Sets

Definition
A set is a collection of elements.

» Two sets are equal if they contain exactly the same elements.

> Ais a subset of B (A C B) if all the elements of A also
belong to B.

» If A, B are two sets, A is a proper subset of B if A C B and
A # B (sometimes, the notation A C B is used).
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Sets

Definition
Let X and Y be two sets. Then the set

XUY={x:xeXorxeY}
is called the union of X and Y/, and the set
XNY={x:xeXand x € Y}

is the intersection of X and Y. If X C Y, then the complement of
X in Y is given by

Y\ X=X"={x:xeVY,x¢&X}.
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De Morgan's laws

Theorem
Let {X,} be a collection of subsets of X. Then

(U XQ)C: ) (Xo)

aeN aeN

and

(ﬂxa)c— U X<

aeN aeN
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Mappings

Definition

Let M and N be two arbitrary sets. A rule associating a unique
element b = f(a) € N with each element a € M defines a function
f on M (usually called a mapping of M into N).

If a€ M, b= f(a) € N is the image of a (under f). Every element
of M with a given element b € N as its image is called a preimage
of b.

» b may have several preimages;
» N may contain elements with no preimage;
» if b has a unique preimage, it is denoted f~1(b).
For sets: Let AC X, B C Y. Then the image of A and inverse

image (or preimage) of B are, respectively,

f(A) = {f(x):x€ A}, and fYB)={x:f(x)ec B}
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Definition
Let f: X — Y.
» If f(X) =Y, f maps X onto Y (or, f is surjective).

» If for each y € Y, f‘l(y) consists of at most one element,
then f is one-to-one (or, f is injective). If f is injective, then
f~1is a function with domain f(X) and range X.

» If f is both injective and surjective, it is bijective.

The following properties hold, and can be extended to unions and
intersections of collections of sets:

>f1(AUB)—f (A Uf(B).
» Y ANB) =f"YA)Nf(B).
» f(AUB) =f(A ) (B

» But F(AN B) C (f(A) N f(B)).
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Distances, metric spaces

Definition

A metric space is a pair (X, d) consisting of a set X and a distance
(or metric) d, i.e., a scalar valued real function d(x,y) defined for
all x,y € X, satisfying the following properties:

1. d(x,y) >0 forall x,y € X,

2. d(x,y) =0 if and only if x =y,

3 d(x,y) = d(y,x)  (symmetry),

4. d(x,z) < d(x,y)+d(y,z) (triangle inequality).
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Some useful inequalities

Let xx,yx for k=1,...,n.

Theorem (Holder's inequality)
Suppose p,q > 1 such that 1/p+1/q = 1. Then

n n 1/p n 1/q
> bagil < (Z |xkr"> <Z w) .
k=1

k=1 k=1

Theorem (Cauchy-Schwarz inequality)
Case p = q = 2 of Holder is the Cauchy-Schwarz inequality, also

written
n 2 n n
2 2
(zxkyk> SR
k=1 k=1 k=1
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Theorem (Minkowski's inequality)
Suppose p > 1. Then

n 1/p n 1/p n 1/p
(zmww) s(Zw) +<zw) |
k=1 k=1 k=1

Works in the case of infinite sums (n = c0), giving convergence of
the sum on the LHS, provided Y 3 1 xi and Y ;> | yf converge.

Metric spaces

p.



Examples of metric spaces

» The set R of real numbers with distance d(x,y) = |x — y/;

» The set of all ordered n-tuples x = (xi,...,x,) with distance

Metric spaces

is a metric space, denoted R"” and called the Euclidean
n-space.

Replacing the previous distance with

d(x,y) = > %_1 |xk — k| gives the metric space RY.

The set C([a, b]) of all continuous functions defined on the
closed interval [a, b] with distance

d(f,g) = max [f(t) — g(t)]

a<t<b

is a metric space.
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Continuity

Definition

Let f: (X,dx) — (Y, dy) be a mapping; f is continuous at

xp € X if, for any € > 0, there exists 6 > 0 such that
(dx(x,x0) < 9 and x € X) = dy(f(x), f(x0)) < e.

f is continuous on X if it is continuous at every point xp € X.

Metric spaces
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Open balls, closed balls

Definition

An open ball with center xg and radius r in a metric space X is the
set of points x € X that satisfy d(x,xp) < r. It is also called an
open (or &-) neighborhood of xp, and denoted O:(xp). A closed
ball with center xg and radius r in a metric space X is the set of
points x € X that satisfy d(x, xp) < r.

Definition

A point x € X is a contact point of the set M C X if every
neighborhood of x contains at least one point of M. The set of all
contact points of a set M is denoted M or [M] and is called the
closure of M.

Metric spaces
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Properties of the closure and of closed sets

Denote [ ] the closure operator, and let M, N be subsets of a
metric space (X, d).

» M C [M].

» If M C N, then [M] C [N].
> ([M]] = [M].

> [MUN] =[M]U[N].

> [0] = 0.

» A set M is closed if [M] = M.

Theorem

The intersection of an arbitrary number of closed sets is closed.

The union of a finite number of closed sets is closed.

Metric spaces
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Examples of closed sets

v

Let (X, d) be a metric space. Then X and () are closed sets.

v

Every closed interval [a, b] on the real line is a closed set.

v

Every closed ball in a metric space is closed. For example, the
set of all functions f € C(][a, b]) such that |f(t)| < K (K a
constant) is closed.

» Any set consisting of a finite number of points is closed.

Metric spaces
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Interior points, open sets

Definition

A point x is an interior point in a set M C X if x has a
neighborhood O.(x) C M, i.e., a neighborhood consisting entirely
of points of M. The set of all interior points of M C X is called
the interior of M, and is denoted Int(M) or M°. A set M is open if
M = M°.

Theorem
A set M C X is open if and only if its complement X \ M is closed.

Theorem
The union of an arbitrary number of open sets is open. The
intersection of a finite number of open sets is open.
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Examples of open sets

> Let (X, d) be a metric space. Then X and {) are open sets.
> Every open interval (a, b) on the real line is an open set.

» Every open ball in a metric space is open.
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Cauchy sequences

Definition (Cauchy criterion)

A sequence {x,} of points in a metric space (X, d) satisfies the
Cauchy criterion if, for any € > 0, there exists N, such that

d(xp, xq) < € for all p,q > N;.

Definition (Cauchy sequence)

A sequence {x,} of points in a metric space (X, d) is a Cauchy
sequence if it satisfies the Cauchy criterion.

Theorem
Every convergent sequence is a Cauchy sequence.

Complete metric spaces
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Complete metric spaces

Definition (Complete metric space)

A metric space (X, d) is complete if every Cauchy sequence in X
converges to an element of X. Otherwise, X is incomplete.

Complete metric spaces
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Examples of complete metric spaces

» (R, d) with d(x,y) =[x —y|.

» (C,d) with d(z,w) = |z — w|.

(R", dp), with dp(x,y) = (X (% — y)?)"/?, p > 1.
(R, do), with doo(x,y) = 1r<nkaé<n{‘xk — Ykl}-

vy

» The space (X, d) of all bounded sequences with
d(x,y) = sup{|xk — y«l}-
k>1

» The space B(S) of all real-valued bounded functions f on S,
with uniform metric d(f, g) = sup{|f(x) — g(x)|}.
x€S

» The space (C([a, b]), d) with d(f,g) = sup {|f(x) — g(x)|}.

a<x<b

Complete metric spaces



Connectedness

Definition
A metric space (X, d) is disconnected if there exists two empty

subsets of X, A and B, such that
1. X=AUB.
2. An[B]=0and [AlNB=.
If no such subsets exist, then X is connected.
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Theorem
Let Y be a subset of the metric space (X, d). If Y is a compact
subset of X, then Y is closed and bounded.

Theorem
Let (X, d) be a compact metric space. Then (X, d) is complete.

Proposition
Let (X, d) be a metric space. The following statements are
equivalent:

1. every infinite set in (X, d) has at least one limit point in X;

2. every infinite sequence in (X, d) contains a convergent
subsequence.

Theorem
The metric space (X, d) is compact if and only if every sequence
of points in X has a subsequence that converges to a point in X.

Compactness
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