Ordinary differential equations A few general results

Ordinary differential equations

Definition (ODE)

An ordinary differential equation (ODE) is an equation involving one independent variable (often called time), t, and a dependent variable, x(t), with $x \in \mathbb{R}^n$, $n \ge 1$, and taking the form

$$\frac{d}{dt}x = f(t, x)$$

where $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ is a function, called the *vector field*.

Definition (IVP)

An initial value problem (IVP) consists in an ODE and an initial condition, $% \mathcal{D} = \mathcal{D} =$

$$\frac{d}{dt}x = f(t, x)$$

$$x(t_0) = x_0,$$
(1)

where $t_0 \in \mathbb{R}$ and $x_0 \in \mathbb{R}^n$ is the initial condition.

p. 1 The general form

Lipschitz function

Flow

Consider an autonomous IVP,

$$\frac{d}{dt}x = f(t, x)$$

$$x(0) = x_0,$$
(2)

that is, where f does not depend explicitly on t. Let $\phi^t(x_0)$ (the notations $\phi_t(x_0)$ and $\phi(t, x_0)$ are also used) be the solution of (2) with given initial condition. We have

$$\phi^0(x_0) = x_0$$

and

$$\frac{d}{dt}\phi^t(x_0) = f(\phi^t(x_0))$$

for all t for which it is defined.

 $\phi^t(x_0)$ is the flow of the ODE.

p. 3 Existence of solutions to IVPs

p. 4

 $|f(x) - f(y)| \le K|x - y|$ for all $x, y \in U$, then f is called a *Lipschitz* function with Lipschitz

Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$. If there exists K > 0 such that

for all $x, y \in U$, then f is called a *Lipschitz* function with Lipschitz constant K. The smallest K for which the property holds is denoted Lip(f).

Remark: $f \in C^1 \Rightarrow f$ is Lipschitz.

Definition (Lipschitz function)

Existence and uniqueness

Continuous dependence on IC

Theorem (Existence and Uniqueness)

Let $U \subset \mathbb{R}^n$ be an open set, and $f: U \to \mathbb{R}^n$ be a Lipschitz function. Let $x_0 \in U$ and $t_0 \in \mathbb{R}$. Then there exists

- a unique solution x(t) to the differential equation x' = f(x) defined on t₀ − α ≤ t ≤ t₀ + α,

such that $x(t_0) = x_0$.

Theorem (Continuous dependence on initial conditions)

Let $U \subset \mathbb{R}^n$ be an open set, and $f : U \to \mathbb{R}^n$ be a Lipschitz function. Then the solution $\phi^t(x_0)$ depends continuously on the initial condition x_0 .

p. 5 Existence of solutions to IVPs

Theorem

Existence of solutions to IVPs

Interval of existence of solutions

Group property for flows

Theorem

Let U be an open subset of \mathbb{R}^n , and $f: U \to \mathbb{R}^n$ be C^1 .

- Given x ∈ U, let (t_−, t₊) be the maximal interval of definition for φ^t(x). If t₊ < ∞, then given any compact subset C ⊂ U, there exists t_C with 0 ≤ t_C < t₊ such that φ^{t_C}(x) ∉ C.
- Similarly, if t_− > −∞, then there exists t_C with t_− < t_C ≤ 0 such that φ^{t_C}(x) ∉ C.
- ▶ In particular, if $f : \mathbb{R}^n \to \mathbb{R}^n$ is defined on all of \mathbb{R}^n and |f(x)| is bounded, then the solutions exist for all t.

Let (t_-, t_+) be the maximal interval of definition for the initial condition x_0 . Then the flow ϕ^t satisfies the group property

$$\phi^t(\phi^s(x_0)) = \phi^{t+s}(x_0),$$

for all t, s such that $t, s, t + s \in (t_-, t_+)$.

p. 6