s)B(s)ds
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Let

Ψ(t) =

∫ t

0
eλsu1(s)ds

and

Φ(t) =

∫ t

0
seλsu1(s)ds

These can be computed when we choose a function u1(t). Then,
finally, we have

X (t) =

∫ t

0
eA(t−s)B(s)ds

=

(
λe−λtΨ(t)
λ2e−λt (tΨ(t)− Φ(t))

)
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Case of the α sin(ωt) driver

We set
u1(t) = α sin(ωt).

Then

Ψ(t) =
α(ω − ωeλt cos(ωt) + λeλt sin(ωt))

λ2 + ω2

and

Φ(t) =
α(λ3t + λtω2 − λ2 + ω2) sin(ωt)eλt

(λ2 + ω2)2

− αω cos(ωt)(tλ2 + tω2 − 2λ)eλt + 2αλω

(λ2 + ω2)2
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Traffic flow
ODE model
DDE model
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A delayed model of traffic flow

We consider the same setting as previously, except that now, for
t > 0,

u′n+1(t) = λ(un(t − τ)− un+1(t − τ)), (22)

for n = 1, . . . ,N − 1. Here, τ ≥ 0 is called the time delay (or time
lag), or for short, delay (or lag).

If τ = 0, we are back to the previous model.
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Initial data
For a delay equation such as (22), the initial conditions become
initial data. This initial data must be specified on an interval of
length τ , left of zero.

This is easy to see by looking at the terms: u(t − τ) involves, at
time t, the state of u at time t − τ . So if t < τ , we need to know
what happened for t ∈ [−τ, 0].

So, normally, we specify initial data as

un(t) = φ(t) for t ∈ [−τ, 0],

where φ is some function, that we assume to be continuous. We
assume u1(t) is known.

Here, we assume, for n = 1, . . . ,N,

un(t) = 0, t ≤ (n − 1)τ
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Important remark

Although (22) looks very similar to (21), you must keep in mind
that it is in fact much more complicated.

I A solution to (21) is a continuous function from R to R (or to
Rn if we consider the system).

I A solution to (22) is a continuous function in the space of
continuous functions.

I The space Rn has dimension n. The space of continuous
functions has dimension ∞.

We then computed the Laplace transform of the system, but this
was not very helpful, since, after solving the problem in s-space, we
were not able to transform back into the original t-space.
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Spatial domain
We consider the motion of a body of water that is infinite in the z
direction, with or without boundary in the x direction, and the
vertical direction of gravity taken as the y direction.

x

y

z

g

From now on, suppose z direction uniform (the same for all z), so
ignore z except for the sake of argument.
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The one-dimensional wave equation (1)

Following a long and complex argument, the following was derived.

The partial differential equation

ζtt = c2ζxx (23)

with c2 = Hg , is the one-dimensional wave equation. Initial
conditions are given by

ζ(x , 0) = h0(x)− H ≡ ζ0(x)

ζt(x , 0) = −Hux(x , 0) = −H[u0(x)]x ≡ ν0(x)
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The one-dimensional wave equation (2)

Things can also be expressed in terms of u. Using the same type of
simplification used before for ζ, we get

utt = c2uxx (24)

with c2 = Hg . Initial conditions are given by

u(x , 0) = u0(x)

ut(x , 0) = −gζx(x , 0) = −g [h0(x)]x ≡ v0(x)
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Shallow water waves
Traveling wave solutions
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Traveling wave solutions

This was obtained by d’Alembert. Consider

utt = c2uxx (24)

Note that this can be written as(
∂

∂t
− c

∂

∂x

) (
∂

∂t
+ c

∂

∂x

)
u = 0

This implies that for any F ,G , the sum

u(x , t) = F (x − ct) + G (x + ct)

satisfies (24).
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Set
u(x , 0) = f (x) ut(x , 0) = g(x)

Then d’Alembert’s formula gives

u(x , t) =
f (x − ct) + f (x + ct)

2
+

1

2c

∫ x+ct

x−ct
g(s)ds
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Case of a Dirac delta initial condition

Suppose u0(x) = 0 and v0(x) = δ(x), for −∞ < x <∞, with δ
the Dirac delta,

δ(x) =

{
∞ if x = 0

0 otherwise.

Therefore,

u(x , t) =
1

2c

∫ x+ct

x−ct
δ(z)dz =

1

2c
{H(x + ct)− H(x − ct)} ,

with H the Heaviside function,

H(x) =

{
0 if x < 0

1 if x > 0.
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For simplicity, take c = 1. This gives

u(x , t) =
1

2
{H(x + t)− H(x − t)} ,
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As t increases, we move further up in the top graph in (x , t)-space,
resulting in a wider and wider square pulse.

t=1

x

t=1.5

x

t=2

x
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Simple Mendelian inheritance

A certain trait is determined by a specific pair of genes, each of
which may be two types, say G and g .

One individual may have:

I GG combination (dominant)

I Gg or gG , considered equivalent genetically (hybrid)

I gg combination (recessive)

In sexual reproduction, offspring inherit one gene of the pair from
each parent.
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Basic assumption of Mendelian genetics

Genes inherited from each parent are selected at random,
independently of each other. This determines probability of
occurrence of each type of offspring. The offspring

I of two GG parents must be GG ,

I of two gg parents must be gg ,

I of one GG and one gg parent must be Gg ,

I other cases must be examined in more detail.
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GG and Gg parents

G G G g

G g

Parents

G G G gG G Offspring

Offspring has probability

I
1

2
of being GG

I
1

2
of being Gg

A simple genetic model p. 192



Gg and Gg parents

G g G g

G g

Parents

g G g gG G Offspring

Offspring has probability

I
1

4
of being GG

I
1

2
of being Gg

I
1

4
of being gg
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gg and Gg parents

g g G g

g g

Parents

g G g gg G Offspring

Offspring has probability

I
1

2
of being Gg

I
1

2
of being gg
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A simple genetic model
Continued matings with a Gg individual – Regular chain
Continued matings with a GG individual – Absorbing chain
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Continued matings

Consider a process of continued matings.

I Start with an individual of known or unknown genetic
character and mate it with a hybrid.

I Assume that there is at least one offspring; choose one of
them at random and mate it with a hybrid.

I Repeat this process through a number of generations.

The genetic type of the chosen offspring in successive generations
can be represented by a Markov chain, with states GG , Gg and gg .
So there are 3 possibles states S1 = GG , S2 = Gg and S3 = gg .
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We have

↗ GG Gg gg

GG 0.5 0.5 0
Gg 0.25 0.5 0.25
gg 0 0.5 0.5

The transition probabilities are thus

P =

 1
2

1
2 0

1
4

1
2

1
4

0 1
2

1
2


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The Markov chain is here regular. Indeed, take the matrix P,

P =

 1
2

1
2 0

1
4

1
2

1
4

0 1
2

1
2


and compute P2:

P2 =

 3
8

1
2

1
8

1
4

1
2

1
4

1
8

1
2

3
8


As all entries are positive, P is primitive and the Markov chain is
regular.
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Another way to check regularity:

Theorem 41
A matrix M is primitive if the associated connection graph is
strongly connected, i.e., that there is a path between any pair (i , j)
of states, and that there is at least one positive entry on the
diagonal of M.

This is checked directly on the transition graph

GG Gg

gg

0.5
0.5

0.5

0.5

0.5

0.25

0.25
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Compute the left eigenvector associated to 1 by solving

(w1,w2,w3)

 1
2

1
2 0

1
4

1
2

1
4

0 1
2

1
2

 = (w1,w2,w3)

1

2
w1 +

1

4
w2 = w1 (25a)

1

2
w1 +

1

2
w2 +

1

2
w3 = w2 (25b)

1

4
w2 +

1

2
w3 = w3 (25c)

From (25a), w1 = w2/2, and from (25c), w3 = w2/2. Substituting
these values into (25b),

1

4
w2 +

1

2
w2 +

1

4
w2 = w2,

that is, w2 = w2, i.e., w2 can take any value. So w = (1
4 ,

1
2 ,

1
4).
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A simple genetic model
Continued matings with a Gg individual – Regular chain
Continued matings with a GG individual – Absorbing chain
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Mating with a GG individual

Suppose now that we conduct the same experiment, but mate each
new generation with a GG individual instead of a Gg individual.
Transition table is

↗ GG Gg gg

GG 1 0 0
Gg 0.5 0.5 0
gg 0 1 0

The transition probabilities are thus

P =

 1 0 0
1
2

1
2 0

0 1 0


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New transition graph

GG Gg

gg

1 0.5

1

0.5

Clearly:

I we leave gg after one iteration, and can never return,

I as soon as we leave Gg , we can never return,

I can never leave GG as soon as we get there.
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The matrix is already in standard form,

P =

 1 0 0
1
2

1
2 0

0 1 0

 =

(
I1 0
R Q

)

with I1 = 1, 0 = (0 0) and

R =

(
1
2
0

)
Q =

(
1
2 0
1 0

)
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We have

I2 − Q =

(
1 0
0 1

)
−

(
1
2 0
1 0

)
=

(
1
2 0
−1 1

)
so

N = (I2 − Q)−1 = 2

(
1 0
1 1

2

)
=

(
2 0
2 1

)
Then

T = N1l =

(
2
3

)
and

B = NR =

(
2 0
2 1

) (
1
2
0

)
=

(
1
1

)
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