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First derivative

Consider the map f : U ⊂ Rk → Rn, with U open subset of Rk .

Then the derivative of f is an n × k matrix,

Df (p) =

(
∂fi
∂xj

(p)

)
for i = 1, . . . , n and j = 1, . . . , k, at a point p ∈ Rk . This is an
element of L(Rk ,Rn), the set of linear maps from Rk to Rn.
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Second derivative

Second derivative, D2f (p), is more complicated. Element of
L(Rk ,L(Rk ,Rn)) (or, an element of L2(Rk ,Rn), the set of
bilinear maps from Rk to Rn).

Let u, v be two vectors in Rk , u = (u1, . . . , uk) and
v = (v1, . . . , vk), then

D2f (p)(u, v) =
∑
i ,j

(
∂2f

∂xi∂xj

)
(p)uivj ,

where (
∂2f

∂xi∂xj

)
(p)

is a vector.
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Implicit function theorem

Theorem
Let U ⊂ Rn+1 be an open set, and F : U → R be C r

(F ∈ C r (U,R)), r ≥ 1. Write p = (x , y), x ∈ Rn and y ∈ R.
Assume (x0, y0) ∈ U such that

∂F

∂y
(x0, y0) 6= 0.

Let C = F (x0, y0) ∈ R. Then there exists open sets V 3 x0 and
W 3 y0 with V ×W ⊂ U, and h : C r (V ,W ) such that

h(x0) = y0

F (x , h(x)) = C ∀x ∈ V .

Furthermore, ∀x ∈ V , h(x) is the unique y ∈ W such that
F (x , y) = C.
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Implicit function theorem for higher dimensions

Theorem
Let U ⊂ Rn × Rk be an open set, and F : U → Rk be C r

(F ∈ C r (U,R)), r ≥ 1. Write U 3 p = (x , y), x ∈ Rn and y ∈ Rk ,
and F = (f1, . . . , fk). Assume (x0, y0) ∈ U such that(

∂fi
∂yj

(x0, y0)

)
1≤i ,j≤k

is an invertible k × k matrix. Let C = F (x0, y0) ∈ Rk . Then there
exists open sets V 3 x0 and W 3 y0 with V ×W ⊂ U, and
h : C r (V ,W ) such that

h(x0) = y0

F (x , h(x)) = C ∀x ∈ V .

Furthermore, ∀x ∈ V , h(x) is the unique y ∈ W such that
F (x , y) = C.
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Inverse function theorem

Theorem
Assume that U ⊂ Rn is an open set, and f ∈ C (U,Rn) for r ≥ 1.
Let x0 ∈ U. Assume that |Df (x0)| 6= 0. Then there exist V 3 x0

and W 3 y0 = f (x0), and g ∈ C r (W ,V ) such that g is the inverse
of f on V , i.e.,

g ◦ f (x) = x for x ∈ V and f ◦ g(y) = y for y ∈ W .

Also,
Dg(f (x)) = (Df (x))−1.
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Definition (Contraction mapping)

Let (X , d) be a metric space, and let S ⊂ X . A mapping
f : S → S is a contraction on S if there exists K < 1 such that, for
all x , y ∈ S ,

d(f (x), f (y)) ≤ Kd(x , y)

Every contraction is uniformly continuous on X .
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Theorem (Contraction mapping principle)

Consider the complete metric space (X , d). Every contraction
mapping f : X → X has one and only one x ∈ X such that
f (x) = x.
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Objective

Consider the autonomous nonlinear system in Rn

x ′ = f (x) (1)

The object here is to show two results which link the behavior of
(1) near a hyperbolic equilibrium point x∗ to the behavior of the
linearized system

x ′ = Df (x∗)(x − x∗) (2)

about that same equilibrium.
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Homeomorphism

Definition (Homeomorphism)

Let X be a metric space and let A and B be subsets of X . A
homeomorphism h : A → B of A onto B is a continuous
one-to-one map of A onto B such that h−1 : B → A is continuous.
The sets A and B are called homeomorphic or topologically
equivalent if there is a homeomorphism of A onto B.
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Differentiable manifold

Definition (Differentiable manifold)

An n-dimensional differentiable manifold M (or a manifold of class
C k) is a connected metric space with an open covering {Uα} (i.e.,
M = ∪αUα) such that

1. for all α, Uα is homeomorphic to the open unit ball in Rn,
B = {x ∈ Rn : |x | < 1}, i.e., for all α there exists a
homeomorphism of Uα onto B, hα : Uα → B,

2. if Uα ∩ Uβ 6= ∅ and hα : Uα → B, hβ : Uβ → B are
homeomorphisms, then hα(Uα ∩ Uβ) and hβ(Uα ∩ Uβ) are
subsets of Rn and the map

h = hα ◦ h−1
β : hβ(Uα ∩ Uβ) → hα(Uα ∩ Uβ)

is differentiable (or of class C k) and for all x ∈ hβ(Uα ∩ Uβ),
the determinant of the Jacobian, detDh(x) 6= 0.
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Stable manifold theorem

Theorem (Stable manifold theorem)

Let E be an open subset of Rn containing the origin, let
f ∈ C 1(E ), and let φt be the flow of the nonlinear system (1).
Suppose that f (0) = 0 and that Df (0) has k eigenvalues with
negative real part and n − k eigenvalues with positive real part.
Then there exists a k-dimensional differentiable manifold S
tangent to the stable subspace E s of the linear system (2) at 0
such that for all t ≥ 0, φt(S) ⊂ S and for all x0 ∈ S,

lim
t→∞

φt(x0) = 0

and there exists an (n − k)-dimensional differentiable manifold U
tangent to the unstable subspace Eu of (2) at 0 such that for all
t ≤ 0, φt(U) ⊂ U and for all x0 ∈ U,

lim
t→−∞

φt(x0) = 0
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HG theorem – Formulation 1

Theorem (Hartman-Grobman)

Suppose that 0 is an equilibrium point of the nonlinear system (1).
Let ϕt be the flow of (1), and ψt be the flow of the linearized
system x ′ = Df (0)x. If 0 is a hyperbolic equilibrium, then there
exists an open subset D of Rn containing 0, and a homeomorphism
G with domain in D such that G (ϕt(x)) = ψt(G (x)) whenever
x ∈ D and both sides of the equation are defined.
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HG theorem – Formulation 2

Theorem (Hartman-Grobman)

Let E be an open subset of Rn containing the origin, let
f ∈ C 1(E ), and let φt be the flow of the nonlinear system (1).
Suppose that f (0) = 0 and that the matrix A = Df (0) has no
eigenvalue with zero real part.
Then there exists a homeomorphism H of an open set U
containing the origin onto an open set V containing the origin
such that for each x0 ∈ U, there is an open interval I0 ⊂ R
containing 0 such that for all x0 ∈ U and t ∈ I0,

H ◦ φt(x0) = eAtH(x0);

i.e., H maps trajectories of (1) near the origin onto trajectories of
x ′ = Df (0)x near the origin and preserves the parametrization by
time.
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Lyapunov function

We consider x ′ = f (x), x ∈ Rn, with flow φt(x). Let p be a fixed
point.

Definition (Weak Lyapunov function)

The function V ∈ C 1(U,R) is a weak Lyapunov function for φt on
the open neighborhood U 3 p if V (x) > V (p) and
d
dt V (φt(x)) ≤ 0 for all x ∈ U \ {p}.

Definition (Lyapunov function)

The function V ∈ C 1(U,R) is a (strong) Lyapunov function for φt

on the open neighborhood U 3 p if V (x) > V (p) and
d
dt V (φt(x)) < 0 for all x ∈ U \ {p}.
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Theorem
Suppose that p is a fixed point of x ′ = f (x), U is a neighborhood
of p, and V : U → R.

1. If V is a weak Lyapunov function for φt on U, then p is
Liapunov stable.

2. If V is a Lyapunov function for φt on U, then p is
asymptotically stable.
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Periodic orbits for flows

Definition (Periodic point)

Let x ′ = f (x), and φt(x) be the associated flow. p is a periodic
point with (least) period T , or T -periodic point, if φT (p) = p and
φt(p) 6= p for 0 < t < T .

Definition (Periodic orbit)

If p is a T -periodic point, then

O(p) = {φt(p) : 0 ≤ t ≤ T}

is the orbit of p, called a periodic orbit or a closed orbit.
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Definition (Stable periodic orbit)

A periodic orbit γ is stable if for each ε > 0, there exists a
neighborhood U of γ such that for all x ∈ U, d(γ+

x , γ) < ε, i.e., if
for all x ∈ U and t ≥ 0, d(φt(x), γ) < ε.

Definition (Unstable periodic orbit)

A periodic orbit that is not stable is unstable.

Definition (Asymptotically stable periodic orbit)

A periodic orbit γ is asymptotically stable if it is stable and for all
x in some neighborhood U of γ,

lim
t→∞

d(φt(x), γ) = 0.
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Hyperbolic periodic orbits

Definition (Characteristic multipliers)

If γ is a periodic orbit of period T , with p ∈ γ, then the
eigenvalues of DφT (p) are 1, λ1, . . . , λn−1. The eigenvalues
λ1, . . . , λn−1 are called the characteristic multipliers of the periodic
orbit.

Definition (Hyperbolic periodic orbit)

A periodic orbit is hyperbolic if none of the characteristic
multipliers has modulus 1.

Definition (Periodic sink)

A periodic orbit which has all characteristic multipliers λ such that
|λ| < 1.

Definition (Periodic source)

A periodic orbit which has all characteristic multipliers λ such that
|λ| > 1.
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Theorem

1. If φt(x) is a solution of x ′ = f (x), γ is a periodic orbit of
period T , and p ∈ γ, then DφT (p) has 1 as an eigenvalue
with eigenvector f (p).

2. If p and q belong to the same T-periodic orbit γ, then
DφT (p) and DφT (q) are linearly conjugate and thus have the
same eigenvalues.
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Example

x ′ = −y + x(1− x2 − y2)

y ′ = x + y(1− x2 − y2)

z ′ = z

First, look at

x ′ = −y + x(1− x2 − y2)

y ′ = x + y(1− x2 − y2)
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In polar coordinates, if x = r cos θ and y = r sin θ, then
r = ±

√
x2 + y2 and θ = arctan(y/x). So

d

dt
r(t) =

xx ′ + yy ′√
x2 + y2

and
d

dt
θ(t) =

y ′

x −
x ′y
x2

1 + y2

x2

=
xy ′ − x ′y

x2 + y2
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System is

x ′ = −y + x(1− x2 − y2)

y ′ = x + y(1− x2 − y2),

so in polar coordinates,

r ′ =
xx ′ + yy ′√

x2 + y2

=
x(−y + x(1− x2 − y2)) + y(x + y(1− x2 − y2))√

x2 + y2

=
(1− x2 − y2)(x2 + y2)√

x2 + y2

= (1− x2 − y2)
√

x2 + y2

= (1− r2)r
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θ′ =
xy ′ − x ′y

x2 + y2

=
x(x + y(1− x2 − y2))− (−y + x(1− x2 − y2))y

x2 + y2

=
x2 + y2 + (xy − xy)(1− x2 − y2)

x2 + y2

= 1,

so, in polar coordinates, the system is

r ′ = r(1− r2)

θ′ = 1
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