Analysis near fixed points

First derivative

Consider the map $f: U \subset \mathbb{R}^k \to \mathbb{R}^n$, with U open subset of \mathbb{R}^k .

Then the derivative of f is an $n \times k$ matrix,

$$Df(p) = \left(\frac{\partial f_i}{\partial x_j}(p)\right)$$

for i = 1, ..., n and j = 1, ..., k, at a point $p \in \mathbb{R}^k$. This is an element of $\mathcal{L}(\mathbb{R}^k, \mathbb{R}^n)$, the set of linear maps from \mathbb{R}^k to \mathbb{R}^n .

Second derivative

Second derivative, $D^2 f(p)$, is more complicated. Element of $\mathcal{L}(\mathbb{R}^k, \mathcal{L}(\mathbb{R}^k, \mathbb{R}^n))$ (or, an element of $\mathcal{L}^2(\mathbb{R}^k, \mathbb{R}^n)$, the set of bilinear maps from \mathbb{R}^k to \mathbb{R}^n).

Let u, v be two vectors in \mathbb{R}^k , $u = (u_1, \ldots, u_k)$ and $v = (v_1, \ldots, v_k)$, then

$$D^2 f(p)(u,v) = \sum_{i,j} \left(\frac{\partial^2 f}{\partial x_i \partial x_j} \right) (p) u_i v_j,$$

where

$$\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)(p)$$

is a vector.

Implicit function theorem

Theorem Let $U \subset \mathbb{R}^{n+1}$ be an open set, and $F : U \to \mathbb{R}$ be C^r $(F \in C^r(U, \mathbb{R})), r \ge 1$. Write $p = (x, y), x \in \mathbb{R}^n$ and $y \in \mathbb{R}$. Assume $(x_0, y_0) \in U$ such that

$$\frac{\partial F}{\partial y}(x_0, y_0) \neq 0.$$

Let $C = F(x_0, y_0) \in \mathbb{R}$. Then there exists open sets $V \ni x_0$ and $W \ni y_0$ with $V \times W \subset U$, and $h : C^r(V, W)$ such that

$$h(x_0) = y_0$$

 $F(x, h(x)) = C \quad \forall x \in V.$

Furthermore, $\forall x \in V$, h(x) is the unique $y \in W$ such that F(x, y) = C.

Implicit function theorem

Implicit function theorem for higher dimensions

Theorem

Let $U \subset \mathbb{R}^n \times \mathbb{R}^k$ be an open set, and $F : U \to \mathbb{R}^k$ be C^r $(F \in C^r(U, \mathbb{R})), r \ge 1$. Write $U \ni p = (x, y), x \in \mathbb{R}^n$ and $y \in \mathbb{R}^k$, and $F = (f_1, \ldots, f_k)$. Assume $(x_0, y_0) \in U$ such that

$$\left(\frac{\partial f_i}{\partial y_j}(x_0, y_0)\right)_{1 \le i,j \le k}$$

is an invertible $k \times k$ matrix. Let $C = F(x_0, y_0) \in \mathbb{R}^k$. Then there exists open sets $V \ni x_0$ and $W \ni y_0$ with $V \times W \subset U$, and $h : C^r(V, W)$ such that

$$h(x_0) = y_0$$

 $F(x, h(x)) = C \quad \forall x \in V.$

Furthermore, $\forall x \in V$, h(x) is the unique $y \in W$ such that F(x, y) = C.

Implicit function theorem

Inverse function theorem

Theorem

Assume that $U \subset \mathbb{R}^n$ is an open set, and $f \in C^{(U,\mathbb{R}^n)}$ for $r \ge 1$. Let $x_0 \in U$. Assume that $|Df(x_0)| \ne 0$. Then there exist $V \ni x_0$ and $W \ni y_0 = f(x_0)$, and $g \in C^r(W, V)$ such that g is the inverse of f on V, i.e.,

$$g \circ f(x) = x \text{ for } x \in V \text{ and } f \circ g(y) = y \text{ for } y \in W.$$

Also,

$$Dg(f(x)) = (Df(x))^{-1}.$$

Definition (Contraction mapping)

Let (X, d) be a metric space, and let $S \subset X$. A mapping $f : S \to S$ is a *contraction* on S if there exists K < 1 such that, for all $x, y \in S$,

$$d(f(x), f(y)) \leq Kd(x, y)$$

Every contraction is uniformly continuous on X.

Theorem (Contraction mapping principle)

Consider the complete metric space (X, d). Every contraction mapping $f : X \to X$ has one and only one $x \in X$ such that f(x) = x.

Objective

Consider the autonomous nonlinear system in \mathbb{R}^n

$$x' = f(x) \tag{1}$$

The object here is to show two results which link the behavior of (1) near a hyperbolic equilibrium point x^* to the behavior of the linearized system

$$x' = Df(x^*)(x - x^*)$$
 (2)

about that same equilibrium.

Definition (Homeomorphism)

Let X be a metric space and let A and B be subsets of X. A homeomorphism $h: A \to B$ of A onto B is a continuous one-to-one map of A onto B such that $h^{-1}: B \to A$ is continuous. The sets A and B are called *homeomorphic* or *topologically* equivalent if there is a homeomorphism of A onto B.

Differentiable manifold

Definition (Differentiable manifold)

An *n*-dimensional differentiable manifold M (or a manifold of class C^k) is a connected metric space with an open covering $\{U_\alpha\}$ (i.e., $M = \bigcup_\alpha U_\alpha$) such that

- 1. for all α , U_{α} is homeomorphic to the open unit ball in \mathbb{R}^n , $B = \{x \in \mathbb{R}^n : |x| < 1\}$, *i.e.*, for all α there exists a homeomorphism of U_{α} onto B, $h_{\alpha} : U_{\alpha} \to B$,
- 2. if $U_{\alpha} \cap U_{\beta} \neq \emptyset$ and $h_{\alpha} : U_{\alpha} \to B$, $h_{\beta} : U_{\beta} \to B$ are homeomorphisms, then $h_{\alpha}(U_{\alpha} \cap U_{\beta})$ and $h_{\beta}(U_{\alpha} \cap U_{\beta})$ are subsets of \mathbb{R}^{n} and the map

$$h=h_lpha\circ h_eta^{-1}:\;h_eta(U_lpha\cap U_eta) o h_lpha(U_lpha\cap U_eta)$$

is differentiable (or of class C^k) and for all $x \in h_\beta(U_\alpha \cap U_\beta)$, the determinant of the Jacobian, $\det Dh(x) \neq 0$.

Stable manifold theorem

Theorem (Stable manifold theorem)

Let E be an open subset of \mathbb{R}^n containing the origin, let $f \in C^1(E)$, and let ϕ_t be the flow of the nonlinear system (1). Suppose that f(0) = 0 and that Df(0) has k eigenvalues with negative real part and n - k eigenvalues with positive real part. Then there exists a k-dimensional differentiable manifold S tangent to the stable subspace E^s of the linear system (2) at 0 such that for all $t \ge 0$, $\phi_t(S) \subset S$ and for all $x_0 \in S$,

$$\lim_{t\to\infty}\phi_t(x_0)=0$$

and there exists an (n - k)-dimensional differentiable manifold U tangent to the unstable subspace E^u of (2) at 0 such that for all $t \le 0$, $\phi_t(U) \subset U$ and for all $x_0 \in U$,

$$\lim_{t\to-\infty}\phi_t(x_0)=0$$

Theorem (Hartman-Grobman)

Suppose that 0 is an equilibrium point of the nonlinear system (1). Let φ_t be the flow of (1), and ψ_t be the flow of the linearized system x' = Df(0)x. If 0 is a hyperbolic equilibrium, then there exists an open subset \mathcal{D} of \mathbb{R}^n containing 0, and a homeomorphism G with domain in \mathcal{D} such that $G(\varphi_t(x)) = \psi_t(G(x))$ whenever $x \in \mathcal{D}$ and both sides of the equation are defined.

HG theorem – Formulation 2

Theorem (Hartman-Grobman)

Let E be an open subset of \mathbb{R}^n containing the origin, let $f \in C^1(E)$, and let ϕ_t be the flow of the nonlinear system (1). Suppose that f(0) = 0 and that the matrix A = Df(0) has no eigenvalue with zero real part.

Then there exists a homeomorphism H of an open set U containing the origin onto an open set V containing the origin such that for each $x_0 \in U$, there is an open interval $\mathcal{I}_0 \subset \mathbb{R}$ containing 0 such that for all $x_0 \in U$ and $t \in \mathcal{I}_0$,

$$H \circ \phi_t(x_0) = e^{At} H(x_0);$$

i.e., H maps trajectories of (1) near the origin onto trajectories of x' = Df(0)x near the origin and preserves the parametrization by time.

Lyapunov function

We consider x' = f(x), $x \in \mathbb{R}^n$, with flow $\phi_t(x)$. Let p be a fixed point.

Definition (Weak Lyapunov function)

The function $V \in C^1(U, \mathbb{R})$ is a *weak Lyapunov function* for ϕ_t on the open neighborhood $U \ni p$ if V(x) > V(p) and $\frac{d}{dt}V(\phi_t(x)) \le 0$ for all $x \in U \setminus \{p\}$.

Definition (Lyapunov function)

The function $V \in C^1(U, \mathbb{R})$ is a (strong) Lyapunov function for ϕ_t on the open neighborhood $U \ni p$ if V(x) > V(p) and $\frac{d}{dt}V(\phi_t(x)) < 0$ for all $x \in U \setminus \{p\}$.

Theorem

Suppose that p is a fixed point of x' = f(x), U is a neighborhood of p, and $V : U \to \mathbb{R}$.

- 1. If V is a weak Lyapunov function for ϕ_t on U, then p is Liapunov stable.
- 2. If V is a Lyapunov function for ϕ_t on U, then p is asymptotically stable.

Periodic orbits for flows

Definition (Periodic point)

Let x' = f(x), and $\phi_t(x)$ be the associated flow. p is a *periodic* point with (*least*) period T, or T-periodic point, if $\phi_T(p) = p$ and $\phi_t(p) \neq p$ for 0 < t < T.

Definition (Periodic orbit)

If p is a T-periodic point, then

$$\mathcal{O}(p) = \{\phi_t(p) : 0 \le t \le T\}$$

is the orbit of p, called a periodic orbit or a closed orbit.

Definition (Stable periodic orbit)

A periodic orbit γ is *stable* if for each $\varepsilon > 0$, there exists a neighborhood U of γ such that for all $x \in U$, $d(\gamma_x^+, \gamma) < \varepsilon$, i.e., if for all $x \in U$ and $t \ge 0$, $d(\phi_t(x), \gamma) < \varepsilon$.

Definition (Unstable periodic orbit)

A periodic orbit that is not stable is unstable.

Definition (Asymptotically stable periodic orbit)

A periodic orbit γ is asymptotically stable if it is stable and for all x in some neighborhood U of γ ,

$$\lim_{t\to\infty}d(\phi_t(x),\gamma)=0.$$

Hyperbolic periodic orbits

Definition (Characteristic multipliers)

If γ is a periodic orbit of period T, with $p \in \gamma$, then the eigenvalues of $D\phi_T(p)$ are $1, \lambda_1, \ldots, \lambda_{n-1}$. The eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ are called the *characteristic multipliers* of the periodic orbit.

Definition (Hyperbolic periodic orbit)

A periodic orbit is *hyperbolic* if none of the characteristic multipliers has modulus 1.

Definition (Periodic sink)

A periodic orbit which has all characteristic multipliers λ such that $|\lambda|<1.$

Definition (Periodic source)

A periodic orbit which has all characteristic multipliers λ such that $|\lambda|>1.$

Theorem

- If φ_t(x) is a solution of x' = f(x), γ is a periodic orbit of period T, and p ∈ γ, then Dφ_T(p) has 1 as an eigenvalue with eigenvector f(p).
- If p and q belong to the same T-periodic orbit γ, then Dφ_T(p) and Dφ_T(q) are linearly conjugate and thus have the same eigenvalues.

Example

$$x' = -y + x(1 - x^{2} - y^{2})$$

$$y' = x + y(1 - x^{2} - y^{2})$$

$$z' = z$$

First, look at

$$x' = -y + x(1 - x^{2} - y^{2})$$

$$y' = x + y(1 - x^{2} - y^{2})$$

Periodic orbits

In polar coordinates, if $x = r \cos \theta$ and $y = r \sin \theta$, then $r = \pm \sqrt{x^2 + y^2}$ and $\theta = \arctan(y/x)$. So

$$\frac{d}{dt}r(t) = \frac{xx' + yy'}{\sqrt{x^2 + y^2}}$$

а	n	d

$$rac{d}{dt} heta(t) = rac{rac{y'}{x} - rac{x'y}{x^2}}{1 + rac{y^2}{x^2}} = rac{xy' - x'y}{x^2 + y^2}$$

System is

$$\begin{aligned} x' &= -y + x(1 - x^2 - y^2) \\ y' &= x + y(1 - x^2 - y^2), \end{aligned}$$

so in polar coordinates,

$$r' = \frac{xx' + yy'}{\sqrt{x^2 + y^2}}$$

= $\frac{x(-y + x(1 - x^2 - y^2)) + y(x + y(1 - x^2 - y^2))}{\sqrt{x^2 + y^2}}$
= $\frac{(1 - x^2 - y^2)(x^2 + y^2)}{\sqrt{x^2 + y^2}}$
= $(1 - x^2 - y^2)\sqrt{x^2 + y^2}$
= $(1 - r^2)r$

Periodic orbits

$$\begin{aligned} \theta' &= \frac{xy' - x'y}{x^2 + y^2} \\ &= \frac{x(x + y(1 - x^2 - y^2)) - (-y + x(1 - x^2 - y^2))y}{x^2 + y^2} \\ &= \frac{x^2 + y^2 + (xy - xy)(1 - x^2 - y^2)}{x^2 + y^2} \\ &= 1, \end{aligned}$$

so, in polar coordinates, the system is

$$r' = r(1 - r^2)$$
$$\theta' = 1$$

Periodic orbits