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The general context of bifurcations

Consider the discrete time system

xt+1 = f (xt)

or the continuous time system

x ′ = f (x).

We start with a function f : R2 → R, C r when a map is
considered, C 1 when continuous time is considered.

In both cases, the function f can depend on some parameters. We
are interested in the differences of qualitative behavior, as one of
these parameters, which we call µ, varies.
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So we write
xt+1 = f (xt , µ) = fµ(xt) (1)

and
x ′ = f (x , µ) = fµ(x) (2)

for µ ∈ R.
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Bifurcations

Definition (Bifurcation)

Let fµ be a parametrized family of functions. Then there is a
bifurcation at µ = µ0 (or µ0 is a bifurcation point) if there exists
ε > 0 such that, if µ0 − ε < a < µ0 and µ0 < b < µ0 + ε, then the
dynamics of fa(x) are “different” from the dynamics of fb(x).

An example of “different” would be that fa has a fixed point (that
is, a 1-periodic point) and fb has a 2-periodic point.

Formally, fa and fb are topologically conjugate to two different
functions.
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Topological conjugacy

Definition
Let f : D → D and g : E → E be functions. Then f topologically
conjugate to g if there exists a homeomorphism τ : D → E , called
a topological conjugacy, such that τ ◦ f = g ◦ τ .
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Types of bifurcations (discrete time)

Saddle-node (or tangent):

xt+1 = µ + xt + x2
t

Transcritical:
xt+1 = (µ + 1)xt + x2

t

Pitchfork:
xt+1 = (µ + 1)xt − x3

t

Period doubling (or flip):

xt+1 = µ− xt − x2
t
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Discrete-time saddle-node

xt+1 = µ + xt + x2
t

Fixed points (FP)

x = µ + x + x2 ⇔ x2 = −µ

⇔ x = ±
√
−µ

So no real valued FP if µ > 0, 2 if µ < 0.

Stability of
√
−µ f ′(x) = 1 + 2x , so, assuming µ < 0,

f ′(
√
−µ) = 1 + 2

√
−µ

Thus

|f ′(
√
−µ)| < 1 ⇔ −1 < 1 + 2

√
−µ < 1 ⇔ −1 <

√
−µ < 0

which is impossible. Therefore,
√
−µ is always repelling.
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Stability of
√
−µ assuming µ < 0,

f ′(−
√
−µ) = 1− 2

√
−µ

Thus

|f ′(−
√
−µ)| < 1 ⇔ −1 < 1− 2

√
−µ < 1

⇔ −1 < −
√
−µ < 0

⇔ 0 <
√
−µ < 1

⇔ −1 < µ < 0

So, for −1 < µ < 0, the FP −
√
−µ is attracting.
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Summary: discrete-time saddle-node
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Discrete-time period doubling

xt+1 = µ− xt − x2
t

FP:
x = µ− x − x2 ⇔ x2 + 2x − µ = 0

Discriminant: ∆ = 4 + 4µ = 4(1 + µ). So we get

x1,2 =
−2± 2

√
1 + µ

2
= −1±

√
1 + µ
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Types of bifurcations (continuous time)

I Saddle-node
x ′ = µ− x2

I Transcritical
x ′ = µx − x2

I Pitchfork
I supercritical

x ′ = µx − x3

I subcritical
x ′ = µx + x3
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Saddle-node for maps

Theorem
Assume f ∈ C r with r ≥ 2, for both x and µ. Suppose that

1. f (x0, µ0) = x0,

2. f ′µ0
(x0) = 1,

3. f ′′µ0
(x0) 6= 0 and

4.
∂f

∂µ
(x0, µ0) 6= 0.

Then ∃I 3 x0 and N 3 µ0, and m ∈ C r (I ,N), such that

1. fm(x)(x) = x,

2. m(x0) = µ0,

3. the graph of m gives all the fixed points in I × N.
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Theorem (cont.)

Moreover, m′(x0) = 0 and

m′′(x0) =
−∂2f

∂x2
(x0, µ0)

∂f

∂µ
(x0, µ0)

6= 0.

These fixed points are attracting on one side of x0 and repelling on
the other.

Saddle-node p. 17



Saddle-node for continuous equations

Consider the system x ′ = f (x , µ), x ∈ R. Suppose that
f (x0, µ0) = 0. Further, assume that the following nondegeneracy
conditions hold:

1. a0 = 1
2

∂2f
∂x2 (x0, µ0) 6= 0,

2. ∂f
∂µ(x0, µ0) 6= 0.

Then, in a neighborhood of (x0, µ0), the equation x ′ = f (x , µ) is
topologically equivalent to the normal form

x ′ = γ + sign(a0)x
2
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Saddle-node for continuous systems

Theorem
Consider the system x ′ = f (x , µ), x ∈ Rn. Suppose that
f (x , 0) = x0 = 0. Further, assume that

1. The Jacobian matrix A0 = Df (0, 0) has a simple zero
eigenvalue,

2. a0 6= 0, where

a0 =
1

2
〈p,B(q, q)〉 =

1

2

d2

dτ2
〈p, f (τq, 0)〉

∣∣∣∣
τ=0

3. fµ(0, 0) 6= 0.

B is the bilinear function with components

Bj(x , y) =
n∑

k,`=1

∂2fj(ξ, 0)

∂ξk∂ξ`

∣∣∣∣
ξ=0

xky`, j = 1, . . . , n

and 〈p, q〉 = pTq the standard inner product.
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Theorem (cont.)

Then, in a neighborhood of the origin, the system x ′ = f (x , µ) is
topologically equivalent to the suspension of the normal form by
the standard saddle,

y ′ = γ + sign(a0)y
2

y ′S = −yS

y ′U = yU

with y ∈ R, yS ∈ RnS and yU ∈ RnU , where nS + nU + 1 = n and
nS is number of eigenvalues of A0 with negative real parts.
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Pitchfork bifurcation

The ODE x ′ = f (x , µ), with the function f (x , µ) satisfying

−f (x , µ) = f (−x , µ)

(f is odd),

∂f

∂x
(0, µ0) = 0,

∂2f

∂x2
(0, µ0) = 0,

∂3f

∂x3
(0, µ0) 6= 0,

∂f

∂r
(0, µ0) = 0,

∂2f

∂r∂x
(0, µ0) 6= 0.

has a pitchfork bifurcation at (x , µ) = (0, µ0). The form of the
pitchfork is determined by the sign of the third derivative:

∂3f

∂x3
(0, µ0)

{
< 0, supercritical
> 0, subcritical
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Theorem (Period doubling bifurcation)

Assume f is C r in x and µ, with r ≥ 3, and that

1. x0 is a fixed point for µ = µ0, i.e., f (x0, µ0) = x0,

2. f ′µ0
(x0) = −1 (so, since 6= 1, there is a curve of fixed points

x(µ) for µ close to µ0),

3. the derivative of f ′µ(x(µ)) with respect to µ is nonzero,

α =

[
∂2f

∂µ∂x
+

1

2

(
∂f

∂µ

) (
∂2f

∂x2

)]∣∣∣∣
(x0,µ0)

6= 0,

4. the graph of f 2
µ0

has nonzero cubic terms in its tangency with
the diagonal (the quadratic term is zero):

β =

(
1

3!

∂3f

∂x3
(x0, µ0)

)
+

(
1

2!

∂2f

∂x2
(x0, µ0)

)2

6= 0
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Theorem (Period doubling bifurcation (cont.))

Then there is a period doubling bifurcation at (x0, µ0). More
specifically,

1. there is a differentiable curve of fixed points, x(µ), passing
through (x0, µ0), and the stability of the fixed point changes
at µ0;

2. which side of µ0 is attracting depends on the sign of α;

3. there is a differentiable curve γ passing through (x0, µ0), such
that γ \ {(x0, µ0)} is the union of hyperbolic period 2 orbits;

4. γ is tangent to R× {µ0} at (x0, µ0), so γ is the graph of a
function µ = m(x), with m′(x0) = 0 and
m′′(x0) = −2β/α 6= 0;

5. the stability of the period 2 orbit depends on β: if β > 0, it is
attracting, if β < 0, it is repelling.
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Poincaré map

Consider
x ′ = f (x) (3)

If Γ is a periodic orbit of (3) through x0, and Σ is a hyperplane
perpendicular to Γ at x0, then for any point x ∈ Σ close enough to
x0, the solution through x at t = 0, φt(x), crosses Σ again at a
point P(x) near x0.

The mapping x 7→ P(x) is the Poincaré map.
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Theorem
Let E be an open subset of Rn and f ∈ C 1(E ). Suppose that
φt(x0) is a periodic solution of (3) of period T , and that

Γ = {x ∈ Rn : x = φt(x0), 0 ≤ t ≤ T}

is contained in E . Let Σ be the hyperplane orthogonal to Γ at x0,
i.e.,

Σ = {x ∈ Rn : (x − x0) · f (x0) = 0}.

Then there exists δ > 0 and a unique function τ(x), defined and
continuously differentiable for x ∈ Nδ(x0), such that τ(x0) = T
and

φτ(x)(x) ∈ Σ

for all x ∈ Nδ(x0). For x ∈ Nδ(x0) ∩ σ,

P(x) = φτ(x)(x)

is the Poincaré map for Γ at x0.
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Example

Consider the system

x ′ = −y + x(µ− x2 − y2)

y ′ = x + y(µ− x2 − y2)

Transform to polar coordinates:

r ′ = r(µ− r2)

θ′ = 1
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r ′ = r(µ− r2)

θ′ = 1

has solution

r(t) =

√
(1 + e−2µtCµ)µ

1 + e−2µtCµ

θ(t) = t + θ0
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Hopf bifurcation

Theorem (Hopf bifurcation theorem)

Consider the system

d

dt

(
x
y

)
=

(
a11(µ) a12(µ)
a21(µ) a22(µ)

) (
x
y

)
+

(
f1(x , y , µ)
f2(x , y , µ)

)
, (4)

with µ ∈ R a parameter. Suppose f1, f2 ∈ C 3, that the origin is an
equilibrium of (4), and that the matrix

J(µ) =

(
a11(µ) a12(µ)
a21(µ) a22(µ)

)
is valid in a neighborhood of the origin. Additionally, suppose that
the eigenvalues of J(µ) are α(µ) + iβ(µ), with α(0) = 0 and
β(r) 6= 0, satisfying the transversality condition

dα

dµ

∣∣∣∣
µ=0

6= 0.
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Theorem (Hopf bifurcation theorem, cont.)

Then, in any open set U 3 (0, 0) in R2 and for any µ0 > 0, there
exists µ̄, |µ̄| < µ0, such that (4) has a periodic solution for µ = µ̄
in U with approximate period T = 2π/β(0).
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Another formulation

Theorem (Hopf bifurcation)

Let x ′ = A(µ)x + F (µ, x) be a C k planar vector field, with k ≥ 0,
depending on the scalar parameter µ such that F (µ, 0) = 0 and
DxF (µ, 0) = 0 for all µ sufficiently close enough to the origin.
Assume that the linear part A(µ) at the origin has the eigenvalue
α(µ)± iβ(µ), with α(0) = 0 and β(0) 6= 0. Furthermore, assume
the eigenvalues cross the imaginary axis with nonzero speed, i.e.,

d

dµ
α(µ)

∣∣∣∣
µ=0

6= 0.

Then, in any neighborhood U 3 (0, 0) in R2 and any given µ0 > 0,
there exists a µ̄ with |µ̄| < µ0 such that the differential equation
x ′ = A(µ̄)x + F (µ̄, x) has a nontrivial periodic orbit in U .

Hopf p. 33



Supercritical or subcritical Hopf?

Transform the system into

d

dt

(
x
y

)
=

(
α(µ) β(µ)
−β(µ) α(µ)

) (
x
y

)
+

(
f1(x , y , µ)
g1(x , y , µ)

)
=

(
f (x , y , µ)
g(x , y , µ)

)
The Jacobian at the origin is

J(µ) =

(
α(µ) β(µ)
−β(µ) α(µ)

)
and thus eigenvalues are α(µ)± iβ(µ), and α(0) = 0 and β(0) > 0.
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Supercritical or subcritical Hopf? (cont.)

Define

C = fxxx + fxyy + gxxy + gyyy

+
1

β(0)
(−fxy (fxx + fyy ) + gxy (gxx + gyy ) + fxxgxx − fyygyy ) ,

evaluated at (0, 0) and for µ = 0. Then, if dα(0)/dµ > 0,

1. If C < 0, then for µ < 0, the origin is a stable spiral, and for
µ > 0, there exists a stable periodic solution and the origin is
unstable (supercritical Hopf).

2. If C > 0, then for µ < 0, there exists an unstable periodic
solution and the origin is unstable, and for µ > 0, the origin is
unstable (subcritical Hopf).

3. If C = 0, the test is inconclusive.
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Supercritical Hopf

Here, y1, y2 are the variables, β is the bifurcation parameter.
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Subcritical Hopf

Here, y1, y2 are the variables, β is the bifurcation parameter.
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Example: predator-prey system

Predator-prey system:

x ′ = ax − bxy (5a)

y ′ = cxy − dy (5b)

where a, b, c , d > 0.
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Example: a general chemostat

Chemostat:

S ′ = D(S0 − S)− u(S)x (6a)

x ′ = (g(S)− D1)x (6b)

with u, g ∈ C 1 such that

1. u(0) = g(0) = 0,

2. ∃Mu,Mg ∈ R such that for all S ∈ R+, u(S) ≤ Mu and
g(S) ≤ Mg .
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Equilibria

From (6b), at equilibrium, x = 0 or g(S) = D1.

Set x = 0 in (6a): S = S0. So one EP (the trivial or washout EP)
is (S , x) = (S0, 0).

Let λ, µ ∈ R̄, where R̄ = R ∪ {−∞} ∪ {+∞}. We suppose λ < µ,
and that λ and µ are the solutions of g(S) = D1. We set λ and/or
µ equal to +∞ if no solution to the equation exists.

Call S∗ these equilibria (so S∗ = λ or S∗ = µ). Then, substituting
into (6a),

x∗ =
D(S0 − S∗)

u(S∗)

This EP is relevant only if S∗ < S0.

Hopf p. 40



Equilibria

So, in conclusion, there are potentially two EPs:

I the washout equilibrium,

E0 := (S , x) = (S0, 0)

I one or two nontrivial equilibria,

E ∗ := (S , x) =

(
S∗,

D(S0 − S∗)

u(S∗)

)
where S∗ = λ or S∗ = µ, solution of g(S) = D1. When
needed, we write E ∗

λ and E ∗
µ . These EPs exist if S0 > S∗.

Note in particular that if λ or µ is equal to ∞, then
S0 − S∗ = −∞ and the E ∗ are not relevant.
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Case of monotone growth

Mg

g S

S

D1



Mg

g S

S

D1

Left: µ = ∞. Right: λ = µ = ∞.
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Case of one humped growth

Mg

g S

S

D1

 

Mg

g S

S

D1

Right: λ = µ = ∞.
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Stability of washout EP

Jacobian matrix at point (S , x) is

J =

(
−D − u′(S)x −u(S)

g ′(S)x g(S)− D1

)
So at E0,

JE0 =

(
−D −u(S0)
0 g(S0)− D1

)
Eigenvalues are −D and g(S0)− D1. So local asymptotic stability
depends on the sign of g(S0)− D1.

Theorem
If g(S0) < D1, then E0 is locally asymptotically stable.
If g(S0) > D1, then E0 is unstable.
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Stability of nontrivial EP

At E ∗,

JE∗ =

(
−D − u′(S∗) −u(S∗)

g ′(S∗)x∗ 0

)
since g(S∗) = D1.

Two ways to study stability:

I Study the characteristic polynomial using Descartes’ rule of
signs.

I Study the eigenvalues using some properties of eigenvalues of
2× 2 matrices.
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Properties of 2× 2 matrices

Consider the matrix

M =

(
a b
c d

)
The characteristic polynomial of M is

P(λ) = (a− λ)(d − λ)− bc

= λ2 − (a + d)λ + (ad − bc)

= λ2 − tr(M)λ + det(M)

If det(M) > 0 and tr(M) < 0, then by Descartes’ rule of signs,
there are no positive real roots to this polynomial. Then,
computing P(−λ), we obtain the sign pattern +−+, implying two
or zero negative real roots.
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With an additional result called the Routh-Hurwitz criterion, we
obtain finally that

Theorem
The matrix M has eigenvalues with negative real parts if, and only
if, det(M) > 0 and tr(M) < 0.
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Hopf bifurcation

Theorem
Select one parameter as a bifurcation parameter, and call it α. If
there exists a critical value αc of α such that x∗αc

u′(λαc ) + D = 0,
then the system undergoes a Hopf bifurcation at E ∗

λαc
= (λαc , xαc )

if

I g ′(λαc ) > 0, and

I
d

dα
(−Dx∗(α)u′(S∗(α)))

∣∣∣∣
α=αc

6= 0.

Let

CH = −u(λαc )g
′(λαc )u

′′′(λαc )

+ u′′(λαc )(u
′(λαc )g

′(λαc ) + u(λαc )g
′′(λαc ))

The bifurcation is supercritical if CH < 0, and subcritical if CH > 0.
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Let ω0 =
√

x∗u(S∗)g ′(S∗) be the imaginary part of the eigenvalue
at the critical value αc . Take

T =

(
0 −1
ω0

u(S∗) 0

)
Then (

r
v

)
= T−1

(
S
x

)
⇒

{
r = x u(S∗)

ω0

v = −S

Then in canonical form, the system is

r ′ = r(−D1 + g(−v)) ≡ f (r , v)

v ′ = −(S0 + v)D + r
ω0

u(S∗)
u(−v) ≡ g(r , v)
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Global stability

We can show

Theorem
For any ε > 0, there exists Tε ≥ 0 such that S(t) ≤ S0 + ε for all
t ≥ Tε. If in addition λ < S0, g(S) > D1 for all S ∈ (λ, S0], and
x(0) > 0, then there exists T such that S(t) < S0 for all t > T.

Theorem
If S0 ≤ λ, then E0 is GAS.
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A Lyapunov function

Consider the function

V (S , x) =

∫ S

λ

(g(ξ)− D1)(S
0 − λ)

u(λ)(S0 − ξ)
dξ + x − x∗ ln

(
x

x∗λ

)
(7)
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For clarity, define

Ψ(S) =
u(S)

S0 − S

Then

V ′ = x(g(S)− D1)

(
1− u(S)(S0 − λ)

u(λ)(S0 − S)

)
= x(g(S)− D1)

(
1− Ψ(S)

Ψ(λ)

)
We have V ′ = 0 if and only if S = λ or S = µ = S0.
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Theorem
If

I λ < S0,

I g ′(λ) > 0,

I g(λ) > D1,

I u′(λ) > − u(λ)
S0−λ

and

I 1− u(S)(S0−λ)
u(λ)(S0−S)

has exactly one sign change for S ∈ (0,S0),

then the equilibrium E ∗
λ is globally asymptotically stable with

respect to the interior of the positive cone.
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