First-order difference equation

A difference equation takes the form
x(n+1) = f(x(n)),
which is also denoted
Xn+1 = F(Xn).

Starting from an initial point xp, we have

x1 = f(xp)

xy = f(x1) = f(f(x0)) = F3(x0)

x3 = f(x) = f(f(f(x0))) = (o)

Difference equation
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Definition 1 (Iterates)

f(xo) is the first iterate of xo under f; f?(xg) is the second iterate
of xp under f. More generally, f"(xp) is the nth iterate of xp under
f. By convention, f%(xp) = xo.

Definition 2 (Orbits)

The set
{f"(x0) : n >0}

is called the forward orbit of xg and is denoted O*(xg). The
backward orbit O~ (xp) is defined, if f is invertible, by the negative
iterates of f. Lastly, the (whole) orbit of xg is

{f¥(x0) : —00 < k < o0}

The forward orbit is also called the positive orbit. The function f is
always assumed to be continuous. If its derivative or second
derivative is used in a result, then the assumption is made that
feClorfec(C2.
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Periodic points

Definition 3 (Periodic point)
A point p is a periodic point of (least) period n if

fi(p)=p and F(p)#pfor0<j<n.

Definition 4 (Fixed point)

A periodic point with period n =1 is called a fixed point.

Definition 5 (Eventually periodic point)

A point p is an eventually periodic point of period n if there exists
m > 0 such that
Fm0(p) = £7(p),

so that f7(p) = fi(p) for all j > m and f™(p) is a periodic point.

Periodic points
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Finding fixed points and periodic points

» A fixed point is such that f(x) = x, so it lies at the

intersection of the first bisectrix y = x with the graph of f(x).

» A periodic point is such that f”(x) = x, it is thus a fixed
point of the nth iterate of f, and so lies at the intersection of
the first bisectrix y = x with the graph of f"(x).

Periodic points

p.



Stable set

Definition 6 (Forward asymptotic point)
q is forward asymptotic to p if

|fj(q) — fj(p)| — 0 as j — oo.
If p is n-periodic, then g is asymptotic to p if
F"(q) — p| — 0 as j — oo

Definition 7 (Stable set)
The stable set of p is

W?*(p) = {q : g forward asymptotic to p}.

Periodic points
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Unstable set

Definition 8 (Backward asymptotic point)
If f is invertible, then g is backward asymptotic to p if

1f1(q) — F(p)| — 0 as j — —oc.

Definition 9 (Unstable set)
The unstable set of p is

WY(p) = {q : g backward asymptotic to p}.

Periodic points
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Stability

Definition 10 (Stable fixed point)

A fixed point p is stable (or Lyapunov stable) if, for every € > 0,
there exists 0 > 0 such that |xp — p| < d implies |f"(x0) — p| < &
for all n > 0. If a fixed point p is not stable, then it is unstable.

Definition 11 (Attracting fixed point)
A fixed point p is attracting if there exists n > 0 such that

|x(0) — p| <n implies lim x(n) = p.

n—oo
If n = oo, then p is a global attractor (or is globally attracting).

Definition 12 (Asymptotically stable point)

A fixed point p is asymptotically stable if it is stable and
attracting. It is globally asymptotically stable if n = co.

Periodic points



The point does not have to be a fixed point to be stable.

Definition 13
A point p is stable if for every € > 0, there exists § > 0 such that if
|x — p| < 4, then |fK(x) — f*(p)| < € for all k > 0.

Another characterization of asymptotic stability:

Definition 14
A point p is asymptotically stable if it is stable and W?*(p)
contains a neighborhood of p.

Can be used with periodic point, in which case we talk of
attracting periodic point (or periodic sink). A periodic point p for
which W¥(p) is a neighborhood of p is a repelling periodic point
(or periodic source).

Periodic points
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Condition for stability /instability

Theorem 15
Let f :R — R be CL.

1. If p is a n-periodic point of f such that |(f")'(p)| < 1, then p
is an attracting periodic point.

2. If p is a n-periodic point of f such that |(f")(p)| > 1, then p
is repelling.

Periodic points
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w-limit points and sets

Definition 16
A point y is an w-limit point of x for f is there exists a sequence
{nk} going to infinity as k — oo such that

lim d(f™(x),y) =0.

k—o00

The set of all w-limit points of x is the w-limit set of x and is
denoted w(x).

Limit sets
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a-limit points and sets

Definition 17
Suppose that f is invertible. A point y is an a-limit point of x for
f is there exists a sequence {nx} going to minus infinity as k — oo

such that
lim d(f™(x),y) =0.

k—o00
The set of all a-limit points of x is the a-limit set of x and is
denoted a(x).

Limit sets
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Invariant sets

Definition 18

Let S C X be a set. S is positively invariant (under the flow of f)
if f(x) € Sforall xe S, ie, f(S)CS. Sis negatively invariant if
f~1(S) C S. Sis invariant if f(S) = S.

Limit sets
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Theorem 19
Let f : X — X be continuous on a complete metric space X. Then

1. For any x, w(x) = yso U {f"(x)}.

n>N

2. If fi(x) = y for some j, then w(x) = w(y).

3. For any x, w(x) is closed and positively invariant. If O"(x) is
contained in some compact subset of X (e.g., the forward
orbit is bounded in some Euclidian space) or if f is
one-to-one, then w(x) is invariant.

4. If O (x) is contained in some compact subset of X, then w(x)
is nonempty and compact and d(f"(x),w(x)) — 0 as n — oo.

5. If D C X is closed and positively invariant, and x € D, then
w(x) C D.
6. Ify € w(x), then w(y) C w(x).

Limit sets
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Minimal set

Definition 20
A set S is a minimal set for f if (i) S is a closed, nonempty,

invariant set and (ii) if B is a closed nonempty invariant subset of
S then B = §S.

Clearly, any periodic orbit is a minimal set.
Proposition 1

Let X be a metric space, f : X — X a continuous map, and
S € X a nonempty compact subset. Then S is a minimal set if
and only ifw(x) =S for all x € S.

Limit sets
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Cantor sets

Let X be a topological space and S C X a subset.

Definition 21 (Nowhere dense set)
S is nowhere dense if int(cl(S)) = 0.

Definition 22 (Totally disconnected set)

S is totally disconnected if the connected components of S are
single points.

Definition 23 (Perfect set)

S is perfect if it is closed and that every point p € S is the limit of
points g, € S with g, # p.

Definition 24 (Cantor set)
S is a Cantor set if it is totally disconnected, perfect and compact.

Cantor sets



Construction of the middle-av Cantor set — Step 0

Let a € (0,1) and 3 such that 26 + a = 1.
Step 0 : Consider the interval Sp = [0, 1].

So can be decomposed as two subintervals of length 3 and one
subinterval of length a:

Note that oo and 3 are proportions of the length of Sp.

Cantor sets
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Step 1

Remove the middle open interval of length o, G = (3,1 — f3), and
define

where Jy and J, are the left and right closed intervals, respectively,
resulting from the cut:

We get the lengths L(Jy) = L(J) = 5.

Cantor sets
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Step 2

Apply the same procedure to each of Jy and J: remove the middle
al(Jx) = af sized open interval.

Add a suffix 0 to the interval that is left of this middle interval, 2
to the interval on the right:

B a B B a B
T T, T T
00 02 20 22

0 1

There are 22 intervals, each of length L(Jk, x,) = BL(Jx,) = 32
(ki, k2 = 0,2).

Cantor sets
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Step 3

Apply the same procedure to each of Ji, x,, k1, k> = 0,2: remove
the middle aL(Jx, k,) = /3% sized open interval.

Add a suffix 0 to the interval that is left of this middle interval, 2
to the interval on the right:

(efale]  [efale] cefalel  [efa e

0y J JoJ J J g1

000 002 020 022 200 202 220 222

There are 23 intervals, each of length L(Jx, ky.ks) = BL(Jky ky) = B3
(ki, ko, k3 = 0,2).

Cantor sets



Step k

After proceeding to the kth cut, we have

Sk = U it

J15ee2jk=0,2

where each of the 2% closed intervals Jj,....jx has length

L( Jise :Jk) ﬁk

Cantor sets
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The Cantor set

Finally, we let
o0
C=) S
k=0

Theorem 25
C is a Cantor set.

This is proved by showing that C is nowhere dense and perfect.

Sk has a total length of 2k3k = (23)%, so, since 23 < 1, the total
length of S, goes to zero as k — cc.

Cantor sets

p.

21



Consider the logistic map
fu(x) = px(1 = x), (1)
in the case pt > 4. For each n € N, define
An = {x: £](x) €[0,1]}. (@)

The set -
A= ()N
n=1

describes the points that remain in [0, 1] forever under iteration of
f.

Theorem 26
N\ is a Cantor set for 1 > 4.

This implies that there are infinitely many points in [0, 1] for which
all iterates remain in [0, 1].. although these points are hard to find.

Cantor sets
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Parametrized families of functions

Consider the logistic map

Xe41 = pxe(l — xt), (3)

where p is a parameter in R4, and x will typically be taken in
[0,1]. Let
fu(x) = ix(1 - ). (1)

The function f, is called a parametrized family of functions.

The cascade of bifurcations to chaos
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Bifurcations

Definition 27 (Bifurcation)

Let f, be a parametrized family of functions. Then there is a
bifurcation at = o (or po is a bifurcation point) if there exists
€ > 0 such that, if up —e < a < po and pp < b < po + ¢, then the
dynamics of f,(x) are “different” from the dynamics of f5(x).

An example of “different” would be that f, has a fixed point (that
is, a 1-periodic point) and f, has a 2-periodic point.

Formally, f, and f, are topologically conjugate to two different
functions.

The cascade of bifurcations to chaos
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Topological conjugacy

Definition 28

Let f: D — D and g: E — E be functions. Then f topologically
conjugate to g if there exists a homeomorphism 7 : D — E, called
a topological conjugacy, such that Tof = gorT.

Proposition 2

Let D and E be subsets of R, and ¢ : D — E be an
homeomorphism. Then

1. The set U C D is open iff $(U) is open in E.

2. The sequence {xx} converges in D converges to x in D iff the
sequence {¢(xx)} converges to ¢(x) in E.

3. The set F is closed in D iff the set ¢(F) is closed in E.
4. The set A is dense in D iff the set ¢(A) is dense in E.

The cascade of bifurcations to chaos
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Theorem 29
Let D and E be subsets of R, f : D — D, g: E — E, and
7 : D — E be a topological conjugacy of f and g. Then

1. 771 E — D is a topological conjugacy.
2. Tof"=g"or7 forall n e N.

3. p is a periodic point of f with least period n iff T(p) is a
periodic point of g with least period n.

4. If p is a periodic point of f with stable set W*(p), then the
stable set of T(p) is T (W?*(p)).

5. The periodic points of f are dense in D iff the periodic points
of g are dense in E.

6. f is topologically transitive on D iff g is topologically
transitive on E.

7. f is chaotic on D iff g is chaotic on E.

The cascade of bifurcations to chaos
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The result of Li and Yorke

Theorem 30

Let f : R — R be continuous. Assume that there exists a point a
such that either

» £3(a) < a< f(a) < F(a)
or

> 3(a) > a> f(a) > f2(a).
Then f has points of all periods.

Li and Yorke
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Sharkovskii's ordering of the natural integers

Consider the set of integers, and order them with the Sharkovskii
ordering >. To do this, first consider all odd integers,

305079110 - -

followed by all odd integers multiplied by 2

$2:3>2-5p2-702-7>2-9p2-11>---
followed by all odd integers multiplied by 22

>22.352%.5522.752%. 75229522 . 11 - -

continue..

p2". 3527 . 5. .. p 2" 3 0 g
and finally, add all the powers of 2 in decreasing powers,

S UREEND LEN) PE N N B

Sharkovskii's theorem
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Sharkovskii's theorem

The Sharkovskii ordering gives an ordering between all positive
integers.

Theorem 31 (Sharkovskii)

Let f: | CR — R be a continuous function. Assume that f has a
point of least period n, and that n> k. Then f has a point of least
period k.

A function that has a periodic point of period 3 has good chances
of being “agitated” ..

Note that this says nothing about the stability of the periodic
points.

Sharkovskii's theorem
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Topologically transitive function

Definition 32
The function f : D — D is topologically transitive on D if for any

open sets U and V that interset D, there exists z € UN D and

n € N such that f"(z) € D.

Equivalently, f is topologically transitive on D if for any two points
x,y € D and any € > 0, there exists z € D such that |z — x| < ¢
and |f"(x) — y| < e for some n.

Chaos — Devaney's definition

. 30



Sensitive dependence on initial conditions

Definition 33
The function f : D — D exhibits sensitive dependence on initial

conditions if there exists § > 0 such that for any x € D and any
e > 0, there exists y € D and n € N such that |x — y| < € and

[£70) = ()| > 0.

Chaos — Devaney's definition

p.

31



Chaos

The following in due to Devaney. There are other definitions.

Definition 34
The function f : D — D is chaotic if

1. the periodic points of f are dense in D,

2. f is topologically transitive,

3. and f exhibits sensitive dependence on initial conditions.

Chaos — Devaney's definition
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Reminder: dense sets

Definition 35
Let A be a subset of B. Then A is dense in B if every point in B is
an accumulation point of A, a point of A, or both.

Proposition 3

Let A be a subset of B. Then the following statements are
equivalent.

1. A is dense in B.

2. For each point x € B and each € > 0, there exists y € A such
that |x — y| < e.

3. For every point x € B, there exists a sequence of points
contained in A that converges to x.

Point 2 “says” that every circle centered at a point in B contains a
point of A.

Chaos — Devaney's definition
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Theorem 36
Let f,(x) = px(1 — x), pn > 4 and

A={x:VneN, f1(x) € [0,1]}.

Then
1. If x € R does not belong to A\, then x is in the stable set of
infinity.
2. The set N\ is a Cantor set.
3. The function f : N — N is chaotic.

Chaos — Devaney's definition
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Sensitive dependence, expansive maps

Definition 37 (Sensitive dependence on IC)

A map f on a metric space X has sensitive dependence on initial
conditions provided there exists r > 0 (independent of the point)
such that for each x € X and for each ¢ > 0, there exists a point
y € X with d(x,y) < e and a k > 0, such that

d(F(x). F<(y)) = r.

Definition 38 (Expansive map)

A map f on a metric space X is expansive provided there exists
r > 0 (independent of the points) such that for each pair of points
x,y € X, there exists k > 0 such that d(f¥(x), fk(y)) > r.

On a perfect metric space (every point p € X is limit of a sequence
of elements g, € X, p # qn), expansiveness implies sensitive
dependence on IC.

Chaos — Robinson



Transitive map

Definition 39 (Transitive map)

A map f : X — X is (topologically) transitive on an invariant set
Y provided the (forward) orbit of some point p is dense in Y.

f is transitive if, given any two open sets U and V in Y/, there
exists n € N, n > 0, such that f"(U)N V # 0.

f transitive means that f mixes up the points of Y.

Chaos — Robinson

. 36



Chaos

Definition 40
A map f on a metric space X is chaotic on an invariant set Y (or
exhibits chaos) provided

1. f is transitive on Y.

2. f has sensitive dependence on initial conditions on Y.

Chaos — Robinson
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Lyapunov exponents

Definition 41 (Lyapunov exponents)

Let f : R — R be a C! function. The Lyapunov exponent of
x0 € R, A(xp), is defined by

A(x0) = limsup % log (‘(f")/ (XO)‘)

n—oo
1n—1
=limsup =S log (|F'(x)|) -
imsup > log (|f'(x9)])

j=0

Lyapunov exponents
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