Analysis near fixed points
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First derivative

Consider the map f : U € R — R”, with U open subset of R¥,

Then the derivative of f is an n X k matrix,

Df(p) = (g:j (p))

fori=1,...,nand j=1,...,k, at a point p € R¥. This is an
element of L(RK,R"), the set of linear maps from R¥ to R".

Derivatives in higher dimensions
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Second derivative

Second derivative, D?f(p), is more complicated. Element of
L(R¥ L(R* R")) (or, an element of £2(R* R"), the set of
bilinear maps from R¥ to R").

Let u, v be two vectors in R¥, u = (v, ..., ux) and
v={_(v1,..., V), then
0°f
2 _ v
(e =3 ( ax,-ax,.> (p)urv;
where 2
< MXJ) (p)
is a vector.

Derivatives in higher dimensions






Implicit function theorem

Theorem

Let U C R™1 be an open set, and F : U — R be C"

(Fe C(UR)), r>1. Writep=(x,y), x €R" and y € R.
Assume (xo, vo) € U such that

OF
a(Xo,YO) # 0.

Let C = F(xo, o) € R. Then there exists open sets V > xo and
W 3 yo with Vx W C U, and h: C"(V, W) such that

h(x0) = yo
F(x,h(x))=C Vxe V.

Furthermore, Vx € V, h(x) is the unique y € W such that
F(x,y) = C.

Implicit function theorem
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Implicit function theorem for higher dimensions

Theorem

Let U C R" x R be an open set, and F : U — Rk pe C"

(Fe C'(U,R)), r>1. WriteU> p=(x,y), x € R" and y € R¥,
and F = (fi,...,fx). Assume (xo, yo) € U such that

(§;<XO,yo))

is an invertible k x k matrix. Let C = F(xo, yo) € RX. Then there
exists open sets V 3 xg and W > yp with V x W C U, and
h: C'(V,W) such that

1<ij<k

h(x0) = yo
F(x,h(x))=C Vxe V.

Furthermore, Vx € V/, h(x) is the unique y € W such that
F(x,y)=C.

Implicit function theorem






Inverse function theorem

Theorem

Assume that U C R" is an open set, and f € C(U,R") forr > 1.
Let xo € U. Assume that |Df (xp)| # 0. Then there exist V > xo
and W 3 yp = f(x0), and g € C"(W, V) such that g is the inverse
of fonV, ie,

gof(x)=x forxeV andfog(y)=y fory e W.

Also,
Dg(f(x)) = (Df(x)) ™.

Inverse function theorem

p.






Definition (Contraction mapping)

Let (X, d) be a metric space, and let S C X. A mapping
f:S — Sis a contraction on S if there exists K < 1 such that, for

all x,y € S,
d(f(x),f(y)) < Kd(x,y)

Every contraction is uniformly continuous on X.

Fixed point theorems

p.

11



Theorem (Contraction mapping principle)

Consider the complete metric space (X, d). Every contraction

mapping f : X — X has one and only one x € X such that
f(x) =x.

Fixed point theorems
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Objective

Consider the autonomous nonlinear system in R”
X' = f(x) (1)

The object here is to show two results which link the behavior of
(1) near a hyperbolic equilibrium point x* to the behavior of the
linearized system

x" = Df(x*)(x — x*) (2)

about that same equilibrium.

Linearization






Homeomorphism

Definition (Homeomorphism)

Let X be a metric space and let A and B be subsets of X. A
homeomorphism h : A — B of A onto B is a continuous

one-to-one map of A onto B such that h™! : B — A is continuous.

The sets A and B are called homeomorphic or topologically
equivalent if there is a homeomorphism of A onto B.

Stable manifold theorem
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Differentiable manifold

Definition (Differentiable manifold)

An n-dimensional differentiable manifold M (or a manifold of class
Ck) is a connected metric space with an open covering {U,} (i.e.,
M = U, U,) such that
1. for all a, U, is homeomorphic to the open unit ball in R”,
B={xeR": |x| <1}, ie, for all a there exists a
homeomorphism of U, onto B, h, : U, — B,
2. if UsNUg#0and hy: Uy — B, hg: Usg — B are
homeomorphisms, then h, (U, N Ug) and hg(U, N Ug) are
subsets of R” and the map

h=heohg': hg(Ua N Us) — ha(Ua N Up)

is differentiable (or of class CK) and for all x € hg(U, N Up),
the determinant of the Jacobian, detDh(x) # 0.

Stable manifold theorem
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Stable manifold theorem

Theorem (Stable manifold theorem)

Let E be an open subset of R” containing the origin, let

f € CL(E), and let ¢; be the flow of the nonlinear system (1).
Suppose that f(0) = 0 and that Df(0) has k eigenvalues with
negative real part and n — k eigenvalues with positive real part.
Then there exists a k-dimensional differentiable manifold S
tangent to the stable subspace E*® of the linear system (2) at 0
such that for all t > 0, $+(S) C S and for all xy € S,

lim ¢¢(x0) =0

t—o0
and there exists an (n — k)-dimensional differentiable manifold U
tangent to the unstable subspace EY of (2) at 0 such that for all
t <0, ¢:(U) C U and for all xg € U,

t—I!Too ¢t(XO) =0

Stable manifold theorem






HG theorem — Formulation 1

Theorem (Hartman-Grobman)

Suppose that 0 is an equilibrium point of the nonlinear system (1).
Let ¢ be the flow of (1), and 1, be the flow of the linearized
system x' = Df(0)x. If 0 is a hyperbolic equilibrium, then there
exists an open subset D of R" containing 0, and a homeomorphism
G with domain in D such that G(p+(x)) = ¥:(G(x)) whenever

x € D and both sides of the equation are defined.

Hartman-Grobman theorem
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HG theorem — Formulation 2

Theorem (Hartman-Grobman)

Let E be an open subset of R" containing the origin, let

f € CY(E), and let ¢ be the flow of the nonlinear system (1).
Suppose that f(0) = 0 and that the matrix A = Df(0) has no
eigenvalue with zero real part.

Then there exists a homeomorphism H of an open set U
containing the origin onto an open set V' containing the origin
such that for each xg € U, there is an open interval Tp C R
containing 0 such that for all xo € U and t € Iy,

H o ¢(x0) = eAtH(xo);

i.e., H maps trajectories of (1) near the origin onto trajectories of
x" = Df(0)x near the origin and preserves the parametrization by
time.

Hartman-Grobman theorem






Lyapunov function

We consider x” = f(x), x € R", with flow ¢¢(x). Let p be a fixed
point.
Definition (Weak Lyapunov function)

The function V € C(U,R) is a weak Lyapunov function for ¢, on
the open neighborhood U 3 p if V(x) > V(p) and
2V (¢e(x)) <0 forall x € U\ {p}.

Definition (Lyapunov function)

The function V € CY(U,R) is a (strong) Lyapunov function for ¢,
on the open neighborhood U > p if V(x) > V(p) and
£ V(¢e(x)) <0 forall x € U\ {p}.

Lyapunov functions
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Theorem
Suppose that p is a fixed point of x' = f(x), U is a neighborhood
of p,and V : U — R.
1. If V is a weak Lyapunov function for ¢ on U, then p is
Liapunov stable.
2. If V is a Lyapunov function for ¢+ on U, then p is
asymptotically stable.

Lyapunov functions
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Periodic orbits for flows

Definition (Periodic point)

Let X’ = f(x), and ¢+(x) be the associated flow. p is a periodic
point with (least) period T, or T-periodic point, if ¢7(p) = p and
de(p) #pfor0<t<T.

Definition (Periodic orbit)
If pis a T-periodic point, then

O(p) = {¢:(p): 0<t < T}

is the orbit of p, called a periodic orbit or a closed orbit.

Periodic orbits
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Definition (Stable periodic orbit)

A periodic orbit 7 is stable if for each € > 0, there exists a
neighborhood U of v such that for all x € U, d(7;,7) <, ie., if
forall x € U and t > 0, d(¢¢(x),7) < e.

Definition (Unstable periodic orbit)
A periodic orbit that is not stable is unstable.

Definition (Asymptotically stable periodic orbit)

A periodic orbit v is asymptotically stable if it is stable and for all
x in some neighborhood U of ~,

Jlim d(94(x).7) = 0.

Periodic orbits
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Hyperbolic periodic orbits

Definition (Characteristic multipliers)
If v is a periodic orbit of period T, with p € «y, then the

eigenvalues of Dpr(p) are 1,\1,..., Ap—1. The eigenvalues
A1, ..., An_1 are called the characteristic multipliers of the periodic
orbit.

Definition (Hyperbolic periodic orbit)
A periodic orbit is hyperbolic if none of the characteristic
multipliers has modulus 1.

Definition (Periodic sink)
A periodic orbit which has all characteristic multipliers A such that

Al < 1.

Definition (Periodic source)

A periodic orbit which has all characteristic multipliers A such that
|A] > 1.

Periodic orbits



Theorem

1. If ¢+(x) is a solution of x' = f(x), v is a periodic orbit of
period T, and p € v, then Dé1(p) has 1 as an eigenvalue
with eigenvector f(p).

2. If p and q belong to the same T-periodic orbit vy, then
D¢r(p) and Do1(q) are linearly conjugate and thus have the
same eigenvalues.

Periodic orbits
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Example

First, look at

Periodic orbits

Sy xR y?)
! x+y(1—x2—y2)
z

N SL X
Il

X' =—y+x(1-x*—y?)
y'=x+y(l—x*=y%
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In polar coordinates, if x = rcosf and y = rsin6, then
x2 + y? and 6 = arctan(y/x). So

r=+=+
d (1) xx' + yy'
—r _ 77
dt /%2 + y?2
and ) ,
d X TOE =Xy
Ee(t): 2 = 2 2
1+% X<ty

Periodic orbits
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System is
X' =—y+x(1-x%—y?)
Y =x+y(l—x2—y?),
so in polar coordinates,

;o x+yy!
g

R

o x(y+x(1 =X = y?)) +y(x +y(1 = x* — y?))

B VX2 + y2
(1—x%—y?)(x2 + y?)
/X2 +y2
=(1-x*—y*)V/x2+y2

=(1- r2)r

Periodic orbits

p.
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g Y =Xy

X2 + y2
_x(x+y(1=x*=y?) = (—y +x(1 = X* = y?))y
x2 +y2
X2 +y? 4 (xy — xy)(1 — x* — y?)
- x2 +y2
= 17

so, in polar coordinates, the system is

r=r(1-r?
0 =1

Periodic orbits
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