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Linear ODEs Types of systems

Definition (Linear ODE) » x' = A(t)x + B(t) is linear nonautonomous (A(t) depends on
A linear ODE is a differential equation taking the form t) nonhomogeneous (also called affine system).

J » x' = A(t)x is linear nonautonomous homogeneous.

ke A(t)x + B(t), (LNH) » x' = Ax + B, that is, A(t) = A and B(t) = B, is linear

autonomous nonhomogeneous (or affine autonomous).

where A(t) € M,(R) with continuous entries, B(t) € R” with real » x' = Ax is linear autonomous homogeneous.
valued, continuous coefficients, and x € R". The associated IVP
takes the form d

Ex:A(t)erB(t) 1

(O] > If A(t + T) = A(t) for some T > 0 and all t, then linear

x(to) = xo- periodic.
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Existence of solutions to linear IVPs

The vector space of solutions

Theorem
Consider the homogeneous system

%x ~ At)x, (LH)

with A(t) defined and continuous on an interval J. The set of
solutions of (LH) forms an n-dimensional vector space.

Existence of solutions to linear IVPs.
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Existence and uniqueness of solutions

Theorem (Existence and Uniqueness)

Solutions to (1) exist and are unique on the whole interval over
which A and B are continuous.
In particular, if A, B are constant, then solutions exist on R.

Existence of solutions to linear IVPs

Fundamental matrix

Definition

A set of n linearly independent solutions of (LH) on J,

{¢1...., ¢n}, is called a fundamental set of solutions of (LH) and
the matrix

& =[¢1¢2 ... ¢

is called a fundamental matrix of (LH).

Existence of solutions to linear IVPs.



Fundamental matrix solution Abel’s formula

Let X € M,(R) with entries [x;]. Define the derivative of X, X’
(or %X ) as

d d
Ex(t) = [Exu(t)] Theorem
If  is a solution of the matrix equation X' = A(t)X on an interval
The system of n® equations Jand T € J, then
d t
X =AX detd(t) = detd(r) exp (/ trA(s)ds)
is called a matrix differential equation. forallte ).
Theorem
A fundamental matrix ® of (LH) satisfies the matrix equation
X' = A(t)X on the interval J.-
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The resolvent matrix

Definition (Resolvent matrix)

Let to € J and ®(t) be a fundamental matrix solution of (LH) on
J. Since the columns of @ are linearly independent, it follows that
®(to) is invertible. The resolvent (or state transition matrix, or

Resolvent matrix principal fundamental matrix) of (LH) is then defined as

R(t, to) = (t)d(to) 2.

Resolvent matrix



Proposition

The resolvent matrix satisfies the Chapman-Kolmogorov identities
1 R(t,t) =1,
2. R(t,s)R(s,u) = R(t,u),

as well as the identities
3. R(t,s)"' = R(s, t),

AR(t,5) = —R(t,s)A(s),

SR(t,s) = A(t)R(t,s).

o

Resolvent matrix

Theorem
The solution to the IVP consisting of the linear homogeneous
nonautonomous system (LH) with initial condition x(to) = Xo is
given by

o(t) = R(t, to)x.

Resolvent matrix
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Proposition
R(t, to) is the only solution in M,(K) of the initial value problem
iM(t) = A(t)M(t)
dt B

M(to) =1,

with M(t) € M,(K).

Resolvent matrix

A variation of constants formula

Theorem (Variation of constants formula)
Consider the IVP

x' = A(t)x + g(t, x)

x(to) = xo,
where g : R x R" — R" a smooth function, and let R(t, to) be the
resolvent associated to the homogeneous system x' = A(t)x, with
R defined on some interval J > ty. Then the solution ¢ of (2) is
given by
t
w0 =Rt oo+ [ R )b @)
Jio

on some subinterval of J.

Resolvent matrix



Autonomous linear systems

Exponential of a matrix

Definition (Matrix exponential)

Let Ae /Vl,,(]K) with K =R or C. The exponential of A, denoted
et is a matrix in M,(K), defined by

At ot
e :]I+kZEA‘

where I is the identity matrix in M,(K).

Autonomous linesr systems
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Autonomous line

ar systems

Consider the autonomous affine system

and the associated homogeneous autonomous system

Autonomous linear systems

Properties of the

> O(t) = e* is a fundamental matrix for (L) for t € R.

%X:Ax+3.

ix = Ax.

dt

matrix exponential

> The resolvent for (L) is given for t € J by

At A — o

Autonomous linear systems

R(t, to) = eA70) — &(t — 1p).

Altitt) for all £, t) € R. 1

Aett = eMtAfor all t € R.
(M) t=eAforall teR.

The unique solution ¢ of (L) with ¢(to) = xo is given by

o(t) = A=t



Computing the matrix exponential
Let P be a nonsingular matrix in M,(R). We transform the IVP
d

Sx=A
at T (LIVP)
x(to) = xo
using the transformation x = Py or y = P~ 1x.

The dynamics of y is
y = (P )
—p1
=P Ax
=P APy
The initial condition is yp = P1x.
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Diagonalizable case

Assume P nonsingular in M,(R) such that

M 0
PAP =
0 An

with all eigenvalues Aq,..., A, different.
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We have thus transformed IVP (L_IVP) into

d
—y =PAP)
at’ 4 (LIVPy)
y(to) = P'xo

From the earlier result, we then know that the solution of
(L_IVP_y) is given by

Y(t) = EP"AP(! ) p 1Xu.
and since x = Py, the solution to (L_IVP) is given by
o(t) = peP 1 AP(t=t) p=1y

So everything depends on P~1AP.
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We have

1
ePT1IAP _

=~
I
o

An

Autonomous linear systems



Therefore,
For a (block) diagonal matrix M of the form

. x k Py 0
—1AP _
i 0 =T+ i
M= k=1 0 Ak
0 Mpn TiZo kit 0
there holds B = . .
mi 0 0 T frAn
Mk — e)\)t 0
0 mis =
0 et
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Nondiagonalizable case
The Jordan canonical form is
And so the solution to (L_IVP) is given by o 0
ehit 0 PIAP = -
o(t) =P Pl 0 s
Ant
0 € so we use the same property as before (but with block matrices
now), and
et 0
eP AP _ }
0 elst
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Other blocks J; are written as
The first block in the Jordan canonical form takes the form

Ao 0 Ji = Mgl + N;
Jo= with I the n; x n; identity and N; the n; x n; nilpotent matrix
0 M 01 0 0
and thus, as before, N = )
Aot
} e 0 0 0
e bt
0 ekt Ak4il and N; commute, and thus
edit — gMritghit
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Since N; is nilpotent, N,k =0 for all k > nj, and the series eMit Theorem
terminates, and For all (to, x0) € R x R", there is a unique solution x(t) to

(L_IVP) defined for all t € R. Each coordinate function of x(t) is a
1t linear combination of functions of the form

elit — gMurit 01

the®t cos(Bt) and tke*sin(Bt)

where a+ i3 is an eigenvalue of A and k is less than the algebraic
multiplicity of the eigenvalue.
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Fixed points (equilibria)

Definition
A fixed point (or equilibrium point, or critical point) of an
autonomous differential equation

is a point p such that f(p) = 0. For a nonautonomous differential
equation

X' = f(t,x),
a fixed point satisfies f(t, p) = 0 for all t.

A fixed point is a solution.

Autonomous linear systems

Definition (Liapunov stable orbit)

The orbit of a point p is Liapunov stable for a flow ¢, if, given
&> 0, there exists § > 0 such that d(x, p) < & implies that
d(pe(x), de(p)) < e for all t > 0. If pis a fixed point, then this is
written d(¢¢(x),p) < e.

Definition (Asymptotically stable orbit)

The orbit of a point p is asymptotically stable (or attracting) for a
flow ¢, if it is Liapunov stable, and there exists d; > 0 such that
d(x, p) < &y implies that lim; o d(¢¢(x), ¢:(p)) = 0. If pis a
fixed point, then it is asymptotically stable if it is Liapunov stable
and there exists §; > 0 such that d(x, p) < &1 implies that

w(x) = {p).

Autonomous linesr systems
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Orbits, limit sets

Orbits and limit sets are defined as for maps.

For the equation x’ = f(x), the subset {x(t), t € I}, where I is the
maximal interval of existence of the solution, is an orbit.

If the maximal solution x(t,x) of x' = f(x) is defined for all
t > 0, where f is Lipschitz on an open subset V of R”, then the
omega limit set of xg is the subset of V' defined by

w(xo) = ﬁ ({X(t.xo) t>TiN V}) .

=0

Proposition
A point q is in w(xo) iff there exists a sequence {tx} such that
limg oo t = 00 and limy_.oo x(ti, x0) = q € V.

Autancrmous near systems
Contracting linear equation

Theorem
Let A e Mp(R), and consider the equation (L). Then the
following conditions are equivalent.

1. There is a norm || || on R" and a constant a > 0 such that
for any xo € R" and all t > 0,

le*xo]la < €72 [0/ -

2. There is a norm || || on R" and constants a >0 and C > 1
such that for any xo € R" and all t > 0,

le*xoll5 < Ce™||x0]|-
3. All eigenvalues of A have negative real parts.

In that case, the origin is a sink or attracting, the flow is a
contraction (antonyms source, repelling and expansion).

Autonomous linear systems



Hyperbolic linear equation

Definition
The linear differential equation (L) is hyperbolic if A has no
eigenvalue with zero real part.
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We can write

R"=E*®E"®+E°,
and in the case that E€ =, then R" = ES @ EV is called a
hyperbolic splitting.

The symbol & stands for direct sum.

Definition (Direct sum)

Let U, V be two subspaces of a vector space X. Then the span of
U and V is defined by u+v forue Uand ve V. If Uand V are
disjoint except for 0, then the span of U and V is called the direct
sum of U and V, and is denoted U & V.
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Definition (Stable eigenspace)
The stable eigenspace of A € M,(R) is

E*® = span{v : v generalized eigenvector for eigenvalue A,
with R(\) < 0}

Definition (Center eigenspace)
The center eigenspace of A € M,(R) is

E€ = span{v : v generalized eigenvector for eigenvalue A,

with R(\) = 0}

Definition (Unstable eigenspace)
The unstable eigenspace of A € M,(R) is

EY = span{v : v generalized cigenvector for eigenvalue A,
with R(A) > 0}
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Trichotomy
Define

V* = {v : there exists a > 0 and C > 1 such that
le* vl < Ce™|v]| for t > 0}.

V¥ = {v : there exists a > 0 and C > 1 such that
le*v]l < Ce™?|lv]| for ¢ < 0}.

Ve ={v:foralla>0,[le?v]e ! — 0as t — +oc}.

Theorem
The following are true.
1. The subspaces ES, EY and E€ are invariant under the flow
At
e,

2. There holds that ES = V*°, EY = V" and E€ = V¢, and thus
e?t|gu is an exponential expansion, e”t|gs is an exponential
contraction, and e”t|gc grows subexponentially as t — +00.
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Topologically conjugate linear ODEs

Definition (Topologically conjugate flows)

Let ¢; and 1+ be two flows on a space M. ¢; and vy are
topologically conjugate if there exists an homeomorphism
h: M — M such that

hoge(x) = e 0 h(x),

forall x e M and all t € R.

Definition (Topologically equivalent flows)

Let ¢¢ and )+ be two flows on a space M. ¢ and v are
topologically equivalent if there exists an homeomorphism
h:M — M and a function a : R x M — R such that

ho da(tsx)(x) =1t o h(x),

for all x € M and all t € R, and where a(t, x) is monotonically
increasing in t for each x and onto all of R.
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Theorem

Let A, B € M,(R). Assume that et and Bt are linearly
conjugate, i.e., there exists M with eBt = MeAtM~1. Then A and
B have the same eigenvalues.
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Theorem

Let A, B € M,(R).

If all eigenvalues of A and B have negative real parts, then
the linear flows et and et are topologically conjugate.

-

N}

. Assume that the system is hyperbolic, and that the dimension
of the stable eigenspace of A is equal to the dimension of the
eigenspace of B. Then the linear flows e”t and eB* are
topologically conjugate.
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