
Sets

Definition
A set is a collection of elements.

I Two sets are equal if they contain exactly the same elements.

I A is a subset of B (A ⊂ B) if all the elements of A also
belong to B.

I If A,B are two sets, A is a proper subset of B if A ⊂ B and
A 6= B (sometimes, the notation A ( B is used).
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Definition
Let X and Y be two sets. Then the set

X ∪ Y = {x : x ∈ X or x ∈ Y }

is called the union of X and Y , and the set

X ∩ Y = {x : x ∈ X and x ∈ Y }

is the intersection of X and Y . If X ⊂ Y , then the complement of
X in Y is given by

Y \ X = X c = {x : x ∈ Y , x 6∈ X}.
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De Morgan’s laws

Theorem
Let {Xα} be a collection of subsets of X . Then(⋃

α∈Λ

Xα

)c

=
⋂
α∈Λ

(Xα)c

and (⋂
α∈Λ

Xα

)c

=
⋃
α∈Λ

(Xα)c .
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Mappings

Definition
Let M and N be two arbitrary sets. A rule associating a unique
element b = f (a) ∈ N with each element a ∈ M defines a function
f on M (usually called a mapping of M into N).
If a ∈ M, b = f (a) ∈ N is the image of a (under f ). Every element
of M with a given element b ∈ N as its image is called a preimage
of b.

I b may have several preimages;

I N may contain elements with no preimage;

I if b has a unique preimage, it is denoted f −1(b).

For sets: Let A ⊂ X , B ⊂ Y . Then the image of A and inverse
image (or preimage) of B are, respectively,

f (A) = {f (x) : x ∈ A}, and f −1(B) = {x : f (x) ∈ B}.
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Definition
Let f : X → Y .

I If f (X ) = Y , f maps X onto Y (or, f is surjective).

I If for each y ∈ Y , f −1(y) consists of at most one element,
then f is one-to-one (or, f is injective). If f is injective, then
f −1 is a function with domain f (X ) and range X .

I If f is both injective and surjective, it is bijective.

The following properties hold, and can be extended to unions and
intersections of collections of sets:

I f −1(A ∪ B) = f −1(A) ∪ f −1(B).

I f −1(A ∩ B) = f −1(A) ∩ f −1(B).

I f (A ∪ B) = f (A) ∪ f (B).

I But f (A ∩ B) ⊂ (f (A) ∩ f (B)).
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Distances, metric spaces

Definition
A metric space is a pair (X , d) consisting of a set X and a distance
(or metric) d , i.e., a scalar valued real function d(x , y) defined for
all x , y ∈ X , satisfying the following properties:

1. d(x , y) ≥ 0 for all x , y ∈ X ,

2. d(x , y) = 0 if and only if x = y ,

3. d(x , y) = d(y , x) (symmetry),

4. d(x , z) ≤ d(x , y) + d(y , z) (triangle inequality).
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Some useful inequalities

Let xk , yk for k = 1, . . . , n.

Theorem (Hölder’s inequality)

Suppose p, q > 1 such that 1/p + 1/q = 1. Then

n∑
k=1

|xkyk | ≤

(
n∑

k=1

|xk |p
)1/p ( n∑

k=1

|yk |q
)1/q

.

Theorem (Cauchy-Schwarz inequality)

Case p = q = 2 of Hölder is the Cauchy-Schwarz inequality, also
written (

n∑
k=1

xkyk

)2

≤
n∑

k=1

x2
k

n∑
k=1

y2
k .
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Theorem (Minkowski’s inequality)

Suppose p ≥ 1. Then(
n∑

k=1

|xk + yk |p
)1/p

≤

(
n∑

k=1

|xk |p
)1/p

+

(
n∑

k=1

|yk |p
)1/p

.

Works in the case of infinite sums (n = ∞), giving convergence of
the sum on the LHS, provided

∑∞
k=1 xp

k and
∑∞

k=1 yp
k converge.
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Examples of metric spaces

I The set R of real numbers with distance d(x , y) = |x − y |;
I The set of all ordered n-tuples x = (x1, . . . , xn) with distance

d(x , y) =

√√√√ n∑
k=1

(xk − yk)2

is a metric space, denoted Rn and called the Euclidean
n-space.

I Replacing the previous distance with
d(x , y) =

∑n
k=1 |xk − yk | gives the metric space Rn

1.

I The set C ([a, b]) of all continuous functions defined on the
closed interval [a, b] with distance

d(f , g) = max
a≤t≤b

|f (t)− g(t)|

is a metric space.
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Continuity

Definition
Let f : (X , dX ) → (Y , dY ) be a mapping; f is continuous at
x0 ∈ X if, for any ε > 0, there exists δ > 0 such that

(dX (x , x0) < δ and x ∈ X ) ⇒ dY (f (x), f (x0)) < ε.

f is continuous on X if it is continuous at every point x0 ∈ X .
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Open balls, closed balls

Definition
An open ball with center x0 and radius r in a metric space X is the
set of points x ∈ X that satisfy d(x , x0) < r . It is also called an
open (or ε-) neighborhood of x0, and denoted Oε(x0). A closed
ball with center x0 and radius r in a metric space X is the set of
points x ∈ X that satisfy d(x , x0) ≤ r .

Definition
A point x ∈ X is a contact point of the set M ⊂ X if every
neighborhood of x contains at least one point of M. The set of all
contact points of a set M is denoted M̄ or [M] and is called the
closure of M.
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Properties of the closure and of closed sets

Denote [ ] the closure operator, and let M,N be subsets of a
metric space (X , d).

I M ⊂ [M].

I If M ⊂ N, then [M] ⊂ [N].

I [[M]] = [M].

I [M ∪ N] = [M] ∪ [N].

I [∅] = ∅.
I A set M is closed if [M] = M.

Theorem
The intersection of an arbitrary number of closed sets is closed.
The union of a finite number of closed sets is closed.
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Examples of closed sets

I Let (X , d) be a metric space. Then X and ∅ are closed sets.

I Every closed interval [a, b] on the real line is a closed set.

I Every closed ball in a metric space is closed. For example, the
set of all functions f ∈ C ([a, b]) such that |f (t)| ≤ K (K a
constant) is closed.

I Any set consisting of a finite number of points is closed.
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Interior points, open sets

Definition
A point x is an interior point in a set M ⊂ X if x has a
neighborhood Oε(x) ⊂ M, i.e., a neighborhood consisting entirely
of points of M. The set of all interior points of M ⊂ X is called
the interior of M, and is denoted Int(M) or M◦. A set M is open if
M = M◦.

Theorem
A set M ⊂ X is open if and only if its complement X \M is closed.

Theorem
The union of an arbitrary number of open sets is open. The
intersection of a finite number of open sets is open.

Metric spaces p. 14

Examples of open sets

I Let (X , d) be a metric space. Then X and ∅ are open sets.

I Every open interval (a, b) on the real line is an open set.

I Every open ball in a metric space is open.
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Cauchy sequences

Definition (Cauchy criterion)

A sequence {xn} of points in a metric space (X , d) satisfies the
Cauchy criterion if, for any ε > 0, there exists Nε such that

d(xp, xq) < ε for all p, q > Nε.

Definition (Cauchy sequence)

A sequence {xn} of points in a metric space (X , d) is a Cauchy
sequence if it satisfies the Cauchy criterion.

Theorem
Every convergent sequence is a Cauchy sequence.
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Complete metric spaces

Definition (Complete metric space)

A metric space (X , d) is complete if every Cauchy sequence in X
converges to an element of X . Otherwise, X is incomplete.
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Examples of complete metric spaces

I (R, d) with d(x , y) = |x − y |.
I (C, d) with d(z ,w) = |z − w |.
I (Rn, dp), with dp(x , y) = (

∑n
k=1(xk − yk)p)1/p, p ≥ 1.

I (Rn, d∞), with d∞(x , y) = max
1≤k≤n

{|xk − yk |}.

I The space (X , d) of all bounded sequences with
d(x , y) = sup

k≥1
{|xk − yk |}.

I The space B(S) of all real-valued bounded functions f on S ,
with uniform metric d(f , g) = sup

x∈S
{|f (x)− g(x)|}.

I The space (C ([a, b]), d) with d(f , g) = sup
a≤x≤b

{|f (x)− g(x)|}.
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Connectedness

Definition
A metric space (X , d) is disconnected if there exists two empty
subsets of X , A and B, such that

1. X = A ∪ B.

2. A ∩ [B] = ∅ and [A] ∩ B = ∅.
If no such subsets exist, then X is connected.
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Theorem
Let Y be a subset of the metric space (X , d). If Y is a compact
subset of X , then Y is closed and bounded.

Theorem
Let (X , d) be a compact metric space. Then (X , d) is complete.

Proposition

Let (X , d) be a metric space. The following statements are
equivalent:

1. every infinite set in (X , d) has at least one limit point in X ;

2. every infinite sequence in (X , d) contains a convergent
subsequence.

Theorem
The metric space (X , d) is compact if and only if every sequence
of points in X has a subsequence that converges to a point in X .
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