
First-order difference equation

A difference equation takes the form

x(n + 1) = f (x(n)),

which is also denoted
xn+1 = f (xn).

Starting from an initial point x0, we have

x1 = f (x0)

x2 = f (x1) = f (f (x0)) = f 2(x0)

x3 = f (x2) = f (f (f (x0))) = f 3(x0)

. . .
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Definition 1 (Iterates)

f (x0) is the first iterate of x0 under f ; f 2(x0) is the second iterate
of x0 under f . More generally, f n(x0) is the nth iterate of x0 under
f . By convention, f 0(x0) = x0.

Definition 2 (Orbits)

The set
{f n(x0) : n ≥ 0}

is called the forward orbit of x0 and is denoted O+(x0). The
backward orbit O−(x0) is defined, if f is invertible, by the negative
iterates of f . Lastly, the (whole) orbit of x0 is

{f k(x0) : −∞ < k < ∞}.

The forward orbit is also called the positive orbit. The function f is
always assumed to be continuous. If its derivative or second
derivative is used in a result, then the assumption is made that
f ∈ C 1 or f ∈ C 2..
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Periodic points

Definition 3 (Periodic point)

A point p is a periodic point of (least) period n if

f n(p) = p and f j(p) 6= p for 0 < j < n.

Definition 4 (Fixed point)

A periodic point with period n = 1 is called a fixed point.

Definition 5 (Eventually periodic point)

A point p is an eventually periodic point of period n if there exists
m > 0 such that

f m+n(p) = f m(p),

so that f j+n(p) = f j(p) for all j ≥ m and f m(p) is a periodic point.
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Finding fixed points and periodic points

I A fixed point is such that f (x) = x , so it lies at the
intersection of the first bisectrix y = x with the graph of f (x).

I A periodic point is such that f n(x) = x , it is thus a fixed
point of the nth iterate of f , and so lies at the intersection of
the first bisectrix y = x with the graph of f n(x).
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Stable set

Definition 6 (Forward asymptotic point)

q is forward asymptotic to p if

|f j(q)− f j(p)| → 0 as j →∞.

If p is n-periodic, then q is asymptotic to p if

|f jn(q)− p| → 0 as j →∞.

Definition 7 (Stable set)

The stable set of p is

W s(p) = {q : q forward asymptotic to p}.

Periodic points p. 5



Unstable set

Definition 8 (Backward asymptotic point)

If f is invertible, then q is backward asymptotic to p if

|f j(q)− f j(p)| → 0 as j → −∞.

Definition 9 (Unstable set)

The unstable set of p is

W u(p) = {q : q backward asymptotic to p}.
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Stability

Definition 10 (Stable fixed point)

A fixed point p is stable (or Lyapunov stable) if, for every ε > 0,
there exists δ > 0 such that |x0 − p| < δ implies |f n(x0)− p| < ε
for all n > 0. If a fixed point p is not stable, then it is unstable.

Definition 11 (Attracting fixed point)

A fixed point p is attracting if there exists η > 0 such that

|x(0)− p| < η implies lim
n→∞

x(n) = p.

If η = ∞, then p is a global attractor (or is globally attracting).

Definition 12 (Asymptotically stable point)

A fixed point p is asymptotically stable if it is stable and
attracting. It is globally asymptotically stable if η = ∞.
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The point does not have to be a fixed point to be stable.

Definition 13
A point p is stable if for every ε > 0, there exists δ > 0 such that if
|x − p| < δ, then |f k(x)− f k(p)| < ε for all k ≥ 0.

Another characterization of asymptotic stability:

Definition 14
A point p is asymptotically stable if it is stable and W s(p)
contains a neighborhood of p.

Can be used with periodic point, in which case we talk of
attracting periodic point (or periodic sink). A periodic point p for
which W u(p) is a neighborhood of p is a repelling periodic point
(or periodic source).
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Condition for stability/instability

Theorem 15
Let f : R → R be C 1.

1. If p is a n-periodic point of f such that |(f n)′(p)| < 1, then p
is an attracting periodic point.

2. If p is a n-periodic point of f such that |(f n)′(p)| > 1, then p
is repelling.
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ω-limit points and sets

Definition 16
A point y is an ω-limit point of x for f is there exists a sequence
{nk} going to infinity as k →∞ such that

lim
k→∞

d(f nk (x), y) = 0.

The set of all ω-limit points of x is the ω-limit set of x and is
denoted ω(x).
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α-limit points and sets

Definition 17
Suppose that f is invertible. A point y is an α-limit point of x for
f is there exists a sequence {nk} going to minus infinity as k →∞
such that

lim
k→∞

d(f nk (x), y) = 0.

The set of all α-limit points of x is the α-limit set of x and is
denoted α(x).
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Invariant sets

Definition 18
Let S ⊂ X be a set. S is positively invariant (under the flow of f )
if f (x) ∈ S for all x ∈ S , i.e., f (S) ⊂ S . S is negatively invariant if
f −1(S) ⊂ S . S is invariant if f (S) = S .
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Theorem 19
Let f : X → X be continuous on a complete metric space X . Then

1. For any x, ω(x) =
⋂

N≥0

⋃
n≥N

{f n(x)}.

2. If f j(x) = y for some j, then ω(x) = ω(y).

3. For any x, ω(x) is closed and positively invariant. If O+(x) is
contained in some compact subset of X (e.g., the forward
orbit is bounded in some Euclidian space) or if f is
one-to-one, then ω(x) is invariant.

4. If O+(x) is contained in some compact subset of X , then ω(x)
is nonempty and compact and d(f n(x), ω(x)) → 0 as n →∞.

5. If D ⊂ X is closed and positively invariant, and x ∈ D, then
ω(x) ⊂ D.

6. If y ∈ ω(x), then ω(y) ⊂ ω(x).
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Minimal set

Definition 20
A set S is a minimal set for f if (i) S is a closed, nonempty,
invariant set and (ii) if B is a closed nonempty invariant subset of
S then B = S .

Clearly, any periodic orbit is a minimal set.

Proposition 1

Let X be a metric space, f : X → X a continuous map, and
S ⊂ X a nonempty compact subset. Then S is a minimal set if
and only if ω(x) = S for all x ∈ S.
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Cantor sets

Let X be a topological space and S ⊂ X a subset.

Definition 21 (Nowhere dense set)

S is nowhere dense if int(cl(S)) = ∅.

Definition 22 (Totally disconnected set)

S is totally disconnected if the connected components of S are
single points.

Definition 23 (Perfect set)

S is perfect if it is closed and that every point p ∈ S is the limit of
points qn ∈ S with qn 6= p.

Definition 24 (Cantor set)

S is a Cantor set if it is totally disconnected, perfect and compact.

Cantor sets p. 15



Construction of the middle-α Cantor set – Step 0

Let α ∈ (0, 1) and β such that 2β + α = 1.
Step 0 : Consider the interval S0 = [0, 1].

S0 can be decomposed as two subintervals of length β and one
subinterval of length α:

0 1

ββ α

Note that α and β are proportions of the length of S0.
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Step 1

Remove the middle open interval of length α, G = (β, 1− β), and
define

S1 = S0 \ G = J1 ∪ J2,

where J0 and J2 are the left and right closed intervals, respectively,
resulting from the cut:

0 1

ββ α

J0 J2

We get the lengths L(J0) = L(J2) = β.
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Step 2

Apply the same procedure to each of J0 and J2: remove the middle
αL(Jk) = αβ sized open interval.
Add a suffix 0 to the interval that is left of this middle interval, 2
to the interval on the right:

0 1

ββ α

J00 J20

ββ α

J02 J22

There are 22 intervals, each of length L(Jk1,k2) = βL(Jk1) = β2

(k1, k2 = 0, 2).
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Step 3

Apply the same procedure to each of Jk1,k2 , k1, k2 = 0, 2: remove
the middle αL(Jk1,k2) = αβ2 sized open interval.
Add a suffix 0 to the interval that is left of this middle interval, 2
to the interval on the right:

0 1J220

ββ α ββ αββ αββ α

J222J202J200J022J020J000 J002

There are 23 intervals, each of length L(Jk1,k2,k3) = βL(Jk1,k2) = β3

(k1, k2, k3 = 0, 2).
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Step k

After proceeding to the kth cut, we have

Sk =
⋃

j1,...,jk=0,2

Jj1,...,jk ,

where each of the 2k closed intervals Jj1,...,jk has length
L(Jj1,...,jk ) = βk .
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The Cantor set

Finally, we let

C =
∞⋂

k=0

Sk .

Theorem 25
C is a Cantor set.

This is proved by showing that C is nowhere dense and perfect.

Sk has a total length of 2kβk = (2β)k , so, since 2β < 1, the total
length of Sk goes to zero as k →∞.
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Consider the logistic map

fµ(x) = µx(1− x), (1)

in the case µ > 4. For each n ∈ N, define

Λn = {x : f n
µ (x) ∈ [0, 1]}. (2)

The set

Λ =
∞⋂

n=1

Λn

describes the points that remain in [0, 1] forever under iteration of
f .

Theorem 26
Λ is a Cantor set for µ > 4.

This implies that there are infinitely many points in [0, 1] for which
all iterates remain in [0, 1].. although these points are hard to find.
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Parametrized families of functions

Consider the logistic map

xt+1 = µxt(1− xt), (3)

where µ is a parameter in R+, and x will typically be taken in
[0, 1]. Let

fµ(x) = µx(1− x). (1)

The function fµ is called a parametrized family of functions.
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Bifurcations

Definition 27 (Bifurcation)

Let fµ be a parametrized family of functions. Then there is a
bifurcation at µ = µ0 (or µ0 is a bifurcation point) if there exists
ε > 0 such that, if µ0 − ε < a < µ0 and µ0 < b < µ0 + ε, then the
dynamics of fa(x) are “different” from the dynamics of fb(x).

An example of “different” would be that fa has a fixed point (that
is, a 1-periodic point) and fb has a 2-periodic point.

Formally, fa and fb are topologically conjugate to two different
functions.
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Topological conjugacy

Definition 28
Let f : D → D and g : E → E be functions. Then f topologically
conjugate to g if there exists a homeomorphism τ : D → E , called
a topological conjugacy, such that τ ◦ f = g ◦ τ .

Proposition 2

Let D and E be subsets of R, and φ : D → E be an
homeomorphism. Then

1. The set U ⊂ D is open iff φ(U) is open in E .

2. The sequence {xk} converges in D converges to x in D iff the
sequence {φ(xk)} converges to φ(x) in E .

3. The set F is closed in D iff the set φ(F ) is closed in E .

4. The set A is dense in D iff the set φ(A) is dense in E .

The cascade of bifurcations to chaos p. 25



Theorem 29
Let D and E be subsets of R, f : D → D, g : E → E, and
τ : D → E be a topological conjugacy of f and g. Then

1. τ−1 : E → D is a topological conjugacy.

2. τ ◦ f n = gn ◦ τ for all n ∈ N.

3. p is a periodic point of f with least period n iff τ(p) is a
periodic point of g with least period n.

4. If p is a periodic point of f with stable set W s(p), then the
stable set of τ(p) is τ (W s(p)).

5. The periodic points of f are dense in D iff the periodic points
of g are dense in E .

6. f is topologically transitive on D iff g is topologically
transitive on E.

7. f is chaotic on D iff g is chaotic on E.
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The result of Li and Yorke

Theorem 30
Let f : R → R be continuous. Assume that there exists a point a
such that either

I f 3(a) ≤ a < f (a) < f 2(a)

or

I f 3(a) ≥ a > f (a) > f 2(a).

Then f has points of all periods.
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Sharkovskii’s ordering of the natural integers
Consider the set of integers, and order them with the Sharkovskii
ordering .. To do this, first consider all odd integers,

3 . 5 . 7 . 9 . 11 . · · ·

followed by all odd integers multiplied by 2

.2 · 3 . 2 · 5 . 2 · 7 . 2 · 7 . 2 · 9 . 2 · 11 . · · ·

followed by all odd integers multiplied by 22

.22 · 3 . 22 · 5 . 22 · 7 . 22 · 7 . 22 · 9 . 22 · 11 . · · ·

continue..

.2n · 3 . 2n · 5 . · · · . 2n+1 · 3 . 2n+1 · 5 . · · ·

and finally, add all the powers of 2 in decreasing powers,

.2n+1 . 2n . · · · 22 . 2 . 1.

Sharkovskii’s theorem p. 28



Sharkovskii’s theorem

The Sharkovskii ordering gives an ordering between all positive
integers.

Theorem 31 (Sharkovskii)

Let f : I ⊂ R → R be a continuous function. Assume that f has a
point of least period n, and that n . k. Then f has a point of least
period k.

A function that has a periodic point of period 3 has good chances
of being “agitated”..
Note that this says nothing about the stability of the periodic
points.
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Topologically transitive function

Definition 32
The function f : D → D is topologically transitive on D if for any
open sets U and V that interset D, there exists z ∈ U ∩ D and
n ∈ N such that f n(z) ∈ D.
Equivalently, f is topologically transitive on D if for any two points
x , y ∈ D and any ε > 0, there exists z ∈ D such that |z − x | < ε
and |f n(x)− y | < ε for some n.

Chaos – Devaney’s definition p. 30



Sensitive dependence on initial conditions

Definition 33
The function f : D → D exhibits sensitive dependence on initial
conditions if there exists δ > 0 such that for any x ∈ D and any
ε > 0, there exists y ∈ D and n ∈ N such that |x − y | < ε and
|f n(x)− f n(y)| > δ.
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Chaos

The following in due to Devaney. There are other definitions.

Definition 34
The function f : D → D is chaotic if

1. the periodic points of f are dense in D,

2. f is topologically transitive,

3. and f exhibits sensitive dependence on initial conditions.

Chaos – Devaney’s definition p. 32



Reminder: dense sets

Definition 35
Let A be a subset of B. Then A is dense in B if every point in B is
an accumulation point of A, a point of A, or both.

Proposition 3

Let A be a subset of B. Then the following statements are
equivalent.

1. A is dense in B.

2. For each point x ∈ B and each ε > 0, there exists y ∈ A such
that |x − y | < ε.

3. For every point x ∈ B, there exists a sequence of points
contained in A that converges to x.

Point 2 “says” that every circle centered at a point in B contains a
point of A.
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Theorem 36
Let fµ(x) = µx(1− x), µ > 4 and

Λ = {x : ∀n ∈ N, f n
µ (x) ∈ [0, 1]}.

Then

1. If x ∈ R does not belong to Λ, then x is in the stable set of
infinity.

2. The set Λ is a Cantor set.

3. The function f : Λ → Λ is chaotic.
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Sensitive dependence, expansive maps

Definition 37 (Sensitive dependence on IC)

A map f on a metric space X has sensitive dependence on initial
conditions provided there exists r > 0 (independent of the point)
such that for each x ∈ X and for each ε > 0, there exists a point
y ∈ X with d(x , y) < ε and a k ≥ 0, such that
d(f k(x), f k(y)) ≥ r .

Definition 38 (Expansive map)

A map f on a metric space X is expansive provided there exists
r > 0 (independent of the points) such that for each pair of points
x , y ∈ X , there exists k ≥ 0 such that d(f k(x), f k(y)) ≥ r .

On a perfect metric space (every point p ∈ X is limit of a sequence
of elements qn ∈ X , p 6= qn), expansiveness implies sensitive
dependence on IC.
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Transitive map

Definition 39 (Transitive map)

A map f : X → X is (topologically) transitive on an invariant set
Y provided the (forward) orbit of some point p is dense in Y .

f is transitive if, given any two open sets U and V in Y , there
exists n ∈ N, n > 0, such that f n(U) ∩ V 6= ∅.

f transitive means that f mixes up the points of Y .

Chaos – Robinson p. 36



Chaos

Definition 40
A map f on a metric space X is chaotic on an invariant set Y (or
exhibits chaos) provided

1. f is transitive on Y .

2. f has sensitive dependence on initial conditions on Y .

Chaos – Robinson p. 37



Lyapunov exponents

Definition 41 (Lyapunov exponents)

Let f : R → R be a C 1 function. The Lyapunov exponent of
x0 ∈ R, λ(x0), is defined by

λ(x0) = lim sup
n→∞

1

n
log

(∣∣(f n)′ (x0)
∣∣)

= lim sup
n→∞

1

n

n−1∑
j=0

log
(∣∣f ′(xj)

∣∣) .
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