
A gentle introduction to Matlab

The “Mat” in Matlab does not stand for “mathematics”, but for
“matrix”..

⇒ all objects in matlab are matrices of some sort! Keep this in
mind when using it.

Matlab is a high level interpreted programming language:

I a matlab program is typically a set of instructions that are
evaluated iteratively;

I most of the work can be done directly from the command line.

p. 1

Defining a function
We want to plot the iterates of some function f . First, we define
the function.

>> f=inline(’r.*x.*(1-x)’,’x’,’r’)

f =

Inline function:
f(x,r) = r.*x.*(1-x)

This defines a function (here, with two arguments, x and r), that
can then be used:

>> f(0.2,3.2)

ans =

0.5120

Computing iterates p. 2

“;” hides the result on the command line

Remark that

>> f(0.2,3.2)

ans =

0.5120

but

>> f(0.2,3.2);

produces no output.

Computing iterates p. 3

Creating a vector

To create a vector, use the command

x = first entry : step : last entry,

or, if entries are a subset of the integers,

x = first entry : last entry.

For example, we want to plot the iterates of the logistic map, so

x=0:0.01:1;

Note the “;”: otherwise, we get the full 101 elements vector
displayed.

Computing iterates p. 4



What is the size of .. ?
As mentioned, in matlab everything is a matrix. For matrix
operations, size is important, and it is frequent to make mistakes.
To check, whos and size. whos gives a lot of information.

>> whos x
Name Size Bytes Class

x 1x101 808 double array
Grand total is 101 elements using 808 bytes

Various variables can be listed on the line after whos:

>> whos x k
Name Size Bytes Class

k 1x1 8 double array
x 1x101 808 double array

Grand total is 102 elements using 816 bytes

Computing iterates p. 5

size
size, on the other hand, is “attributable”. It can be used like this

>> size(x)

ans =
1 101

but also like this, since the result is a vector

>> [r,c]=size(x)

r =
1

c =
101

in which case, r and c take the values of the numbers of rows and
columns, respectively.

Computing iterates p. 6

Vectorized functions versus nonvectorized functions

Recall that we wrote

>> f=inline(’r.*x.*(1-x)’,’x’,’r’)

that is, every multiplication sign took the form .* instead of *.
Here, this is needed: we want to use the vectorized form of the
function, and be able to pass to f a vector instead of a single
value. The .* form means that the operation is applied to every
entry in the vector/matrix. Same exists for / and ^. Can also use
the function vectorize.

The result of using this vectorized form is that f will be applied to
every entry of x , and will produce a vector.

Vectorized operations have been optimized in matlab, and are
extremely fast. When possible, they should be used instead of
loops.

Computing iterates p. 7

Vectorized vs nonvectorized
Define

>> f=inline(’r.*x.*(1-x)’,’x’,’r’)
>> g=inline(’r*x*(1-x)’,’x’,’r’)

and for simplicity, consider the vector

>> x=[1,2];

Then

>> f(x,3.5)
g(x,3.5)

ans =
0 -7

??? Error using ==> inlineeval
Error in inline expression ==> r*x*(1-x)
??? Error using ==> mtimes
Inner matrix dimensions must agree.

Computing iterates p. 8



Plotting

Basic plotting is very easy. The format is

plot(x_axis,y_value)

so, for example (with f as defined above),

plot(x,f(x,3.4))

(here, “;” or not does not matter, as the figure appears in a new
window and all that “;” changes is the output in the command
window).

Computing iterates p. 9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Computing iterates p. 10

Making things a bit more fancy

This is a very basic plot.

I We could want to plot more than one object (for example, the
line y = x would be nice)..

plot(x,x,x,f(x,3.4));

Ordering is by pairs: x1, f1(x1), x2, f2(x2). Two elements in a
pair must have the same number of columns. Different pairs
can have different numbers of columns. Each element in a
given pair can be a point, a vector, a matrix.

I We could want to label the axes..

xlabel(’x’);
ylabel(’f(x)’);

Computing iterates p. 11

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x)

Computing iterates p. 12



Computing several iterates

For the moment, we only have f (x). We want f n(x), for a given n.
Several ways.

I Taking for example r = 3.5, use

f(f(x,3.5),3.5)

I The downside to this method is that matlab does not allow to
formally define f n, so tricks have to be used for larger values
of n, for example, produce a string containing the command

f(f(f(f(f(x,3.5),3.5),3.5),3.5),3.5)

and evaluate it. Complicated..

I Another method consists in using the result found at the
previous step to evaluate the next. We do that..

Computing iterates p. 13

Automatic resizing of vectors and matrices

We are going to use a very nice feature of matlab: adding elements
to a vector, or rows/columns to a matrix, is automatic. Suppose
for example that we had defined x as

x=0:0.01:0.5;

Then

x=[x,0.51:0.01:1];

would produce the vector x as we had earlier.

Computing iterates p. 14

Be careful! Note that the command was

x=[x,0.51:0.01:1];

that is, the old and new entries were separated by a “,”. This is
horizontal concatenation. The command with a “;” tries to add a
new row. In our case, we get

>> z=[z;0.51:0.01:1]
??? Error using ==> vertcat
All rows in the bracketed expression must have the same
number of columns.

because we are trying to add a row of 50 elements to a row of 51
elements. But

>> z=[z;0.51:0.01:1.01]

works, and gives a 2× 51 matrix.

Computing iterates p. 15

Here, we are going to use the latter form of the command, and add
each successive iterate to a solution matrix M.
First, define an empty matrix,

M=[];

Then we need to loop from 1 to n, where n is the iterate that we
want.

Computing iterates p. 16



Loops

The command uses the same type of syntax as the creation of a
vector: to loop from 4 to 12 by steps of 1,

for i=4:12,
command(s) to be repeated, maybe using the value i

end;

whereas to loop by non-unit or non-integer steps, say from 4 to 12
by steps of 1.35,

for i=4:1.35:12,
command(s) to be repeated, maybe using the value i

end;

Note that in that case, the last i is equal to 10.75, not 12, since
10.75 + 1.35 = 12.1 > 12. The same is true when using non-unit
steps to create vectors.

Computing iterates p. 17

Accessing matrix elements

Suppose that M is an m × n-matrix. Then

I M(i,j) is the element on the ith row and jth column.

I M(i,:) is the ith row.

I M(:,j) is the jth column.

I M(end,:) is the last row of M (end is a reserved word which
always points to the last valid index in a given matrix
dimension).

I M(:,end) is the last column of M.

I M(end,1:10) are the first 10 entries in the last row of M.

I M(1:2,3:5) is the submatrix of M consisting of rows 1 and 2
and columns 3 to 5 of M.

Computing iterates p. 18

Back to the iterates

After some thought, we realize that we will need to go back one
iterate. So instead of starting with empty matrix M, fill the first
row of M with first iterate, and start at iterate 2.

n=10;
r=3.5;

M=f(x,r);

for i=2:n,
M=[M;f(M(end,:),r)];

end;

plot(x,M);

This plots all the iterates to n. A bit crowded..

Computing iterates p. 19

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Computing iterates p. 20


