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Definition (Linear ODE)

A linear ODE is a differential equation taking the form

d

dt
x = A(t)x + B(t), (LNH)

where A(t) ∈Mn(R) with continuous entries, B(t) ∈ Rn with real
valued, continuous coefficients, and x ∈ Rn. The associated IVP
takes the form

d

dt
x = A(t)x + B(t)

x(t0) = x0.
(1)
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Types of systems

I x ′ = A(t)x + B(t) is linear nonautonomous (A(t) depends on
t) nonhomogeneous (also called affine system).

I x ′ = A(t)x is linear nonautonomous homogeneous.

I x ′ = Ax + B, that is, A(t) ≡ A and B(t) ≡ B, is linear
autonomous nonhomogeneous (or affine autonomous).

I x ′ = Ax is linear autonomous homogeneous.

I If A(t + T ) = A(t) for some T > 0 and all t, then linear
periodic.

Linear ODEs p. 4



Linear ODEs

Existence of solutions to linear IVPs

Resolvent matrix

Autonomous linear systems

Existence and uniqueness of solutions

Theorem (Existence and Uniqueness)

Solutions to (1) exist and are unique on the whole interval over
which A and B are continuous.
In particular, if A,B are constant, then solutions exist on R.
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The vector space of solutions

Theorem
Consider the homogeneous system

d

dt
x = A(t)x , (LH)

with A(t) defined and continuous on an interval J. The set of
solutions of (LH) forms an n-dimensional vector space.

Existence of solutions to linear IVPs p. 7

Fundamental matrix

Definition
A set of n linearly independent solutions of (LH) on J,
{φ1, . . . , φn}, is called a fundamental set of solutions of (LH) and
the matrix

Φ = [φ1 φ2 . . . φn]

is called a fundamental matrix of (LH).
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Fundamental matrix solution

Let X ∈Mn(R) with entries [xij ]. Define the derivative of X , X ′

(or d
dt X ) as

d

dt
X (t) = [

d

dt
xij(t)].

The system of n2 equations

d

dt
X = A(t)X

is called a matrix differential equation.

Theorem
A fundamental matrix Φ of (LH) satisfies the matrix equation
X ′ = A(t)X on the interval J.-
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Abel’s formula

Theorem
If Φ is a solution of the matrix equation X ′ = A(t)X on an interval
J and τ ∈ J, then

detΦ(t) = detΦ(τ) exp

(∫ t

τ
trA(s)ds

)
for all t ∈ J.
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The resolvent matrix

Definition (Resolvent matrix)

Let t0 ∈ J and Φ(t) be a fundamental matrix solution of (LH) on
J. Since the columns of Φ are linearly independent, it follows that
Φ(t0) is invertible. The resolvent (or state transition matrix, or
principal fundamental matrix) of (LH) is then defined as

R(t, t0) = Φ(t)Φ(t0)
−1.
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Proposition

The resolvent matrix satisfies the Chapman-Kolmogorov identities

1. R(t, t) = I ,

2. R(t, s)R(s, u) = R(t, u),

as well as the identities

3. R(t, s)−1 = R(s, t),

4. ∂
∂sR(t, s) = −R(t, s)A(s),

5. ∂
∂tR(t, s) = A(t)R(t, s).
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Proposition

R(t, t0) is the only solution in Mn(K) of the initial value problem

d

dt
M(t) = A(t)M(t)

M(t0) = I,

with M(t) ∈Mn(K).
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Theorem
The solution to the IVP consisting of the linear homogeneous
nonautonomous system (LH) with initial condition x(t0) = x0 is
given by

φ(t) = R(t, t0)x0.
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A variation of constants formula

Theorem (Variation of constants formula)

Consider the IVP

x ′ = A(t)x + g(t, x) (2a)

x(t0) = x0, (2b)

where g : R×Rn → Rn a smooth function, and let R(t, t0) be the
resolvent associated to the homogeneous system x ′ = A(t)x, with
R defined on some interval J 3 t0. Then the solution φ of (2) is
given by

φ(t) = R(t, t0)x0 +

∫ t

t0

R(t, s)g(φ(s), s)ds, (3)

on some subinterval of J.
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Autonomous linear systems

Consider the autonomous affine system

d

dt
x = Ax + B, (A)

and the associated homogeneous autonomous system

d

dt
x = Ax . (L)

Autonomous linear systems p. 18

Exponential of a matrix

Definition (Matrix exponential)

Let A ∈Mn(K) with K = R or C. The exponential of A, denoted
eAt , is a matrix in Mn(K), defined by

eAt = I +
∞∑

k=1

tk

k!
Ak ,

where I is the identity matrix in Mn(K).
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Properties of the matrix exponential

I Φ(t) = eAt is a fundamental matrix for (L) for t ∈ R.

I The resolvent for (L) is given for t ∈ J by

R(t, t0) = eA(t−t0) = Φ(t − t0).

I eAt1eAt2 = eA(t1+t2) for all t1, t2 ∈ R. 1

I AeAt = eAtA for all t ∈ R.

I (eAt)−1 = e−At for all t ∈ R.

I The unique solution φ of (L) with φ(t0) = x0 is given by

φ(t) = eA(t−t0)x0.
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Computing the matrix exponential

Let P be a nonsingular matrix in Mn(R). We transform the IVP

d

dt
x = Ax

x(t0) = x0

(L IVP)

using the transformation x = Py or y = P−1x .

The dynamics of y is

y ′ = (P−1x)′

= P−1x ′

= P−1Ax

= P−1APy

The initial condition is y0 = P−1x0.
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We have thus transformed IVP (L IVP) into

d

dt
y = P−1APy

y(t0) = P−1x0

(L IVP y)

From the earlier result, we then know that the solution of
(L IVP y) is given by

ψ(t) = eP−1AP(t−t0)P−1x0,

and since x = Py , the solution to (L IVP) is given by

φ(t) = PeP−1AP(t−t0)P−1x0.

So everything depends on P−1AP.
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Diagonalizable case

Assume P nonsingular in Mn(R) such that

P−1AP =

λ1 0
. . .

0 λn


with all eigenvalues λ1, . . . , λn different.
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We have

eP−1AP = I +
∞∑

k=1

tk

k!

λ1 0
. . .

0 λn


k
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For a (block) diagonal matrix M of the form

M =

m11 0
. . .

0 mnn


there holds

Mk =

mk
11 0

. . .

0 mk
nn


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Therefore,

eP−1AP = I +
∞∑

k=1

tk

k!

λ
k
1 0

. . .

0 λk
n


=


∑∞

k=0
tk

k!λ
k
1 0

. . .

0
∑∞

k=0
tk

k!λ
k
n


=

eλ1t 0
. . .

0 eλnt



Autonomous linear systems p. 26

And so the solution to (L IVP) is given by

φ(t) = P

eλ1t 0
. . .

0 eλnt

 P−1x0.
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Nondiagonalizable case

The Jordan canonical form is

P−1AP =

J0 0
. . .

0 Js


so we use the same property as before (but with block matrices
now), and

eP−1APt =

eJ0t 0
. . .

0 eJs t


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The first block in the Jordan canonical form takes the form

J0 =

λ0 0
. . .

0 λk


and thus, as before,

eJ0t =

eλ0t 0
. . .

0 eλk t



Autonomous linear systems p. 29

Other blocks Ji are written as

Ji = λk+i I + Ni

with I the ni × ni identity and Ni the ni × ni nilpotent matrix

Ni =


0 1 0 0

. . .

1
0 0


λk+i I and Ni commute, and thus

eJi t = eλk+i teNi t
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Since Ni is nilpotent, Nk
i = 0 for all k ≥ ni , and the series eNi t

terminates, and

eJi t = eλk+i t


1 t · · · tni−1

(ni−1)!

0 1 · · · tni−2

(ni−2)!

0 1



Autonomous linear systems p. 31

Theorem
For all (t0, x0) ∈ R× Rn, there is a unique solution x(t) to
(L IVP) defined for all t ∈ R. Each coordinate function of x(t) is a
linear combination of functions of the form

tkeαt cos(βt) and tkeαt sin(βt)

where α+ iβ is an eigenvalue of A and k is less than the algebraic
multiplicity of the eigenvalue.
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Fixed points (equilibria)

Definition
A fixed point (or equilibrium point, or critical point) of an
autonomous differential equation

x ′ = f (x)

is a point p such that f (p) = 0. For a nonautonomous differential
equation

x ′ = f (t, x),

a fixed point satisfies f (t, p) = 0 for all t.

A fixed point is a solution.
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Orbits, limit sets

Orbits and limit sets are defined as for maps.

For the equation x ′ = f (x), the subset {x(t), t ∈ I}, where I is the
maximal interval of existence of the solution, is an orbit.

If the maximal solution x(t, x0) of x ′ = f (x) is defined for all
t ≥ 0, where f is Lipschitz on an open subset V of Rn, then the
omega limit set of x0 is the subset of V defined by

ω(x0) =
∞⋂

τ=0

(
{x(t, x0) : t ≥ τ} ∩ V }

)
.

Proposition

A point q is in ω(x0) iff there exists a sequence {tk} such that
limk→∞ tk = ∞ and limk→∞ x(tk , x0) = q ∈ V .
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Definition (Liapunov stable orbit)

The orbit of a point p is Liapunov stable for a flow φt if, given
ε > 0, there exists δ > 0 such that d(x , p) < δ implies that
d(φt(x), φt(p)) < ε for all t ≥ 0. If p is a fixed point, then this is
written d(φt(x), p) < ε.

Definition (Asymptotically stable orbit)

The orbit of a point p is asymptotically stable (or attracting) for a
flow φt if it is Liapunov stable, and there exists δ1 > 0 such that
d(x , p) < δ1 implies that limt→∞ d(φt(x), φt(p)) = 0. If p is a
fixed point, then it is asymptotically stable if it is Liapunov stable
and there exists δ1 > 0 such that d(x , p) < δ1 implies that
ω(x) = {p}.
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Contracting linear equation

Theorem
Let A ∈Mn(R), and consider the equation (L). Then the
following conditions are equivalent.

1. There is a norm ‖ ‖A on Rn and a constant a > 0 such that
for any x0 ∈ Rn and all t ≥ 0,

‖eAtx0‖A ≤ e−at‖x0‖A.

2. There is a norm ‖ ‖B on Rn and constants a > 0 and C ≥ 1
such that for any x0 ∈ Rn and all t ≥ 0,

‖eAtx0‖B ≤ Ce−at‖x0‖B .

3. All eigenvalues of A have negative real parts.

In that case, the origin is a sink or attracting, the flow is a
contraction (antonyms source, repelling and expansion).
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Hyperbolic linear equation

Definition
The linear differential equation (L) is hyperbolic if A has no
eigenvalue with zero real part.
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Definition (Stable eigenspace)

The stable eigenspace of A ∈Mn(R) is

E s = span{v : v generalized eigenvector for eigenvalue λ,
with <(λ) < 0}

Definition (Center eigenspace)

The center eigenspace of A ∈Mn(R) is

E c = span{v : v generalized eigenvector for eigenvalue λ,
with <(λ) = 0}

Definition (Unstable eigenspace)

The unstable eigenspace of A ∈Mn(R) is

Eu = span{v : v generalized eigenvector for eigenvalue λ,
with <(λ) > 0}
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We can write
Rn = E s ⊕ Eu ⊕+E c ,

and in the case that E c =, then Rn = E s ⊕ Eu is called a
hyperbolic splitting.

The symbol ⊕ stands for direct sum.

Definition (Direct sum)

Let U,V be two subspaces of a vector space X . Then the span of
U and V is defined by u + v for u ∈ U and v ∈ V . If U and V are
disjoint except for 0, then the span of U and V is called the direct
sum of U and V , and is denoted U ⊕ V .
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Trichotomy
Define

V s = {v : there exists a > 0 and C ≥ 1 such that

‖eAtv‖ ≤ Ce−at‖v‖ for t ≥ 0}.
V u = {v : there exists a > 0 and C ≥ 1 such that

‖eAtv‖ ≤ Ce−a|t|‖v‖ for t ≤ 0}.
V c = {v : for all a > 0, ‖eAtv‖e−a|t| → 0 as t → ±∞}.

Theorem
The following are true.

1. The subspaces E s , Eu and E c are invariant under the flow
eAt .

2. There holds that E s = V s , Eu = V u and E c = V c , and thus
eAt |Eu is an exponential expansion, eAt |E s is an exponential
contraction, and eAt |E c grows subexponentially as t → ±∞.
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Topologically conjugate linear ODEs

Definition (Topologically conjugate flows)

Let φt and ψt be two flows on a space M. φt and ψt are
topologically conjugate if there exists an homeomorphism
h : M → M such that

h ◦ φt(x) = ψt ◦ h(x),

for all x ∈ M and all t ∈ R.

Definition (Topologically equivalent flows)

Let φt and ψt be two flows on a space M. φt and ψt are
topologically equivalent if there exists an homeomorphism
h : M → M and a function α : R×M → R such that

h ◦ φα(t+s,x)(x) = ψt ◦ h(x),

for all x ∈ M and all t ∈ R, and where α(t, x) is monotonically
increasing in t for each x and onto all of R.
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Theorem
Let A,B ∈Mn(R).

1. If all eigenvalues of A and B have negative real parts, then
the linear flows eAt and eBt are topologically conjugate.

2. Assume that the system is hyperbolic, and that the dimension
of the stable eigenspace of A is equal to the dimension of the
eigenspace of B. Then the linear flows eAt and eBt are
topologically conjugate.
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Theorem
Let A,B ∈Mn(R). Assume that eAt and eBt are linearly
conjugate, i.e., there exists M with eBt = MeAtM−1. Then A and
B have the same eigenvalues.
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