First-order difference equation

A difference equation takes the form

$$x(n+1)=f(x(n)),$$

which is also denoted

$$x_{n+1}=f(x_n).$$

Starting from an initial point x_0 , we have

$$x_1 = f(x_0)$$

 $x_2 = f(x_1) = f(f(x_0)) = f^2(x_0)$
 $x_3 = f(x_2) = f(f(f(x_0))) = f^3(x_0)$
...

Difference equation p. 1

Definition 1 (Iterates)

 $f(x_0)$ is the *first iterate* of x_0 under f; $f^2(x_0)$ is the *second iterate* of x_0 under f. More generally, $f^n(x_0)$ is the *n*th iterate of x_0 under f. By convention, $f^0(x_0) = x_0$.

Definition 2 (Orbits)

The set

$$\{f^n(x_0):n\geq 0\}$$

is called the *forward orbit* of x_0 and is denoted $O^+(x_0)$. The *backward* orbit $O^-(x_0)$ is defined, if f is invertible, by the negative iterates of f. Lastly, the *(whole)* orbit of x_0 is

$$\{f^k(x_0): -\infty < k < \infty\}.$$

The forward orbit is also called the *positive* orbit. The function f is always assumed to be continuous. If its derivative or second derivative is used in a result, then the assumption is made that $f \in C^1$ or $f \in C^2$.

Difference equation p. 2

Periodic points

Definition 3 (Periodic point)

A point p is a periodic point of (least) period n if

$$f^n(p) = p$$
 and $f^j(p) \neq p$ for $0 < j < n$.

Definition 4 (Fixed point)

A periodic point with period n = 1 is called a *fixed point*.

Definition 5 (Eventually periodic point)

A point p is an eventually periodic point of period n if there exists m > 0 such that

$$f^{m+n}(p)=f^m(p),$$

so that $f^{j+n}(p) = f^j(p)$ for all $j \ge m$ and $f^m(p)$ is a periodic point.

Finding fixed points and periodic points

- ▶ A fixed point is such that f(x) = x, so it lies at the intersection of the first bisectrix y = x with the graph of f(x).
- ▶ A periodic point is such that $f^n(x) = x$, it is thus a fixed point of the *n*th iterate of f, and so lies at the intersection of the first bisectrix y = x with the graph of $f^n(x)$.

Stable set

Definition 6 (Forward asymptotic point)

q is forward asymptotic to p if

$$|f^j(q)-f^j(p)|\to 0 \text{ as } j\to \infty.$$

If p is n-periodic, then q is asymptotic to p if

$$|f^{jn}(q)-p|\to 0 \text{ as } j\to \infty.$$

Definition 7 (Stable set)

The stable set of p is

$$W^s(p) = \{q : q \text{ forward asymptotic to } p\}.$$

Unstable set

Definition 8 (Backward asymptotic point)

If f is invertible, then q is backward asymptotic to p if

$$|f^j(q) - f^j(p)| \to 0 \text{ as } j \to -\infty.$$

Definition 9 (Unstable set)

The *unstable set* of p is

$$W^{u}(p) = \{q : q \text{ backward asymptotic to } p\}.$$

Stability

Definition 10 (Stable fixed point)

A fixed point p is *stable* (or Lyapunov stable) if, for every $\varepsilon > 0$, there exists $\delta > 0$ such that $|x_0 - p| < \delta$ implies $|f^n(x_0) - p| < \varepsilon$ for all n > 0. If a fixed point p is not stable, then it is *unstable*.

Definition 11 (Attracting fixed point)

A fixed point p is *attracting* if there exists $\eta > 0$ such that

$$|x(0) - p| < \eta$$
 implies $\lim_{n \to \infty} x(n) = p$.

If $\eta = \infty$, then p is a global attractor (or is globally attracting).

Definition 12 (Asymptotically stable point)

A fixed point p is asymptotically stable if it is stable and attracting. It is globally asymptotically stable if $\eta = \infty$.

The point does not have to be a fixed point to be stable.

Definition 13

A point p is stable if for every $\varepsilon > 0$, there exists $\delta > 0$ such that if $|x - p| < \delta$, then $|f^k(x) - f^k(p)| < \varepsilon$ for all $k \ge 0$.

Another characterization of asymptotic stability:

Definition 14

A point p is asymptotically stable if it is stable and $W^s(p)$ contains a neighborhood of p.

Can be used with periodic point, in which case we talk of attracting periodic point (or periodic sink). A periodic point p for which $W^u(p)$ is a neighborhood of p is a repelling periodic point (or periodic source).

Condition for stability/instability

Theorem 15

Let $f: \mathbb{R} \to \mathbb{R}$ be C^1 .

- 1. If p is a n-periodic point of f such that $|(f^n)'(p)| < 1$, then p is an attracting periodic point.
- 2. If p is a n-periodic point of f such that $|(f^n)'(p)| > 1$, then p is repelling.

ω -limit points and sets

Definition 16

A point y is an ω -limit point of x for f is there exists a sequence $\{n_k\}$ going to infinity as $k\to\infty$ such that

$$\lim_{k\to\infty}d(f^{n_k}(x),y)=0.$$

The set of all ω -limit points of x is the ω -limit set of x and is denoted $\omega(x)$.

α -limit points and sets

Definition 17

Suppose that f is invertible. A point y is an α -limit point of x for f is there exists a sequence $\{n_k\}$ going to minus infinity as $k\to\infty$ such that

$$\lim_{k\to\infty}d(f^{n_k}(x),y)=0.$$

The set of all α -limit points of x is the α -limit set of x and is denoted $\alpha(x)$.

Invariant sets

Definition 18

Let $S \subset X$ be a set. S is positively invariant (under the flow of f) if $f(x) \in S$ for all $x \in S$, i.e., $f(S) \subset S$. S is negatively invariant if $f^{-1}(S) \subset S$. S is invariant if f(S) = S.

Theorem 19

Let $f: X \to X$ be continuous on a complete metric space X. Then

- 1. For any x, $\omega(x) = \bigcap_{N \ge 0} \overline{\bigcup_{n \ge N} \{f^n(x)\}}$.
- 2. If $f^j(x) = y$ for some j, then $\omega(x) = \omega(y)$.
- 3. For any x, $\omega(x)$ is closed and positively invariant. If $O^+(x)$ is contained in some compact subset of X (e.g., the forward orbit is bounded in some Euclidian space) or if f is one-to-one, then $\omega(x)$ is invariant.
- 4. If $O^+(x)$ is contained in some compact subset of X, then $\omega(x)$ is nonempty and compact and $d(f^n(x), \omega(x)) \to 0$ as $n \to \infty$.
- 5. If $D \subset X$ is closed and positively invariant, and $x \in D$, then $\omega(x) \subset D$.
- 6. If $y \in \omega(x)$, then $\omega(y) \subset \omega(x)$.

Minimal set

Definition 20

A set S is a *minimal* set for f if (i) S is a closed, nonempty, invariant set and (ii) if B is a closed nonempty invariant subset of S then B=S.

Clearly, any periodic orbit is a minimal set.

Proposition 1

Let X be a metric space, $f: X \to X$ a continuous map, and $S \subset X$ a nonempty compact subset. Then S is a minimal set if and only if $\omega(x) = S$ for all $x \in S$.

Cantor sets

Let X be a topological space and $S \subset X$ a subset.

Definition 21 (Nowhere dense set)

S is *nowhere dense* if $int(cl(S)) = \emptyset$.

Definition 22 (Totally disconnected set)

S is *totally disconnected* if the connected components of S are single points.

Definition 23 (Perfect set)

S is *perfect* if it is closed and that every point $p \in S$ is the limit of points $q_n \in S$ with $q_n \neq p$.

Definition 24 (Cantor set)

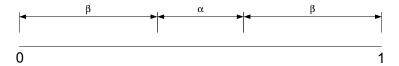
S is a Cantor set if it is totally disconnected, perfect and compact.

Construction of the middle- α Cantor set – Step 0

Let $\alpha \in (0,1)$ and β such that $2\beta + \alpha = 1$.

Step 0: Consider the interval $S_0 = [0, 1]$.

 S_0 can be decomposed as two subintervals of length β and one subinterval of length α :



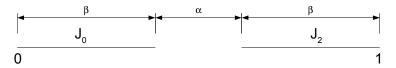
Note that α and β are proportions of the length of S_0 .

Step 1

Remove the middle open interval of length α , $G=(\beta,1-\beta)$, and define

$$S_1 = S_0 \setminus G = J_1 \cup J_2,$$

where J_0 and J_2 are the left and right closed intervals, respectively, resulting from the cut:

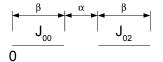


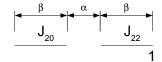
We get the lengths $L(J_0) = L(J_2) = \beta$.

Step 2

Apply the same procedure to each of J_0 and J_2 : remove the middle $\alpha L(J_k) = \alpha \beta$ sized open interval.

Add a suffix 0 to the interval that is left of this middle interval, 2 to the interval on the right:





There are 2^2 intervals, each of length $L(J_{k_1,k_2})=\beta L(J_{k_1})=\beta^2$ $(k_1,k_2=0,2).$

Step 3

Apply the same procedure to each of J_{k_1,k_2} , $k_1,k_2=0,2$: remove the middle $\alpha L(J_{k_1,k_2})=\alpha\beta^2$ sized open interval.

Add a suffix 0 to the interval that is left of this middle interval, 2 to the interval on the right:

There are 2^3 intervals, each of length $L(J_{k_1,k_2,k_3}) = \beta L(J_{k_1,k_2}) = \beta^3 (k_1, k_2, k_3 = 0, 2)$.

Step k

After proceeding to the kth cut, we have

$$S_k = \bigcup_{j_1,\dots,j_k=0,2} J_{j_1,\dots,j_k},$$

where each of the 2^k closed intervals $J_{j_1,...,j_k}$ has length $L(J_{j_1,...,j_k}) = \beta^k$.

The Cantor set

Finally, we let

$$C=\bigcap_{k=0}^{\infty}S_k.$$

Theorem 25

C is a Cantor set.

This is proved by showing that C is nowhere dense and perfect.

 S_k has a total length of $2^k \beta^k = (2\beta)^k$, so, since $2\beta < 1$, the total length of S_k goes to zero as $k \to \infty$.

Consider the logistic map

$$f_{\mu}(x) = \mu x(1-x), \tag{1}$$

in the case $\mu > 4$. For each $n \in \mathbb{N}$, define

$$\Lambda_n = \{ x : f_\mu^n(x) \in [0, 1] \}. \tag{2}$$

The set

$$\Lambda = \bigcap_{n=1}^{\infty} \Lambda_n$$

describes the points that remain in [0,1] forever under iteration of f.

Theorem 26

Λ is a Cantor set for μ > 4.

This implies that there are infinitely many points in [0,1] for which all iterates remain in [0,1].. although these points are hard to find.

Parametrized families of functions

Consider the logistic map

$$x_{t+1} = \mu x_t (1 - x_t), \tag{3}$$

where μ is a parameter in \mathbb{R}_+ , and x will typically be taken in [0,1]. Let

$$f_{\mu}(x) = \mu x(1-x). \tag{1}$$

The function f_{μ} is called a *parametrized family* of functions.

Bifurcations

Definition 27 (Bifurcation)

Let f_{μ} be a parametrized family of functions. Then there is a bifurcation at $\mu=\mu_0$ (or μ_0 is a bifurcation point) if there exists $\varepsilon>0$ such that, if $\mu_0-\varepsilon< a<\mu_0$ and $\mu_0< b<\mu_0+\varepsilon$, then the dynamics of $f_a(x)$ are "different" from the dynamics of $f_b(x)$.

An example of "different" would be that f_a has a fixed point (that is, a 1-periodic point) and f_b has a 2-periodic point.

Formally, f_a and f_b are topologically conjugate to two different functions.

Topological conjugacy

Definition 28

Let $f:D\to D$ and $g:E\to E$ be functions. Then f topologically conjugate to g if there exists a homeomorphism $\tau:D\to E$, called a topological conjugacy, such that $\tau\circ f=g\circ \tau$.

Proposition 2

Let D and E be subsets of \mathbb{R} , and $\phi:D\to E$ be an homeomorphism. Then

- 1. The set $U \subset D$ is open iff $\phi(U)$ is open in E.
- 2. The sequence $\{x_k\}$ converges in D converges to x in D iff the sequence $\{\phi(x_k)\}$ converges to $\phi(x)$ in E.
- 3. The set F is closed in D iff the set $\phi(F)$ is closed in E.
- 4. The set A is dense in D iff the set $\phi(A)$ is dense in E.

Theorem 29

Let D and E be subsets of \mathbb{R} , $f:D\to D$, $g:E\to E$, and $\tau:D\to E$ be a topological conjugacy of f and g. Then

- 1. $\tau^{-1}: E \to D$ is a topological conjugacy.
- 2. $\tau \circ f^n = g^n \circ \tau$ for all $n \in \mathbb{N}$.
- 3. p is a periodic point of f with least period n iff $\tau(p)$ is a periodic point of g with least period n.
- 4. If p is a periodic point of f with stable set $W^s(p)$, then the stable set of $\tau(p)$ is $\tau(W^s(p))$.
- 5. The periodic points of f are dense in D iff the periodic points of g are dense in E.
- 6. f is topologically transitive on D iff g is topologically transitive on E.
- 7. f is chaotic on D iff g is chaotic on E.

The result of Li and Yorke

Theorem 30

Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Assume that there exists a point a such that either

$$f^3(a) \le a < f(a) < f^2(a)$$

or

►
$$f^3(a) \ge a > f(a) > f^2(a)$$
.

Then f has points of all periods.

Li and Yorke p. 27

Sharkovskii's ordering of the natural integers

Consider the set of integers, and order them with the Sharkovskii ordering \triangleright . To do this, first consider all odd integers,

$$3 \triangleright 5 \triangleright 7 \triangleright 9 \triangleright 11 \triangleright \cdots$$

followed by all odd integers multiplied by 2

$$\triangleright 2 \cdot 3 \triangleright 2 \cdot 5 \triangleright 2 \cdot 7 \triangleright 2 \cdot 7 \triangleright 2 \cdot 9 \triangleright 2 \cdot 11 \triangleright \cdots$$

followed by all odd integers multiplied by 22

$$\triangleright 2^2 \cdot 3 \triangleright 2^2 \cdot 5 \triangleright 2^2 \cdot 7 \triangleright 2^2 \cdot 7 \triangleright 2^2 \cdot 9 \triangleright 2^2 \cdot 11 \triangleright \cdots$$

continue..

$$\triangleright 2^n \cdot 3 \triangleright 2^n \cdot 5 \triangleright \cdots \triangleright 2^{n+1} \cdot 3 \triangleright 2^{n+1} \cdot 5 \triangleright \cdots$$

and finally, add all the powers of 2 in decreasing powers,

$$\triangleright 2^{n+1} \triangleright 2^n \triangleright \cdots 2^2 \triangleright 2 \triangleright 1.$$

Sharkovskii's theorem p. 28

Sharkovskii's theorem

The Sharkovskii ordering gives an ordering between all positive integers.

Theorem 31 (Sharkovskii)

Let $f:I\subset\mathbb{R}\to\mathbb{R}$ be a continuous function. Assume that f has a point of least period n, and that $n\triangleright k$. Then f has a point of least period k.

A function that has a periodic point of period 3 has good chances of being "agitated"..

Note that this says nothing about the stability of the periodic points.

Sharkovskii's theorem p. 29

Topologically transitive function

Definition 32

The function $f: D \to D$ is topologically transitive on D if for any open sets U and V that interset D, there exists $z \in U \cap D$ and $n \in \mathbb{N}$ such that $f^n(z) \in D$.

Equivalently, f is topologically transitive on D if for any two points $x,y\in D$ and any $\varepsilon>0$, there exists $z\in D$ such that $|z-x|<\varepsilon$ and $|f^n(x)-y|<\varepsilon$ for some n.

Sensitive dependence on initial conditions

Definition 33

The function $f:D\to D$ exhibits sensitive dependence on initial conditions if there exists $\delta>0$ such that for any $x\in D$ and any $\varepsilon>0$, there exists $y\in D$ and $n\in\mathbb{N}$ such that $|x-y|<\varepsilon$ and $|f^n(x)-f^n(y)|>\delta$.

Chaos

The following in due to Devaney. There are other definitions.

Definition 34

The function $f: D \rightarrow D$ is *chaotic* if

- 1. the periodic points of f are dense in D,
- 2. *f* is topologically transitive,
- 3. and f exhibits sensitive dependence on initial conditions.

Reminder: dense sets

Definition 35

Let A be a subset of B. Then A is dense in B if every point in B is an accumulation point of A, a point of A, or both.

Proposition 3

Let A be a subset of B. Then the following statements are equivalent.

- 1. A is dense in B.
- 2. For each point $x \in B$ and each $\varepsilon > 0$, there exists $y \in A$ such that $|x y| < \varepsilon$.
- 3. For every point $x \in B$, there exists a sequence of points contained in A that converges to x.

Point 2 "says" that every circle centered at a point in B contains a point of A.

Theorem 36

Let
$$f_{\mu}(x) = \mu x(1-x)$$
, $\mu >$ 4 and

$$\Lambda = \{x : \forall n \in \mathbb{N}, \ f_{\mu}^{n}(x) \in [0,1]\}.$$

Then

- 1. If $x \in \mathbb{R}$ does not belong to Λ , then x is in the stable set of infinity.
- 2. The set Λ is a Cantor set.
- 3. The function $f: \Lambda \to \Lambda$ is chaotic.

Sensitive dependence, expansive maps

Definition 37 (Sensitive dependence on IC)

A map f on a metric space X has sensitive dependence on initial conditions provided there exists r>0 (independent of the point) such that for each $x\in X$ and for each $\varepsilon>0$, there exists a point $y\in X$ with $d(x,y)<\varepsilon$ and a $k\geq 0$, such that $d(f^k(x),f^k(y))\geq r$.

Definition 38 (Expansive map)

A map f on a metric space X is *expansive* provided there exists r > 0 (independent of the points) such that for each pair of points $x, y \in X$, there exists $k \ge 0$ such that $d(f^k(x), f^k(y)) \ge r$.

On a perfect metric space (every point $p \in X$ is limit of a sequence of elements $q_n \in X$, $p \neq q_n$), expansiveness implies sensitive dependence on IC.

Chaos – Robinson p. 3

Transitive map

Definition 39 (Transitive map)

A map $f: X \to X$ is (topologically) transitive on an invariant set Y provided the (forward) orbit of some point p is dense in Y.

f is transitive if, given any two open sets U and V in Y, there exists $n \in \mathbb{N}$, n > 0, such that $f^n(U) \cap V \neq \emptyset$.

f transitive means that f mixes up the points of Y.

Chaos – Robinson p. 36

Chaos

Definition 40

A map f on a metric space X is chaotic on an invariant set Y (or exhibits chaos) provided

- 1. f is transitive on Y.
- 2. f has sensitive dependence on initial conditions on Y.

Chaos – Robinson p. 3

Lyapunov exponents

Definition 41 (Lyapunov exponents)

Let $f: \mathbb{R} \to \mathbb{R}$ be a C^1 function. The Lyapunov exponent of $x_0 \in \mathbb{R}$, $\lambda(x_0)$, is defined by

$$\lambda(x_0) = \limsup_{n \to \infty} \frac{1}{n} \log \left(\left| (f^n)'(x_0) \right| \right)$$
$$= \limsup_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \log \left(\left| f'(x_j) \right| \right).$$

Lyapunov exponents p. 3