Bifurcations

General context

Some bifurcations in discrete-time equations

Some bifurcations in continuous equations

Saddle-node

Pitchfork

Period doubling

Hop

p. 1

The general context of bifurcations

Consider the discrete time system

$$x_{t+1} = f(x_t)$$

or the continuous time system

$$x' = f(x)$$
.

We start with a function $f: \mathbb{R}^2 \to \mathbb{R}$, C^r when a map is considered, C^1 when continuous time is considered.

In both cases, the function f can depend on some parameters. We are interested in the differences of qualitative behavior, as one of these parameters, which we call μ , varies.

So we write

$$x_{t+1} = f(x_t, \mu) = f_{\mu}(x_t)$$
 (1)

and

$$x' = f(x, \mu) = f_{\mu}(x)$$
 (2)

 $\text{ for } \mu \in \mathbb{R}.$

Bifurcations

Topological conjugacy

Definition (Bifurcation)

Let f_μ be a parametrized family of functions. Then there is a bifurcation at $\mu=\mu_0$ (or μ_0 is a bifurcation point) if there exists $\varepsilon>0$ such that, if $\mu_0-\varepsilon< a<\mu_0$ and $\mu_0< b<\mu_0+\varepsilon$, then the dynamics of $f_b(x)$ are "different" from the dynamics of $f_b(x)$.

An example of "different" would be that f_a has a fixed point (that is, a 1-periodic point) and f_b has a 2-periodic point.

Formally, f_a and f_b are topologically conjugate to two different functions

Definition

Let $f:D\to D$ and $g:E\to E$ be functions. Then f topologically conjugate to g if there exists a homeomorphism $\tau:D\to E$, called a topological conjugacy, such that $\tau\circ f=g\circ \tau$.

General context

Conoral conto

Some bifurcations in discrete-time equations

Some bifurcations in continuous equation

Saddle-nod

Pitchfor

Period doublin

Нор

p. 5 General context

Types of bifurcations (discrete time)

Saddle-node (or tangent):

$$x_{t+1} = \mu + x_t + x_t^2$$

Transcritical:

$$x_{t+1} = (\mu + 1)x_t + x_t^2$$

Pitchfork:

$$x_{t+1} = (\mu + 1)x_t - x_t^3$$

Period doubling (or flip):

$$x_{t+1} = \mu - x_t - x_t^2$$

n 6

Discrete-time saddle-node

$$x_{t+1} = \mu + x_t + x_t^2$$

Fixed points (FP)

$$x = \mu + x + x^2 \Leftrightarrow x^2 = -\mu$$

 $\Leftrightarrow x = \pm \sqrt{-\mu}$

So no real valued FP if $\mu >$ 0, 2 if $\mu <$ 0.

Stability of
$$\sqrt{-\mu}$$
 $f'(x) = 1 + 2x$, so, assuming $\mu < 0$,

$$f'(\sqrt{-\mu}) = 1 + 2\sqrt{-\mu}$$

Thus

$$|f'(\sqrt{-\mu})| < 1 \Leftrightarrow -1 < 1 + 2\sqrt{-\mu} < 1 \Leftrightarrow -1 < \sqrt{-\mu} < 0$$

which is impossible. Therefore, $\sqrt{-\mu}$ is always repelling.

Summary: discrete-time saddle-node

Stability of $\sqrt{-\mu}$ assuming $\mu < 0$,

$$f'(-\sqrt{-\mu}) = 1 - 2\sqrt{-\mu}$$

Thus

$$\begin{split} |f'(-\sqrt{-\mu})| < 1 &\Leftrightarrow -1 < 1 - 2\sqrt{-\mu} < 1 \\ &\Leftrightarrow -1 < -\sqrt{-\mu} < 0 \\ &\Leftrightarrow 0 < \sqrt{-\mu} < 1 \\ &\Leftrightarrow -1 < \mu < 0 \end{split}$$

So, for $-1<\mu<$ 0, the FP $-\sqrt{-\mu}$ is attracting.

Some bifurcations in discrete-time equations

Discrete-time period doubling

$$x_{t+1} = \mu - x_t - x_t^2$$

FP:

$$x=\mu-x-x^2 \Leftrightarrow x^2+2x-\mu=0$$

Discriminant: $\Delta=4+4\mu=4(1+\mu)$. So we get

$$x_{1,2} = \frac{-2 \pm 2\sqrt{1+\mu}}{2} = -1 \pm \sqrt{1+\mu}$$

Some bifurcations in discrete-time equations

p. 10

C-----

Some bifurcations in discrete-time equations

Some bifurcations in continuous equations

Saddle-node

Pitchfork

Period doubling

Hopf

Conoral contox

Compatible discount since constitution

Some hiturestions in continuous equations

Saddle-node

Pitchfork

Period doublin

-lon

Types of bifurcations (continuous time)

▶ Saddle-node

$$x' = \mu - x^2$$

Transcritical

$$x' = \mu x - x^2$$

Pitchfork

 $x' = \mu x - x^3$

supercritical
 subcritical

$$x' = \mu x + x^3$$

n 14

Some bifurcations in continuous equations

Saddle-node for maps

Theorem

Assume $f \in C^r$ with r > 2, for both x and μ . Suppose that

- 1. $f(x_0, \mu_0) = x_0$,
- 2. $f'_{u_0}(x_0) = 1$,
- 3. $f_{\mu_0}''(x_0) \neq 0$ and
- 4. $\frac{\partial f}{\partial \mu}(x_0, \mu_0) \neq 0$.

Then $\exists I \ni x_0$ and $N \ni \mu_0$, and $m \in C^r(I, N)$, such that

- $1. \ f_{m(x)}(x) = x,$
- 2. $m(x_0) = \mu_0$,
- the graph of m gives all the fixed points in I x N.

Saddle-node p.

Theorem (cont.)

Moreover, $m'(x_0) = 0$ and

$$m''(x_0) = \frac{-\frac{\partial^2 f}{\partial x^2}(x_0, \mu_0)}{\frac{\partial f}{\partial \mu}(x_0, \mu_0)} \neq 0.$$

These fixed points are attracting on one side of x0 and repelling on the other

Saddle-node for continuous equations

Consider the system $x' = f(x, \mu), x \in \mathbb{R}$. Suppose that $f(x_0, \mu_0) = 0$. Further, assume that the following nondegeneracy conditions hold:

1.
$$a_0 = \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(x_0, \mu_0) \neq 0$$

2.
$$\frac{\partial f}{\partial \mu}(x_0, \mu_0) \neq 0$$

Then, in a neighborhood of (x_0, μ_0) , the equation $x' = f(x, \mu)$ is topologically equivalent to the normal form

$$x' = \gamma + sign(a_0)x^2$$

Saddle-node for continuous systems

Theorem

Saddle-node

Consider the system $x' = f(x, \mu), x \in \mathbb{R}^n$. Suppose that $f(x,0) = x_0 = 0$. Further, assume that

- 1. The Jacobian matrix $A_0 = Df(0,0)$ has a simple zero eigenvalue.
- 2. $a_0 \neq 0$, where

$$a_0 = rac{1}{2}\langle p, B(q,q)
angle = rac{1}{2}rac{d^2}{d au^2}\langle p, f(au q,0)
angle igg|_{ au=0}$$

3. $f_{\mu}(0,0) \neq 0$.

B is the bilinear function with components

$$B_j(x,y) = \sum_{k,\ell=1}^n \frac{\partial^2 f_j(\xi,0)}{\partial \xi_k \partial \xi_\ell} \bigg|_{\xi=0} x_k y_\ell, \quad j=1,\ldots,n$$

n 17 Saddle-node

Theorem (cont.)

Then, in a neighborhood of the origin, the system $x' = f(x, \mu)$ is topologically equivalent to the suspension of the normal form by the standard saddle.

$$y' = \gamma + sign(a_0)y^2$$

$$y'_S = -y_S$$

$$y'_U = y_U$$

with $y \in \mathbb{R}$, $y_S \in \mathbb{R}^{n_S}$ and $y_U \in \mathbb{R}^{n_U}$, where $n_S + n_U + 1 = n$ and ns is number of eigenvalues of An with negative real parts.

n 18

Concret contact

Some bifurcations in discrete-time equations

Some bifurcations in continuous equations

Saddle-nod

Pitchfork

Period doubling

Hop

General context

Some hifurcations in discrete-time equation

Some bifurcations in continuous equations

Saddle-nod

Pitchfor

Period doubling

Hor

Pitchfork bifurcation

The ODE $x' = f(x, \mu)$, with the function $f(x, \mu)$ satisfying

$$-f(x,\mu)=f(-x,\mu)$$

(f is odd),

$$\begin{split} &\frac{\partial f}{\partial x}(0,\mu_0) = 0, \frac{\partial^2 f}{\partial x^2}(0,\mu_0) = 0, \frac{\partial^3 f}{\partial x^3}(0,\mu_0) \neq 0, \\ &\frac{\partial f}{\partial r}(0,\mu_0) = 0, \frac{\partial^2 f}{\partial r \partial x}(0,\mu_0) \neq 0. \end{split}$$

has a pitchfork bifurcation at $(x,\mu)=(0,\mu_0)$. The form of the pitchfork is determined by the sign of the third derivative:

$$\frac{\partial^3 f}{\partial x^3}(0,\mu_0) \begin{cases} <0, & \text{supercritical} \\ >0, & \text{subcritical} \end{cases}$$

Pitchforl

p. 22

Theorem (Period doubling bifurcation)

Assume f is C^r in x and u, with r > 3, and that

- 1. x_0 is a fixed point for $u = u_0$, i.e., $f(x_0, u_0) = x_0$.
- 2. $f'_{\mu_0}(x_0) = -1$ (so, since $\neq 1$, there is a curve of fixed points $x(\mu)$ for μ close to μ_0).
- 3. the derivative of $f'_{\mu}(x(\mu))$ with respect to μ is nonzero,

$$\alpha = \left. \left[\frac{\partial^2 f}{\partial \mu \partial x} + \frac{1}{2} \left(\frac{\partial f}{\partial \mu} \right) \left(\frac{\partial^2 f}{\partial x^2} \right) \right] \right|_{(x_0, \mu_0)} \neq 0,$$

4. the graph of $f_{p_0}^2$ has nonzero cubic terms in its tangency with the diagonal (the quadratic term is zero):

$$\beta = \left(\frac{1}{3!} \frac{\partial^3 f}{\partial x^3}(x_0, \mu_0)\right) + \left(\frac{1}{2!} \frac{\partial^2 f}{\partial x^2}(x_0, \mu_0)\right)^2 \neq 0$$

Theorem (Period doubling bifurcation (cont.))

Then there is a period doubling bifurcation at (x_0, μ_0) . More specifically,

- 1. there is a differentiable curve of fixed points, $x(\mu)$, passing through (x_0, μ_0) , and the stability of the fixed point changes at μ_0 ;
- 2. which side of μ_0 is attracting depends on the sign of α ;
- there is a differentiable curve γ passing through (x₀, μ₀), such that γ \ {(x₀, μ₀)} is the union of hyperbolic period 2 orbits;
- 4. γ is tangent to $\mathbb{R} \times \{\mu_0\}$ at (x_0, μ_0) , so γ is the graph of a function $\mu = m(x)$, with $m'(x_0) = 0$ and $m''(x_0) = -2\beta/\alpha \neq 0$;
- 5. the stability of the period 2 orbit depends on β : if $\beta > 0$, it is attracting, if $\beta < 0$, it is repelling.

Period doubling

Poincaré map

Consider

$$x' = f(x) \tag{3}$$

If Γ is a periodic orbit of (3) through x_0 , and Σ is a hyperplane perpendicular to Γ at x_0 , then for any point $x\in \Sigma$ close enough to x_0 , the solution through x at t=0, $\phi_t(x)$, crosses Σ again at a point P(x) near x_0 .

The mapping $x \mapsto P(x)$ is the Poincaré map.

General contex

Some bifurcations in discrete-time equations

Some bifurcations in continuous equations

Saddle-node

Pitchfork

Period doubling

Hopt

p. 25

Theorem

Let E be an open subset of \mathbb{R}^n and $f \in C^1(E)$. Suppose that $\phi_t(x_0)$ is a periodic solution of (3) of period T, and that

$$\Gamma = \{x \in \mathbb{R}^n: \quad x = \phi_t(x_0), \quad 0 \le t \le T\}$$

is contained in E. Let Σ be the hyperplane orthogonal to Γ at $x_0,$ i.e.,

$$\Sigma = \{x \in \mathbb{R}^n : (x - x_0) \cdot f(x_0) = 0\}.$$

Then there exists $\delta > 0$ and a unique function $\tau(x)$, defined and continuously differentiable for $x \in \mathcal{N}_{\delta}(x_0)$, such that $\tau(x_0) = T$ and

$$\phi_{\tau(x)}(x) \in \Sigma$$

for all $x \in \mathcal{N}_{\delta}(x_0)$. For $x \in \mathcal{N}_{\delta}(x_0) \cap \sigma$,

$$P(x) = \phi_{\tau(x)}(x)$$

p. 28

is the Poincaré map for Γ at x₀.

Hopf p. 27 Hopf

Example

Consider the system

$$x' = -y + x(\mu - x^2 - y^2)$$

$$y' = x + y(\mu - x^2 - y^2)$$

Transform to polar coordinates:

$$r' = r(\mu - r^2)$$

$$\theta' = 1$$

$$r' = r(\mu - r^2)$$

 $\theta' = 1$

has solution

$$r(t) = \frac{\sqrt{(1 + e^{-2\mu t}C\mu)\mu}}{1 + e^{-2\mu t}C\mu}$$
$$\theta(t) = t + \theta_0$$

n 30

Hopf

Hopf bifurcation

Theorem (Hopf bifurcation theorem)

Consider the system

$$\frac{d}{dt}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_{11}(\mu) & a_{12}(\mu) \\ a_{21}(\mu) & a_{22}(\mu) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} f_1(x,y,\mu) \\ f_2(x,y,\mu) \end{pmatrix},$$

with $\mu \in \mathbb{R}$ a parameter. Suppose $f_1, f_2 \in C^3$, that the origin is an equilibrium of (4), and that the matrix

$$J(\mu) = \begin{pmatrix} a_{11}(\mu) & a_{12}(\mu) \\ a_{21}(\mu) & a_{22}(\mu) \end{pmatrix}$$

is valid in a neighborhood of the origin. Additionally, suppose that the eigenvalues of $J(\mu)$ are $\alpha(\mu)+i\beta(\mu)$, with $\alpha(0)=0$ and $\beta(r)\neq 0$, satisfying the transversality condition

$$\left. \frac{d\alpha}{d\mu} \right|_{\mu=0} \neq 0.$$

Theorem (Hopf bifurcation theorem, cont.)

Then, in any open set $\mathcal{U}\ni(0,0)$ in \mathbb{R}^2 and for any $\mu_0>0$, there exists $\bar{\mu},\,|\bar{\mu}|<\mu_0$, such that (4) has a periodic solution for $\mu=\bar{\mu}$ in \mathcal{U} with approximate period $T=2\pi/\beta(0)$.

Hopf p. 31 Hopf p. 32 Hopf

p. 29 Hoof

Another formulation

Theorem (Hopf bifurcation)

Let $x' = A(\mu)x + F(\mu, x)$ be a C^k planar vector field, with k > 0. depending on the scalar parameter μ such that $F(\mu, 0) = 0$ and $D_x F(\mu, 0) = 0$ for all μ sufficiently close enough to the origin. Assume that the linear part $A(\mu)$ at the origin has the eigenvalue $\alpha(\mu) \pm i\beta(\mu)$, with $\alpha(0) = 0$ and $\beta(0) \neq 0$. Furthermore, assume the eigenvalues cross the imaginary axis with nonzero speed, i.e.,

$$\frac{d}{d\mu}\alpha(\mu)\Big|_{\mu=0}\neq 0.$$

Then, in any neighborhood $U \ni (0,0)$ in \mathbb{R}^2 and any given $\mu_0 > 0$. there exists a $\bar{\mu}$ with $|\bar{\mu}| < \mu_0$ such that the differential equation $x' = A(\bar{u})x + F(\bar{u}, x)$ has a nontrivial periodic orbit in \mathcal{U} .

Supercritical or subcritical Hopf?

Transform the system into

$$\frac{d}{dt} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \alpha(\mu) & \beta(\mu) \\ -\beta(\mu) & \alpha(\mu) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} f_1(x,y,\mu) \\ g_1(x,y,\mu) \end{pmatrix} = \begin{pmatrix} f(x,y,\mu) \\ g(x,y,\mu) \end{pmatrix}$$

The Jacobian at the origin is

$$J(\mu) = \begin{pmatrix} \alpha(\mu) & \beta(\mu) \\ -\beta(\mu) & \alpha(\mu) \end{pmatrix}$$

and thus eigenvalues are $\alpha(\mu) \pm i\beta(\mu)$, and $\alpha(0) = 0$ and $\beta(0) > 0$.

Supercritical or subcritical Hopf? (cont.)

Define

$$C = f_{xxx} + f_{xyy} + g_{xxy} + g_{yyy} + \frac{1}{\beta(0)} (-f_{xy} (f_{xx} + f_{yy}) + g_{xy} (g_{xx} + g_{yy}) + f_{xx}g_{xx} - f_{yy}g_{yy}),$$

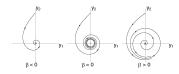
evaluated at (0,0) and for $\mu = 0$. Then, if $d\alpha(0)/d\mu > 0$.

- 1. If C < 0, then for $\mu < 0$, the origin is a stable spiral, and for $\mu > 0$, there exists a stable periodic solution and the origin is unstable (supercritical Hopf).
- 2. If C > 0, then for $\mu < 0$, there exists an unstable periodic solution and the origin is unstable, and for $\mu > 0$, the origin is unstable (subcritical Hopf).

3. If C = 0, the test is inconclusive.

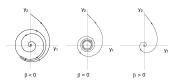
Supercritical Hopf

Here, y_1, y_2 are the variables, β is the bifurcation parameter.



Subcritical Hopf

Here, y_1, y_2 are the variables, β is the bifurcation parameter.



Example: predator-prev system

Predator-prev system:

$$x' = ax - bxy$$
 (5a)
$$v' = cxy - dy$$
 (5b)

$$y' = cxy - dy (5b)$$

where a, b, c, d > 0.

Honf

Example: a general chemostat

Chemostat:

$$S' = D(S^0 - S) - u(S)x$$
 (6a)

$$x' = (g(S) - D_1)x \tag{6b}$$

with $u, g \in C^1$ such that

- 1. u(0) = g(0) = 0,
- 2. $\exists M_u, M_g \in \mathbb{R}$ such that for all $S \in \mathbb{R}_+$, $u(S) \leq M_u$ and $g(S) \leq M_g$.

Equilibria

p. 37

From (6b), at equilibrium, x = 0 or $g(S) = D_1$.

Set x = 0 in (6a): $S = S^0$. So one EP (the trivial or washout EP) is $(S,x)=(S^0,0)$.

Let $\lambda, \mu \in \mathbb{R}$, where $\mathbb{R} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}$. We suppose $\lambda < \mu$, and that λ and μ are the solutions of $g(S) = D_1$. We set λ and/or μ equal to $+\infty$ if no solution to the equation exists.

Call S^* these equilibria (so $S^* = \lambda$ or $S^* = \mu$). Then, substituting into (6a).

$$x^* = \frac{D(S^0 - S^*)}{u(S^*)}$$

This EP is relevant only if $S^* < S^0$.

p. 38

Equilibria

So, in conclusion, there are potentially two EPs:

the washout equilibrium,

$$E_0 := (S, x) = (S^0, 0)$$

one or two nontrivial equilibria,

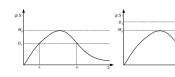
$$E^* := (S, x) = \left(S^*, \frac{D(S^0 - S^*)}{u(S^*)}\right)$$

where $S^* = \lambda$ or $S^* = \mu$, solution of $g(S) = D_1$. When needed, we write E_{λ}^* and E_{μ}^* . These EPs exist if $S^0 > S^*$.

Note in particular that if λ or μ is equal to ∞ , then $S^0-S^*=-\infty$ and the E^* are not relevant.

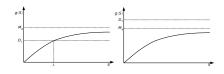
Hopf

Case of one humped growth



 $\mathsf{Right:}\ \lambda=\mu=\infty.$

Case of monotone growth



Left: $\mu = \infty$. Right: $\lambda = \mu = \infty$.

l Hopf

норт

Stability of washout EP

Jacobian matrix at point (S,x) is

$$J = \begin{pmatrix} -D - u'(S)x & -u(S) \\ g'(S)x & g(S) - D_1 \end{pmatrix}$$

So at E_0 ,

$$J_{E_0} = \begin{pmatrix} -D & -u(S^0) \\ 0 & g(S^0) - D_1 \end{pmatrix}$$

Eigenvalues are -D and $g(S^0) - D_1$. So local asymptotic stability depends on the sign of $g(S^0) - D_1$.

Theorem

If $g(S^0) < D_1$, then E_0 is locally asymptotically stable. If $g(S^0) > D_1$, then E_0 is unstable.

Stability of nontrivial EP

At E^* .

$$J_{E^*} = \begin{pmatrix} -D - u'(S^*) & -u(S^*) \\ g'(S^*)x^* & 0 \end{pmatrix}$$

since $g(S^*) = D_1$.

Two ways to study stability:

- Study the characteristic polynomial using Descartes' rule of signs.
- \blacktriangleright Study the eigenvalues using some properties of eigenvalues of 2×2 matrices.

Honf

obtain finally that

Theorem
The matrix M has eigenvalues with negative real parts if, and only if. det(M) > 0 and tr(M) < 0.

With an additional result called the Routh-Hurwitz criterion, we

Properties of $2\times 2\ matrices$

Consider the matrix

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

The characteristic polynomial of M is

$$P(\lambda) = (a - \lambda)(d - \lambda) - bc$$

= $\lambda^2 - (a + d)\lambda + (ad - bc)$
= $\lambda^2 - \text{tr}(M)\lambda + \text{det}(M)$

If $\det(M) > 0$ and $\operatorname{tr}(M) < 0$, then by Descartes' rule of signs, there are no positive real roots to this polynomial. Then, computing $P(-\lambda)$, we obtain the sign pattern +-+, implying two or zero negative real roots.

Tiopi

p. 45

.

Hopf bifurcation

Theorem

Select one parameter as a bifurcation parameter, and call it α . If there exists a critical value α_c of α such that $\chi^*_{\alpha_c} u'(\lambda_{\alpha_c}) + D = 0$, then the system undergoes a Hopf bifurcation at $E^*_{\lambda_{\alpha_c}} = (\lambda_{\alpha_c}, \chi_{\alpha_c})$ if

•
$$g'(\lambda_{\alpha_c}) > 0$$
, and

 $| \frac{d}{d\alpha} (-Dx^*(\alpha)u'(S^*(\alpha))) |_{\alpha=0} \neq 0.$

Let

$$\begin{split} \mathcal{C}_{H} &= -u(\lambda_{\alpha_{c}}) g'(\lambda_{\alpha_{c}}) u'''(\lambda_{\alpha_{c}}) \\ &+ u''(\lambda_{\alpha_{c}}) (u'(\lambda_{\alpha_{c}}) g'(\lambda_{\alpha_{c}}) + u(\lambda_{\alpha_{c}}) g''(\lambda_{\alpha_{c}})) \end{split}$$

The bifurcation is supercritical if $C_H < 0$, and subcritical if $C_H > 0$.

Hopf p. 47 Hopf

Let $\omega_0 = \sqrt{x^*u(S^*)g'(S^*)}$ be the imaginary part of the eigenvalue at the critical value α_c . Take

$$T = \begin{pmatrix} 0 & -1 \\ \frac{\omega_0}{u(S^*)} & 0 \end{pmatrix}$$

Then

$$\binom{r}{v} = T^{-1} \binom{S}{x} \Rightarrow \begin{cases} r = x \frac{u(S^*)}{\omega_0} \\ v = -S \end{cases}$$

Then in canonical form, the system is

$$r' = r(-D_1 + g(-v)) \qquad \equiv f(r, v)$$

$$v' = -(S^0 + v)D + r\frac{\omega_0}{u(S^*)}u(-v) \qquad \equiv g(r, v)$$

Global stability

We can show

Theorem

For any $\varepsilon>0$, there exists $T_{\varepsilon}\geq 0$ such that $S(t)\leq S^0+\varepsilon$ for all $t\geq T_{\varepsilon}$. If in addition $\lambda< S^0$, $g(S)>D_1$ for all $S\in (\lambda,S^0]$, and x(0)>0, then there exists T such that $S(t)< S^0$ for all t>T.

Theorem

If $S^0 \le \lambda$, then E_0 is GAS.

Hopf

A Lyapunov function

A Lyapunov function

Consider the function

$$V(S,x) = \int_{\lambda}^{S} \frac{(g(\xi) - D_1)(S^0 - \lambda)}{u(\lambda)(S^0 - \xi)} d\xi + x - x^* \ln\left(\frac{x}{x_{\lambda}^*}\right)$$
(7)

For clarity, define

 $\Psi(S) = \frac{u(S)}{S^0 - S}$

Then

$$V' = x(g(S) - D_1) \left(1 - \frac{u(S)(S^0 - \lambda)}{u(\lambda)(S^0 - S)} \right)$$
$$= x(g(S) - D_1) \left(1 - \frac{\Psi(S)}{\Psi(\lambda)} \right)$$

We have V'=0 if and only if $S=\lambda$ or $S=\mu=S^0.$

n 50

Theorem

•
$$g(\lambda) > D_1$$
,

•
$$u'(\lambda) > -\frac{u(\lambda)}{S^0 - \lambda}$$
 and

▶
$$1 - \frac{u(S)(S^0 - \lambda)}{u(\lambda)(S^0 - S)}$$
 has exactly one sign change for $S \in (0, S^0)$, then the equilibrium E^*_λ is globally asymptotically stable with respect to the interior of the positive cone.

Hopf

p. 53