First-order difference equation

A difference equation takes the form

$$
x(n+1)=f(x(n)),
$$

which is also denoted

$$
x_{n+1}=f(x_n).
$$

Starting from an initial point x_0 , we have

$$
x_1 = f(x_0)
$$

\n
$$
x_2 = f(x_1) = f(f(x_0)) = f^2(x_0)
$$

\n
$$
x_3 = f(x_2) = f(f(f(x_0))) = f^3(x_0)
$$

Difference equation p. 1

Periodic points

Definition 3 (Periodic point)

A point p is a periodic point of (least) period n if

$$
f^{n}(p) = p \quad \text{and} \quad f^{j}(p) \neq p \text{ for } 0 < j < n.
$$

Definition 4 (Fixed point)

A periodic point with period $n = 1$ is called a fixed point.

Definition 5 (Eventually periodic point)

A point p is an eventually periodic point of period n if there exists $m > 0$ such that

$$
f^{m+n}(p)=f^m(p),
$$

so that $f^{j+n}(p) = f^j(p)$ for all $j \geq m$ and $f^m(p)$ is a periodic point.

Definition 1 (Iterates)

 $f(x_0)$ is the first iterate of x_0 under f ; $f^2(x_0)$ is the second iterate of x_0 under f. More generally, $f^n(x_0)$ is the nth iterate of x_0 under f. By convention, $f^0(x_0) = x_0$.

Definition 2 (Orbits)

The set

 ${f^n(x_0) : n \ge 0}$

is called the forward orbit of x_0 and is denoted $O^+(x_0)$. The backward orbit $O^{-}(x_0)$ is defined, if f is invertible, by the negative iterates of f . Lastly, the (whole) orbit of x_0 is

$$
\{f^k(x_0): -\infty < k < \infty\}.
$$

The forward orbit is also called the *positive* orbit. The function f is always assumed to be continuous. If its derivative or second derivative is used in a result, then the assumption is made that $f \in C^1$ or $f \in C^2$..

Difference equation p. 2

Finding fixed points and periodic points

- A fixed point is such that $f(x) = x$, so it lies at the intersection of the first bisectrix $y = x$ with the graph of $f(x)$.
- A periodic point is such that $f''(x) = x$, it is thus a fixed point of the nth iterate of f , and so lies at the intersection of the first bisectrix $y = x$ with the graph of $f^{n}(x)$.

Stable set

Definition 6 (Forward asymptotic point)

q is forward asymptotic to p if

$$
|f^j(q)-f^j(p)|\to 0 \text{ as } j\to\infty.
$$

If p is *n*-periodic, then q is asymptotic to p if

 $|f^{jn}(q) - p| \to 0 \text{ as } j \to \infty.$

Definition 7 (Stable set)

The *stable set* of p is

 $W^{s}(p) = \{q : q \text{ forward asymptotic to } p\}.$

Periodic points p. 5

Stability

Definition 10 (Stable fixed point)

A fixed point p is stable (or Lyapunov stable) if, for every $\varepsilon > 0$. there exists $\delta > 0$ such that $|x_0 - p| < \delta$ implies $|f^n(x_0) - p| < \varepsilon$ for all $n > 0$. If a fixed point p is not stable, then it is *unstable*.

Definition 11 (Attracting fixed point)

A fixed point p is attracting if there exists $n > 0$ such that

 $|x(0) - p| < \eta$ implies $\lim_{n \to \infty} x(n) = p$.

If $\eta = \infty$, then p is a global attractor (or is globally attracting).

Definition 12 (Asymptotically stable point)

A fixed point p is asymptotically stable if it is stable and attracting. It is globally asymptotically stable if $\eta = \infty$.

Unstable set

Definition 8 (Backward asymptotic point)

If f is invertible, then q is backward asymptotic to p if

$$
|f^j(q)-f^j(p)|\to 0 \text{ as } j\to -\infty.
$$

Definition 9 (Unstable set)

The *unstable set* of *p* is

 $W^u(p) = \{q : q \text{ backward asymptotic to } p\}.$

Periodic points p. 6

The point does not have to be a fixed point to be stable.

Definition 13

A point *p* is stable if for every $\epsilon > 0$, there exists $\delta > 0$ such that if $|x - p| < \delta$, then $|f^k(x) - f^k(p)| < \varepsilon$ for all $k > 0$.

Another characterization of asymptotic stability:

Definition 14

A point p is asymptotically stable if it is stable and $W^{s}(p)$ contains a neighborhood of p.

Can be used with periodic point, in which case we talk of attracting periodic point (or periodic sink). A periodic point p for which $W^u(p)$ is a neighborhood of p is a repelling periodic point (or periodic source).

Condition for stability/instability

ω -limit points and sets

Theorem 15

Let $f : \mathbb{R} \to \mathbb{R}$ be C^1 .

- 1. If p is a n-periodic point of f such that $|(f^n)'(p)| < 1$, then p is an attracting periodic point.
- 2. If p is a n-periodic point of f such that $|(f^n)'(p)| > 1$, then p is repelling.

Definition 16

A point y is an ω -limit point of x for f is there exists a sequence ${n_k}$ going to infinity as $k \to \infty$ such that

$$
\lim_{k\to\infty}d(f^{n_k}(x),y)=0.
$$

The set of all ω -limit points of x is the ω -limit set of x and is denoted $\omega(x)$.

Periodic points p. 9

 α -limit points and sets

Limit sets p. 10

Invariant sets

Definition 17

Suppose that f is invertible. A point y is an α -limit point of x for f is there exists a sequence $\{n_k\}$ going to minus infinity as $k \to \infty$ such that

$$
\lim_{k\to\infty}d(f^{n_k}(x),y)=0.
$$

The set of all α -limit points of x is the α -limit set of x and is denoted $\alpha(x)$.

Definition 18

Let $S \subset X$ be a set. S is positively invariant (under the flow of f) if $f(x) \in S$ for all $x \in S$, i.e., $f(S) \subset S$. S is negatively invariant if $f^{-1}(S) \subset S$. S is invariant if $f(S) = S$.

Theorem 19

Let $f: X \to X$ be continuous on a complete metric space X. Then

1. For any x,
$$
\omega(x) = \bigcap_{N \geq 0} \overline{\bigcup_{n \geq N} \{f^n(x)\}}.
$$

2. If $f^j(x) = v$ for some i, then $\omega(x) = \omega(v)$.

- 3. For any x, $\omega(x)$ is closed and positively invariant. If $Q^+(x)$ is contained in some compact subset of X (e.g., the forward orbit is bounded in some Euclidian space) or if f is one-to-one, then $\omega(x)$ is invariant.
- 4. If $O^+(x)$ is contained in some compact subset of X, then $\omega(x)$ is nonempty and compact and $d(f^{n}(x), \omega(x)) \to 0$ as $n \to \infty$.
- 5. If D ⊂ X is closed and positively invariant, and x ∈ D, then ω(x) ⊂ D.

6. If $v \in \omega(x)$, then $\omega(v) \subset \omega(x)$.

Minimal set

Definition 20

A set S is a minimal set for f if (i) S is a closed, nonempty, invariant set and (ii) if B is a closed nonempty invariant subset of S then $B = S$.

Clearly, any periodic orbit is a minimal set.

Proposition 1

Let X be a metric space, $f : X \to X$ a continuous map, and $S \subset X$ a nonempty compact subset. Then S is a minimal set if and only if $\omega(x) = S$ for all $x \in S$.

Limit sets p. 13 Limit sets p. 14

Cantor sets

Let X be a topological space and $S \subset X$ a subset.

Definition 21 (Nowhere dense set)

S is nowhere dense if $int(c)(S) = \emptyset$.

Definition 22 (Totally disconnected set)

S is totally disconnected if the connected components of S are single points.

Definition 23 (Perfect set)

S is perfect if it is closed and that every point $p \in S$ is the limit of points $a_n \in S$ with $a_n \neq p$.

Definition 24 (Cantor set)

S is a Cantor set if it is totally disconnected, perfect and compact.

Construction of the middle- α Cantor set – Step 0

Let $\alpha \in (0,1)$ and β such that $2\beta + \alpha = 1$. **Step 0** : Consider the interval $S_0 = [0, 1]$.

 S_0 can be decomposed as two subintervals of length β and one subinterval of length α :

Note that α and β are proportions of the length of S₀.

Step 1

Step 2

Remove the middle open interval of length α , $G = (\beta, 1 - \beta)$, and define

$$
S_1=S_0\setminus\mathit{G}=J_1\cup J_2,
$$

where J_0 and J_2 are the left and right closed intervals, respectively, resulting from the cut:

We get the lengths $L(J_0) = L(J_2) = \beta$.

Apply the same procedure to each of J_0 and J_2 : remove the middle $\alpha L(J_k) = \alpha \beta$ sized open interval.

Add a suffix 0 to the interval that is left of this middle interval, 2 to the interval on the right:

There are 2² intervals, each of length $L(J_{k_1,k_2}) = \beta L(J_{k_1}) = \beta^2$ $(k_1, k_2 = 0, 2).$

Cantor sets p. 17

Cantor sets p. 18

Step 3

Apply the same procedure to each of $J_{k_1,k_2}, k_1, k_2 = 0, 2$: remove the middle $\alpha L(J_{k_1,k_2}) = \alpha \beta^2$ sized open interval.

Add a suffix 0 to the interval that is left of this middle interval, 2 to the interval on the right:

0 J 1 220 β α β β α β β α β β α β J²²² J²⁰² J²⁰⁰ J⁰²² J⁰²⁰ J⁰⁰⁰ J⁰⁰²

There are 2^3 intervals, each of length $L(J_{k_1,k_2,k_3}) = \beta L(J_{k_1,k_2}) = \beta^3$ $(k_1, k_2, k_3 = 0, 2).$

Step k

After proceeding to the kth cut, we have

$$
S_k=\bigcup_{j_1,\ldots,j_k=0,2}J_{j_1,\ldots,j_k},
$$

where each of the 2^k closed intervals J_{i_1,\ldots,i_k} has length $L(J_{j_1,\ldots,j_k}) = \beta^k$.

Finally, we let

$$
C=\bigcap_{k=0}^\infty S_k.
$$

Theorem 25

C is a Cantor set.

This is proved by showing that C is nowhere dense and perfect.

 S_k has a total length of $2^k \beta^k = (2\beta)^k$, so, since $2\beta < 1$, the total length of S_k goes to zero as $k \to \infty$.

Cantor sets p. 21

Parametrized families of functions

Consider the logistic map

$$
x_{t+1} = \mu x_t (1 - x_t), \tag{3}
$$

where μ is a parameter in \mathbb{R}_+ , and x will typically be taken in [0, 1]. Let

$$
f_{\mu}(x) = \mu x (1 - x). \tag{1}
$$

The function f_{μ} is called a *parametrized family* of functions.

Consider the logistic map

$$
f_{\mu}(x) = \mu x (1 - x), \tag{1}
$$

in the case $u > 4$. For each $n \in \mathbb{N}$, define

$$
\Lambda_n = \{ x : f_\mu^n(x) \in [0, 1] \}. \tag{2}
$$

The set

$$
\Lambda = \bigcap_{n=1}^\infty \Lambda_n
$$

describes the points that remain in [0, 1] forever under iteration of f .

Theorem 26

 $Λ$ is a Cantor set for $μ > 4$.

This implies that there are infinitely many points in [0, 1] for which all iterates remain in [0, 1].. although these points are hard to find.

Cantor sets p. 22

Bifurcations

Definition 27 (Bifurcation)

Let f_μ be a parametrized family of functions. Then there is a bifurcation at $\mu = \mu_0$ (or μ_0 is a bifurcation point) if there exists $\varepsilon > 0$ such that, if $\mu_0 - \varepsilon < a < \mu_0$ and $\mu_0 < b < \mu_0 + \varepsilon$, then the dynamics of $f_5(x)$ are "different" from the dynamics of $f_6(x)$.

An example of "different" would be that f_a has a fixed point (that is, a 1-periodic point) and f_b has a 2-periodic point.

Formally, f_a and f_b are topologically conjugate to two different functions.

Topological conjugacy

Definition 28

Let $f: D \to D$ and $g: E \to E$ be functions. Then f topologically conjugate to g if there exists a homeomorphism $\tau : D \to F$, called a topological conjugacy, such that $\tau \circ f = g \circ \tau$.

Proposition 2

Let D and E be subsets of $\mathbb R$, and ϕ : $D \to E$ be an homeomorphism. Then

- 1. The set $U \subset D$ is open iff $\phi(U)$ is open in E.
- 2. The sequence $\{x_k\}$ converges in D converges to x in D iff the sequence $\{\phi(x_k)\}\)$ converges to $\phi(x)$ in E.
- 3. The set F is closed in D iff the set $\phi(F)$ is closed in E.
- 4. The set A is dense in D iff the set $\phi(A)$ is dense in E.

The cascade of bifurcations to chaos

The result of Li and Yorke

Theorem 30

Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Assume that there exists a point a such that either

$$
\blacktriangleright f^3(a) \leq a < f(a) < f^2(a)
$$

or

 \blacktriangleright $f^3(a) > a > f(a) > f^2(a)$.

Then f has points of all periods.

Theorem 29

Let D and E be subsets of \mathbb{R} , $f : D \to D$, $g : E \to E$, and

- $\tau : D \to E$ be a topological conjugacy of f and g. Then
	- 1. τ^{-1} : $E \rightarrow D$ is a topological conjugacy.
- 2. $\tau \circ f^n = g^n \circ \tau$ for all $n \in \mathbb{N}$.
- 3. p is a periodic point of f with least period n iff $\tau(p)$ is a periodic point of g with least period n.
- 4. If p is a periodic point of f with stable set $W^s(p)$, then the stable set of $\tau(p)$ is $\tau(W^s(p))$.
- 5. The periodic points of f are dense in D iff the periodic points of g are dense in E.
- $6. f$ is topologically transitive on D iff g is topologically transitive on E.
- 7. f is chaotic on D iff g is chaotic on E.
- n 25 The cascade of bifurcations to chaos p. 26 Percent and the chaos p. 26 Percent and the cascade of bifurcations to chaos

Sharkovskii's ordering of the natural integers

Consider the set of integers, and order them with the Sharkovskii ordering \rhd . To do this, first consider all odd integers,

 $30552090110...$

followed by all odd integers multiplied by 2

 $52.352.552.752.752.752.952.115...$

followed by all odd integers multiplied by 2^2

 \triangleright 2² · 3 \triangleright 2² · 7 \triangleright 2² · 7 \triangleright 2² · 9 \triangleright 2² · 11 \triangleright · · ·

continue..

 $\triangleright 2^n \cdot 3 \triangleright 2^n \cdot 5 \triangleright \cdots \triangleright 2^{n+1} \cdot 3 \triangleright 2^{n+1} \cdot 5 \triangleright \cdots$

and finally, add all the powers of 2 in decreasing powers,

 $\triangleright 2^{n+1} \triangleright 2^n \triangleright \cdots 2^2 \triangleright 2 \triangleright 1.$

Sharkovskii's theorem

The Sharkovskii ordering gives an ordering between all positive integers.

Theorem 31 (Sharkovskii)

Let $f : I \subset \mathbb{R} \to \mathbb{R}$ be a continuous function. Assume that f has a point of least period n, and that $n \triangleright k$. Then f has a point of least period k.

A function that has a periodic point of period 3 has good chances of being "agitated"..

Note that this says nothing about the stability of the periodic points.

Topologically transitive function

Definition 32

The function $f: D \to D$ is *topologically transitive* on D if for any open sets U and V that interset D, there exists $z \in U \cap D$ and $n \in \mathbb{N}$ such that $f^{n}(z) \in D$. Equivalently, f is topologically transitive on D if for any two points $x, y \in D$ and any $\varepsilon > 0$, there exists $z \in D$ such that $|z - x| < \varepsilon$ and $|f^n(x) - y| < \varepsilon$ for some *n*.

Sharkovskii's theorem p. 29 n 20 Chang – Devaney's definition p. 30

Sensitive dependence on initial conditions

Chaos

The following in due to Devaney. There are other definitions.

Definition 34

The function $f: D \to D$ is chaotic if

- 1. the periodic points of f are dense in D ,
- 2. f is topologically transitive,
- $3.$ and f exhibits sensitive dependence on initial conditions.

Definition 33

The function $f: D \to D$ exhibits sensitive dependence on initial conditions if there exists $\delta > 0$ such that for any $x \in D$ and any $\varepsilon > 0$, there exists $y \in D$ and $n \in \mathbb{N}$ such that $|x - y| < \varepsilon$ and $|f^n(x) - f^n(y)| > \delta.$

Definition 35

Let A be a subset of B . Then A is dense in B if every point in B is an accumulation point of A, a point of A, or both.

Proposition 3

Let A be a subset of B. Then the following statements are equivalent.

- 1. A is dense in B.
- 2. For each point $x \in B$ and each $\varepsilon > 0$, there exists $y \in A$ such that $|x - y| < \varepsilon$.
- 3. For every point $x \in B$, there exists a sequence of points contained in A that converges to x.

Point 2 "says" that every circle centered at a point in B contains a point of A.

Chaos – Devaney's definition

Theorem 36

Let $f_n(x) = \mu x(1-x)$, $\mu > 4$ and

$$
\Lambda = \{x : \forall n \in \mathbb{N}, f_{\mu}^{n}(x) \in [0,1]\}.
$$

Then

- 1. If $x \in \mathbb{R}$ does not belong to Λ , then x is in the stable set of infinity.
- 2. The set Λ is a Cantor set.
- 3. The function $f : \Lambda \to \Lambda$ is chaotic.

n 33 Chans – Devaney's definition p. 34 Chans – Devaney's definition p. 34

Sensitive dependence, expansive maps

Definition 37 (Sensitive dependence on IC)

A map f on a metric space X has sensitive dependence on initial conditions provided there exists $r > 0$ (independent of the point) such that for each $x \in X$ and for each $\varepsilon > 0$, there exists a point $y \in X$ with $d(x, y) < \varepsilon$ and a $k \ge 0$, such that $d(f^{k}(x), f^{k}(y)) \geq r.$

Definition 38 (Expansive map)

A map f on a metric space X is expansive provided there exists $r > 0$ (independent of the points) such that for each pair of points $x, y \in X$, there exists $k \ge 0$ such that $d(f^k(x), f^k(y)) \ge r$.

On a perfect metric space (every point $p \in X$ is limit of a sequence of elements $a_n \in X$, $p \neq a_n$), expansiveness implies sensitive dependence on IC.

Transitive map

Definition 39 (Transitive map)

A map $f: X \to X$ is *(topologically)* transitive on an invariant set Y provided the (forward) orbit of some point p is dense in Y.

f is transitive if, given any two open sets U and V in Y , there exists $n \in \mathbb{N}$, $n > 0$, such that $f^{n}(U) \cap V \neq \emptyset$.

 f transitive means that f mixes up the points of Y .

Lyapunov exponents

Definition 40

A map f on a metric space X is chaotic on an invariant set Y (or exhibits chaos) provided

- 1. f is transitive on Y .
- 2. f has sensitive dependence on initial conditions on Y .

Definition 41 (Lyapunov exponents)

Let $f : \mathbb{R} \to \mathbb{R}$ be a C^1 function. The Lyapunov exponent of $x_0 \in \mathbb{R}$, $\lambda(x_0)$, is defined by

$$
\lambda(x_0) = \limsup_{n \to \infty} \frac{1}{n} \log \left(\left| \left(f^n \right)'(x_0) \right| \right)
$$

$$
= \limsup_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \left(\left| f'(x_j) \right| \right).
$$

Chaos – Robinson p. 37

Lyapunov exponents p. 38

Lyapunov exponents **p. 39** p. 39

