Bifurcations

The general context of bifurcations

Consider the discrete time system
xey1 = f(x)
or the continuous time system
,
X' =f(x).

We start with a function f : R2 — R, C" when a map is
considered, C when continuous time is considered.

In both cases, the function f can depend on some parameters. We
are interested in the differences of qualitative behavior, as one of
these parameters, which we call 1, varies.

General context

General context

So we write
Xty1 = f(Xt-, }1) = ";A(Xr)

and
¥ = () = £,(x)

for p € R.

p.3  General context



Bifurcations Topological conjugacy

Definition (Bifurcation)

Let f, be a parametrized family of functions. Then there is a
bifurcation at ju = pg (or po is a bifurcation point) if there exists
& > 0 such that, if uo —e < a < pg and pg < b < g + €, then the
dynamics of f,(x) are “different” from the dynamics of fi,(x).

Definition
Let f: D — D and g : E — E be functions. Then f topologically
conjugate to g if there exists a homeomorphism 7 : D — E, called

a topological conjugacy, such that Tof = goT.
An example of “different” would be that f, has a fixed point (that Polog yugacy, g

is, a 1-periodic point) and f, has a 2-periodic point.

Formally, f, and fj, are topologically conjugate to two different
functions.
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Types of bifurcations (discrete time)

Some bifurcations in discrete-time equations Saddle-node (or tangent):

Xey1 = pu+ X+ x¢
Transcritical:
Xes1 = (1 Dxe + ¢

Pitchfork:
Xxep1 = (p+ 1)xe *xf‘

Period doubling (or flip):

2
Xe41 = [ — Xt — X¢

Some bifurcations in discrete-time equations.



Discrete-time saddle-node
Xep1 = p+ xe + X2
Fixed points (FP)
x:u+><+x2<:>x2:—u
S x=3/—p
So no real valued FP if >0, 2 if 4 < 0.
Stability of \/=pz  f'(x) = 1+ 2x, so, assuming 1 < 0,
PR =1+2V77
Thus
(V=) <le-1<l+2/-p<le 1< /=<0

which is impossible. Therefore, /= is always repelling.

Some bifurcations in discrete-time equations

Summary: discrete-time saddle-node

Some bifurcations in discrete-time equations

Stability of \/=p1 assuming p < 0,
(V=) =1-2V=p
Thus

[fl(—v=p)<le-1<1-2y=p<1

& -1<—/—n<0
S0<y/—pu<l

& -1<p<0

So, for =1 < p1 < 0, the FP —\/=1 is attracting.

p. 9 Some bifurcations in discrete-time equations

Discrete-time period doubling

2
Xe4l = o — Xe — Xp

FP:
x=p-—x—x2&x?+2x—pu=0

Discriminant: A =4+ 4p = 4(1+ ). So we get

—2+2y1
N2=——>H T =—-1+1+p

p.11  Some bifurcations in discrete-time equations



Types of bifurcations (continuous time)

> Saddle-node
P : . X =p-x
Some bifurcations in continuous equations
> Transcritical

X' = px — x?

» Pitchfork

> supercritical

x'=px —x3

> subcritical
X' = px +x°

Some bifurcations in continuous equations

Saddle-node for maps

Theorem
Assume f € C" with r > 2, for both x and j. Suppose that

1. f(x0, 10) = X0,
2. fi(x) =1,
Saddle-node 3. fig(x0) # 0 and
of
4. —(xo, 3
0;1("‘”‘0) #0
Then 31 3 xo and N > g, and m € C'(I, N), such that
L o (x) = x,
2. m(x0) = o,
3. the graph of m gives all the fixed points in | x N.

Saddle-node



Theorem (cont.)
Moreover, m'(xp) = 0 and
2

O (0. 10)
— o3\ X0, Ho
() = 22

E(Xo-uo)

These fixed points are attracting on one side of xo and repelling on
the other.

Saddle-node [

Saddle-node for continuous systems

Theorem
Consider the system x' = f(x, 1), x € R". Suppose that
f(x,0) = xo = 0. Further, assume that
1. The Jacobian matrix Ag = Df(0,0) has a simple zero
eigenvalue,
2. ag # 0, where

p B(q.q)) = 2d 2<pv f(7q,0))

=

3. £,(0,0) #0.

B is the bilinear function with components

"~ Pf(£,0)
Z 080

Bj(x,y) =

£=0

d (p.q) = qu the standard inner product.

an
Saddle-node P
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Saddle-node for continuous equations

Consider the system x’ = f(x, 1), x € R. Suppose that
f(xo, s10) = 0. Further, assume that the following nondegeneracy
conditions hold:

1 a= %%(XDJLD) #0,

2. 58 (x0, o) # 0.
Then, in a neighborhood of (o, 110), the equation x' = f(x, ) is
topologically equivalent to the normal form

X' = 7 + sign(ag)x®

Saddle-node

Theorem (cont.)
Then, in a neighborhood of the origin, the system x' = f(x, p) is

Iogicall ool

P ally eq to the
the standard saddle,

of the normal form by

y' =~ +sign(ao)y?
¥s=-Ys
Yu=yu

withy € R, ys € R" and yy € R", where ns + ny +1 = n and
ns is number of eigenvalues of Ay with negative real parts.

Saddle-node



Pitchfork bifurcation
The ODE x’ = f(x, st), with the function f(x, ;1) satisfying
—f(x,n) = f(=x, )

(f is odd),

of f »f
5(0,#0) =0, w(ovﬂo) =0, ﬁ(o-ﬂo) #0,

(0 o) =0,

0, 0.
Pitchfork Or ()x( o) #

has a pitchfork bifurcation at (x, ;) = (0, zt0). The form of the
pitchfork is determined by the sign of the third derivative:

03?‘(0 ) < 0, supercritical
ox3 Ho >0, subecritical

Pitchfork

Theorem (Period doubling bifurcation)
Assume f is C" in x and p, with r > 3, and that

-

. xo is a fixed point for ju = g, i.e., f(xo, fi0) = xo,

~

fio(x0) = =1 (50, since # 1, there is a curve of fixed points
x(p) for pu close to i),

w

the derivative of f;(x(11)) with respect to i is nonzero,

_ [P rory (o
“ lopox 2 \op) \ox2

the graph of ﬂfc has nonzero cubic terms in its tangency with

the diagonal (the quadratic term is zero):

) 1 93f 1¢ 2
8= (ﬁ {)Xs(xmuo)) + (2, e (Xoyuo)) #0

#0,

(x0,410)

>

Period doubling

Period doubling.



Theorem (Period doubling bifurcation (cont.))

Then there is a period doubling bifurcation at (xo, j10). More

specifically,
1. there is a differentiable curve of fixed points, x(j), passing
through (xo, f10), and the stability of the fixed point changes
at pio;

. which side of i is attracting depends on the sign of «;

w N

. there is a differentiable curve ~y passing through (xo, ft0), such
that v\ {(xo, 1t0)} is the union of hyperbolic period 2 orbits;

4. v is tangent to R x {yuo} at (xo, pto), so v is the graph of a
function j1 = m(x), with m'(xp) = 0 and
m"(x0) = —2f/a #0;

. the stability of the period 2 orbit depends on 3: if 3 > 0, it is
attracting, if 3 < 0, it is repelling.

o

Period doubling

Poincaré map

Hopf

Consider

X' = f(x) 3)
If T is a periodic orbit of (3) through xp, and X is a hyperplane
perpendicular to I at xg, then for any point x € ¥ close enough to
xo, the solution through x at t = 0, ¢¢(x), crosses ¥ again at a
point P(x) near x.

The mapping x — P(x) is the Poincaré map.
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Hopf

Hopf

Theorem

Let E be an open subset of R" and f € C*(E). Suppose that

ot(x0) is a periodic solution of (3) of period T, and that
M={xeR":

x=¢¢(x0), 0<t<T}

is contained in E. Let ¥ be the hyperplane orthogonal to I at xg,
ie.,
Y={xeR": (x—xo)-f(x)=0}
Then there exists § > 0 and a unique function 7(x), defined and
continuously differentiable for x € Ns(xo), such that T(xo) = T
and
Sr(x)(x) €T

for all x € Nj(xo). Forx € Nj(xo) No,
P(x) = ¢r(x)(x)

is the Poincaré map for I at xp.



Example

Consider the system
X =~y +x(p—x*—y?)
Y =x+y(p—x"=y?)
Transform to polar coordinates:
r =)
=1

Hopf

Hopf bifurcation

Theorem (Hopf bifurcation theorem)
Consider the system

d (x) _ (anm) m(y)) (x) . (ﬁ(x,y,u)) @
dt \y an(p) an(n)) \y Bl y.m))”

with ;1 € R a parameter. Suppose fi,f, € C3, that the origin is an

equilibrium of (4), and that the matrix

(o) o)
s = (30 220)

is valid in a neighborhood of the origin. Additionally, suppose that
the eigenvalues of J(j1) are a(p) + i3(1), with a(0) = 0 and
B(r) # 0, satisfying the transversality condition

da
dp

4=0
Hopf

2
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Hopf

Hopf

has solution
(1+e 2t Cpp
1+e2tCp
0(t) =t+6

r(t) =

Theorem (Hopf bifurcation theorem, cont.)

Then, in any open set U > (0,0) in R? and for any jio > 0, there
exists i, |[i| < jio, such that (4) has a periodic solution for 1 = fi
in U with approximate period T = 27/3(0).



Another formulation

Hopf

Theorem (Hopf bifurcation)

Let x' = A(pt)x + F(u.x) be a C¥ planar vector field, with k > 0,
depending on the scalar parameter ju such that F(;,0) = 0 and
Dy F(u,0) =0 for all ju sufficiently close enough to the origin.
Assume that the linear part A(u) at the origin has the eigenvalue
a(p) £ iB(p), with a(0) = 0 and 3(0) # 0. Furthermore, assume
the eigenvalues cross the imaginary axis with nonzero speed, i.e.,

d
—a(pu #0.
Ao

Then, in any neighborhood U > (0,0) in R? and any given 1o > 0,

there exists a i with |[i| < puo such that the differential equation
x' = A(ji)x + F(fi.x) has a nontrivial periodic orbit in U.

P33

Supercritical or subcritical Hopf? (cont.)

Hopf

Define

C = fox + fiyy + &y + Byyy

1
+ 50y (=fy (foc + fy) + &y (8x + 8yy) + FxBix — Fryv8yy) s

evaluated at (0,0) and for o = 0. Then, if da(0)/dp > 0,

1. If C <0, then for < 0, the origin is a stable spiral, and for
1t > 0, there exists a stable periodic solution and the origin is
unstable (supercritical Hopf).

2. If C >0, then for ;1 < 0, there exists an unstable periodic
solution and the origin is unstable, and for 1 > 0, the origin is
unstable (subcritical Hopf).

3. If C =0, the test is inconclusive.

p. 35

Supercritical or subcritical Hopf?

Hopf

Supercritical Hopf

Hopf

Transform the system into

w0)- (6 ) 0)+(

The Jacobian at the origin is

and thus eigenvalues are o(y) +i8(p), and «(0) = 0 and 3(0) > 0.

_ [ alw)
0= (40

fl(X~y.u)) _

g1(x.y, 1)

B(n)
a(p)

)

(

f(x,y,1)
&(x,y. 1)

Here, y1, y> are the variables, 3 is the bifurcation parameter.

\a

[

9

p<o

p=0

B>0

)



Subcritical Hopf

Here, y1, y> are the variables, (3 is the bifurcation parameter.

Y2 Y2

e/

p< = p>0

Hopf

Example: a general chemostat

Chemostat:

§'=D(5° - S) — u(S)x
X' = (g(8) - Di)x
with u, g € C such that
1. u(0) = g(0) =0,
2. My, Mg € R such that for all S € R, u(S) < M, and
8(5) < Mg

Hopf

P37
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Example: predator-prey system

Hopf

Predator-prey system:

X' = ax — bxy
y = oy —dy

where a, b,c,d > 0.

Equilibria

Hopf

From (6b), at equilibrium, x = 0 or g(S) = Di.

Set x = 0in (6a): S = S°. So one EP (the trivial or washout EP)
is (S,x) = (5°,0).

Let A, ;€ R, where R = RU {—00} U {+00}. We suppose A < 1z,
and that \ and p are the solutions of g(S) = D;. We set A and/or
1 equal to 400 if no solution to the equation exists.

Call S* these equilibria (so S* = X\ or $* = 1). Then, substituting
into (6a),
._D(s°-5Y)
u(S*)
This EP is relevant only if $* < S°.



Equilibria

So, in conclusion, there are potentially two EPs:

> the washout equilibrium,

Ey = (S,x) = (5°,0)

» one or two nontrivial equilibria,

E*:=(5,x)= (S*,

where §* = X or §* = p, solution of g(S) = D;. When
needed, we write E} and Ejj. These EPs exist if S0 > s
Note in particular that if A or y is equal to oo, then
S0 — §* = —oo and the E* are not relevant.

Hopf

Case of one humped growth

Right: A = p = oc.

Hopf

poal
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Case of monotone growth

Hopf

ais)| als)
D,

s

Left: 1 = oo. Right: A = p = oco.

Stability of washout EP

Hopf

Jacobian matrix at point (S, x) is
g (—D—u/(s)x —u(S) )
gS)x  g(s)-D
So at Ey,
= -D  —u(s%
6=\ 0 gs%-D
Eigenvalues are —D and g(S°) — D;. So local asymptotic stability
depends on the sign of g(S°) — Dy.

Theorem
If g(S°) < Dy, then Eqy is locally asymptotically stable.
If g(S°) > Dy, then Ey is unstable.



Stability of nontrivial EP

At E*,

o= (D )

since g(5*) = Di.

Two ways to study stability:
» Study the characteristic polynomial using Descartes’ rule of
signs.
» Study the eigenvalues using some properties of eigenvalues of
2 x 2 matrices.

Hopf

With an additional result called the Routh-Hurwitz criterion, we
obtain finally that

Theorem
The matrix M has eigenvalues with negative real parts if, and only
if, det(M) > 0 and tr(M) < 0.

Hopf

3
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Properties of 2 x 2 matrices

v=(C )

The characteristic polynomial of M is

Consider the matrix

P(A\) = (a—A)(d—A) — be
=A%~ (a+d)\+ (ad — bc)

=22 — tr(M)X + det(M)

If det(M) > 0 and tr(M) < 0, then by Descartes’ rule of signs,
there are no positive real roots to this polynomial. Then,
computing P(—\), we obtain the sign pattern + — +, implying two
or zero negative real roots.

Hopf

Hopf bifurcation

Theorem
Select one parameter as a bifurcation parameter, and call it «. If
there exists a critical value o of a such that x; u'(A\a,.) + D =0,
then the system undergoes a Hopf bifurcation at E)’fn: = (Maer Xae)
if
> g'(Ma.) >0, and
d
» —(—Dx* /(S* .
G D@ @] #0

Let

G =—0(Xa)g (Mo )t (Na)
U (R0 ) (' (Ma)g (Nac) + 8(Mac)g" (Ao )

The bifurcation is supercritical if Cy < 0, and subcritical if Cyy > 0.

Hopf



Let wo = \/x*u(5*)g’(5*) be the i

y part of the eig

at the critical value ac. Take

0 -1
T=(2
(u(S") 0)

Then

Then in canonical form, the system is

r'=r(=D1 +g(~v))

V= —(S°+v)D+ r%u(—\/)

=f(r,v)
=g(r,v)

Hopf

A Lyapunov function

Consider the function

vm#fM

g e ()

Hopf

0
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Global stability

Hopf

Hopf

We can show

Theorem

For any & > 0, there exists T. > 0 such that S(t) < S® + ¢ for all
t > T.. If in addition A < S°, g(S) > Dy for all S € (A, S°], and
x(0) > 0, then there exists T such that S(t) < S° forall t > T.

Theorem
If S <\, then Eqy is GAS.

For clarity, define

w(s)= 8
Then
~x(e(5)- 00 (1- 3 )

We have V' =0 if and only if S= X or S =y = S°.



Hopf

Theorem
If
> A< SO,
> g'(\)>0,
> g(\) > Dy,
> u'(N) > 75’-’“(i)k and
b1 USSY

W"% has exactly one sign change for S € (0, 5%),

then the equilibrium E5 is globally asymptotically stable with
respect to the interior of the positive cone.



