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First-order difference equation

A difference equation takes the form

x(n + 1) = f (x(n)),

which is also denoted
xn+1 = f (xn).

Starting from an initial point x0, we have

x1 = f (x0)

x2 = f (x1) = f (f (x0)) = f 2(x0)

x3 = f (x2) = f (f (f (x0))) = f 3(x0)

. . .
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Definition 1 (Iterates)

f (x0) is the first iterate of x0 under f ; f 2(x0) is the second iterate
of x0 under f . More generally, f n(x0) is the nth iterate of x0 under
f . By convention, f 0(x0) = x0.

Definition 2 (Orbits)

The set
{f n(x0) : n ≥ 0}

is called the forward orbit of x0 and is denoted O+(x0). The
backward orbit O−(x0) is defined, if f is invertible, by the negative
iterates of f . Lastly, the (whole) orbit of x0 is

{f k(x0) : −∞ < k <∞}.

The forward orbit is also called the positive orbit. The function f is
always assumed to be continuous. If its derivative or second
derivative is used in a result, then the assumption is made that
f ∈ C 1 or f ∈ C 2..
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Periodic points

Definition 3 (Periodic point)

A point p is a periodic point of (least) period n if

f n(p) = p and f j(p) 6= p for 0 < j < n.

Definition 4 (Fixed point)

A periodic point with period n = 1 is called a fixed point.

Definition 5 (Eventually periodic point)

A point p is an eventually periodic point of period n if there exists
m > 0 such that

f m+n(p) = f m(p),

so that f j+n(p) = f j(p) for all j ≥ m and f m(p) is a periodic point.
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Finding fixed points and periodic points

I A fixed point is such that f (x) = x , so it lies at the
intersection of the first bisectrix y = x with the graph of f (x).

I A periodic point is such that f n(x) = x , it is thus a fixed
point of the nth iterate of f , and so lies at the intersection of
the first bisectrix y = x with the graph of f n(x).
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Stable set

Definition 6 (Forward asymptotic point)

q is forward asymptotic to p if

|f j(q)− f j(p)| → 0 as j →∞.

If p is n-periodic, then q is asymptotic to p if

|f jn(q)− p| → 0 as j →∞.

Definition 7 (Stable set)

The stable set of p is

W s(p) = {q : q forward asymptotic to p}.
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Unstable set

Definition 8 (Backward asymptotic point)

If f is invertible, then q is backward asymptotic to p if

|f j(q)− f j(p)| → 0 as j → −∞.

Definition 9 (Unstable set)

The unstable set of p is

W u(p) = {q : q backward asymptotic to p}.
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Stability

Definition 10 (Stable fixed point)

A fixed point p is stable (or Lyapunov stable) if, for every ε > 0,
there exists δ > 0 such that |x0 − p| < δ implies |f n(x0)− p| < ε
for all n > 0. If a fixed point p is not stable, then it is unstable.

Definition 11 (Attracting fixed point)

A fixed point p is attracting if there exists η > 0 such that

|x(0)− p| < η implies lim
n→∞

x(n) = p.

If η = ∞, then p is a global attractor (or is globally attracting).

Definition 12 (Asymptotically stable point)

A fixed point p is asymptotically stable if it is stable and
attracting. It is globally asymptotically stable if η = ∞.

Scalar difference equations p. 13

The point does not have to be a fixed point to be stable.

Definition 13
A point p is stable if for every ε > 0, there exists δ > 0 such that if
|x − p| < δ, then |f k(x)− f k(p)| < ε for all k ≥ 0.

Another characterization of asymptotic stability:

Definition 14
A point p is asymptotically stable if it is stable and W s(p)
contains a neighborhood of p.

Can be used with periodic point, in which case we talk of
attracting periodic point (or periodic sink). A periodic point p for
which W u(p) is a neighborhood of p is a repelling periodic point
(or periodic source).
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Condition for stability/instability

Theorem 15
Let f : R → R be C 1.

1. If p is a n-periodic point of f such that |(f n)′(p)| < 1, then p
is an attracting periodic point.

2. If p is a n-periodic point of f such that |(f n)′(p)| > 1, then p
is repelling.
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ω-limit points and sets

Definition 16
A point y is an ω-limit point of x for f is there exists a sequence
{nk} going to infinity as k →∞ such that

lim
k→∞

d(f nk (x), y) = 0.

The set of all ω-limit points of x is the ω-limit set of x and is
denoted ω(x).
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α-limit points and sets

Definition 17
Suppose that f is invertible. A point y is an α-limit point of x for
f is there exists a sequence {nk} going to minus infinity as k →∞
such that

lim
k→∞

d(f nk (x), y) = 0.

The set of all α-limit points of x is the α-limit set of x and is
denoted α(x).

Scalar difference equations p. 18

Invariant sets

Definition 18
Let S ⊂ X be a set. S is positively invariant (under the flow of f )
if f (x) ∈ S for all x ∈ S , i.e., f (S) ⊂ S . S is negatively invariant if
f −1(S) ⊂ S . S is invariant if f (S) = S .
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Theorem 19
Let f : X → X be continuous on a complete metric space X . Then

1. If f j(x) = y for some j, then ω(x) = ω(y).

2. For any x, ω(x) is closed and positively invariant.

3. If O+(x) is contained in some compact subset of X , then ω(x)
is nonempty and compact and d(f n(x), ω(x)) → 0 as n →∞.

4. If D ⊂ X is closed and positively invariant, and x ∈ D, then
ω(x) ⊂ D.

5. If y ∈ ω(x), then ω(y) ⊂ ω(x).
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Parametrized families of functions

Consider the logistic map

xt+1 = µxt(1− xt), (1)

where µ is a parameter in R+, and x will typically be taken in
[0, 1]. Let

fµ(x) = µx(1− x). (2)

The function fµ is called a parametrized family of functions.
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Bifurcations

Definition 20 (Bifurcation)

Let fµ be a parametrized family of functions. Then there is a
bifurcation at µ = µ0 (or µ0 is a bifurcation point) if there exists
ε > 0 such that, if µ0 − ε < a < µ0 and µ0 < b < µ0 + ε, then the
dynamics of fa(x) are “different” from the dynamics of fb(x).

An example of “different” would be that fa has a fixed point (that
is, a 1-periodic point) and fb has a 2-periodic point.

Formally, fa and fb are topologically conjugate to two different
functions.
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Topological conjugacy

Definition 21 (Topological conjugacy)

Let f : D → D and g : E → E be functions. Then f topologically
conjugate to g if there exists a homeomorphism τ : D → E , called
a topological conjugacy, such that τ ◦ f = g ◦ τ .
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Theorem 22
Let D and E be subsets of R, f : D → D, g : E → E, and
τ : D → E be a topological conjugacy of f and g. Then

1. τ−1 : E → D is a topological conjugacy.

2. τ ◦ f n = gn ◦ τ for all n ∈ N.

3. p is a periodic point of f with least period n iff τ(p) is a
periodic point of g with least period n.

4. If p is a periodic point of f with stable set W s(p), then the
stable set of τ(p) is τ (W s(p)).

5. The periodic points of f are dense in D iff the periodic points
of g are dense in E .

6. f is topologically transitive on D iff g is topologically
transitive on E.

7. f is chaotic on D iff g is chaotic on E.
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Topologically transitive function

Definition 23
The function f : D → D is topologically transitive on D if for any
open sets U and V that interset D, there exists z ∈ U ∩ D and
n ∈ N such that f n(z) ∈ D.
Equivalently, f is topologically transitive on D if for any two points
x , y ∈ D and any ε > 0, there exists z ∈ D such that |z − x | < ε
and |f n(x)− y | < ε for some n.
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Sensitive dependence on initial conditions

Definition 24
The function f : D → D exhibits sensitive dependence on initial
conditions if there exists δ > 0 such that for any x ∈ D and any
ε > 0, there exists y ∈ D and n ∈ N such that |x − y | < ε and
|f n(x)− f n(y)| > δ.
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Chaos

The following in due to Devaney. There are other definitions.

Definition 25
The function f : D → D is chaotic if

1. the periodic points of f are dense in D,

2. f is topologically transitive,

3. and f exhibits sensitive dependence on initial conditions.

Scalar difference equations p. 29

Outline of this part

General theory of ODEs
ODEs
Existence of solutions to IVPs

General theory of ODEs p. 30

General theory of ODEs
ODEs
Existence of solutions to IVPs

General theory of ODEs p. 31

Ordinary differential equations

Definition 26 (ODE)

An ordinary differential equation (ODE) is an equation involving
one independent variable (often called time), t, and a dependent
variable, x(t), with x ∈ Rn, n ≥ 1, and taking the form

d

dt
x = f (t, x),

where f : R× Rn → Rn is a function, called the vector field.

Definition 27 (IVP)

An initial value problem (IVP) consists in an ODE and an initial
condition,

d

dt
x = f (t, x)

x(t0) = x0,
(3)

where t0 ∈ R and x0 ∈ Rn is the initial condition.
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Flow
Consider an autonomous IVP,

d

dt
x = f (t, x)

x(0) = x0,
(4)

that is, where f does not depend explicitly on t.
Let φt(x0) (the notations φt(x0) and φ(t, x0) are also used) be the
solution of (4) with given initial condition. We have

φ0(x0) = x0

and
d

dt
φt(x0) = f (φt(x0))

for all t for which it is defined.

φt(x0) is the flow of the ODE.
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Lipschitz function

Definition 28 (Lipschitz function)

Let f : U ⊂ Rn → Rn. If there exists K > 0 such that

|f (x)− f (y)| ≤ K |x − y |

for all x , y ∈ U, then f is called a Lipschitz function with Lipschitz
constant K . The smallest K for which the property holds is
denoted Lip(f ).

Remark: f ∈ C 1 ⇒ f is Lipschitz.
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Existence and uniqueness

Theorem 29 (Existence and Uniqueness)

Let U ⊂ Rn be an open set, and f : U → Rn be a Lipschitz
function. Let x0 ∈ U and t0 ∈ R. Then there exists

I α > 0, and

I a unique solution x(t) to the differential equation x ′ = f (x)
defined on t0 − α ≤ t ≤ t0 + α,

such that x(t0) = x0.
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Continuous dependence on IC

Theorem 30 (Continuous dependence on initial conditions)

Let U ⊂ Rn be an open set, and f : U → Rn be a Lipschitz
function. Then the solution φt(x0) depends continuously on the
initial condition x0.
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Interval of existence of solutions

Theorem 31
Let U be an open subset of Rn, anf f : U → Rn be C 1.

I Given x ∈ U, let (t−, t+) be the maximal interval of definition
for φt(x). If t+ <∞, then given any compact subset C ⊂ U,
there exists tC with 0 ≤ tC < t+ such that φtC (x) 6∈ C.

I Similarly, if t− > −∞, then there exists tC− with
t− < tC− ≤ 0 such that φtC−(x) 6∈ C.

I In particular, if f : Rn → Rn is defined on all of Rn and |f (x)|
is bounded, then the solutions exist for all t.
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Linear ODEs

Definition 32 (Linear ODE)

A linear ODE is a differential equation taking the form

d

dt
x = A(t)x + B(t), (LNH)

where A(t) ∈Mn(R) with continuous entries, B(t) ∈ Rn with real
valued, continuous coefficients, and x ∈ Rn. The associated IVP
takes the form

d

dt
x = A(t)x + B(t)

x(t0) = x0.
(5)
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Types of systems

I x ′ = A(t)x + B(t) is linear nonautonomous (A(t) depends on
t) nonhomogeneous (also called affine system).

I x ′ = A(t)x is linear nonautonomous homogeneous.

I x ′ = Ax + B, that is, A(t) ≡ A and B(t) ≡ B, is linear
autonomous nonhomogeneous (or affine autonomous).

I x ′ = Ax is linear autonomous homogeneous.

I If A(t + T ) = A(t) for some T > 0 and all t, then linear
periodic.
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Existence and uniqueness of solutions

Theorem 33 (Existence and Uniqueness)

Solutions to (5) exist and are unique on the whole interval over
which A and B are continuous.
In particular, if A,B are constant, then solutions exist on R.

Linear ODEs p. 43

The vector space of solutions

Theorem 34
Consider the homogeneous system

d

dt
x = A(t)x , (LH)

with A(t) defined and continuous on an interval J. The set of
solutions of (LH) forms an n-dimensional vector space.
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Fundamental matrix

Definition 35
A set of n linearly independent solutions of (LH) on J,
{φ1, . . . , φn}, is called a fundamental set of solutions of (LH) and
the matrix

Φ = [φ1 φ2 . . . φn]

is called a fundamental matrix of (LH).
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Fundamental matrix solution

Let X ∈Mn(R) with entries [xij ]. Define the derivative of X , X ′

(or d
dt X ) as

d

dt
X (t) = [

d

dt
xij(t)].

The system of n2 equations

d

dt
X = A(t)X

is called a matrix differential equation.

Theorem 36
A fundamental matrix Φ of (LH) satisfies the matrix equation
X ′ = A(t)X on the interval J.-
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Abel’s formula

Theorem 37
If Φ is a solution of the matrix equation X ′ = A(t)X on an interval
J and τ ∈ J, then

detΦ(t) = detΦ(τ) exp

(∫ t

τ
trA(s)ds

)
for all t ∈ J.
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The resolvent matrix

Definition 38 (Resolvent matrix)

Let t0 ∈ J and Φ(t) be a fundamental matrix solution of (LH) on
J. Since the columns of Φ are linearly independent, it follows that
Φ(t0) is invertible. The resolvent (or state transition matrix, or
principal fundamental matrix) of (LH) is then defined as

R(t, t0) = Φ(t)Φ(t0)
−1.

Linear ODEs p. 49

Proposition 1

The resolvent matrix satisfies the identities

1. R(t, t) = I ,

2. R(t, s)R(s, u) = R(t, u),

3. R(t, s)−1 = R(s, t),

4. ∂
∂sR(t, s) = −R(t, s)A(s),

5. ∂
∂tR(t, s) = A(t)R(t, s).
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Proposition 2

R(t, t0) is the only solution in Mn(K) of the initial value problem

d

dt
M(t) = A(t)M(t)

M(t0) = I,

with M(t) ∈Mn(K).

Theorem 39
The solution to the IVP consisting of the linear homogeneous
nonautonomous system (LH) with initial condition x(t0) = x0 is
given by

φ(t) = R(t, t0)x0.
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A variation of constants formula

Theorem 40 (Variation of constants formula)

Consider the IVP

x ′ = A(t)x + g(t, x) (6a)

x(t0) = x0, (6b)

where g : R×Rn → Rn a smooth function, and let R(t, t0) be the
resolvent associated to the homogeneous system x ′ = A(t)x, with
R defined on some interval J 3 t0. Then the solution φ of (6) is
given by

φ(t) = R(t, t0)x0 +

∫ t

t0

R(t, s)g(φ(s), s)ds, (7)

on some subinterval of J.
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Autonomous linear systems

Consider the autonomous affine system

d

dt
x = Ax + B, (A)

and the associated homogeneous autonomous system

d

dt
x = Ax . (L)
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Exponential of a matrix

Definition 41 (Matrix exponential)

Let A ∈Mn(K) with K = R or C. The exponential of A, denoted
eAt , is a matrix in Mn(K), defined by

eAt = I +
∞∑

k=1

tk

k!
Ak ,

where I is the identity matrix in Mn(K).
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Properties of the matrix exponential

I Φ(t) = eAt is a fundamental matrix for (L) for t ∈ R.

I The resolvent for (L) is given for t ∈ J by

R(t, t0) = eA(t−t0) = Φ(t − t0).

I eAt1eAt2 = eA(t1+t2) for all t1, t2 ∈ R. 1

I AeAt = eAtA for all t ∈ R.

I (eAt)−1 = e−At for all t ∈ R.

I The unique solution φ of (L) with φ(t0) = x0 is given by

φ(t) = eA(t−t0)x0.
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Computing the matrix exponential

Let P be a nonsingular matrix in Mn(R). We transform the IVP

d

dt
x = Ax

x(t0) = x0

(L IVP)

using the transformation x = Py or y = P−1x .

The dynamics of y is

y ′ = (P−1x)′

= P−1x ′

= P−1Ax

= P−1APy

The initial condition is y0 = P−1x0.
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We have thus transformed IVP (L IVP) into

d

dt
y = P−1APy

y(t0) = P−1x0

(L IVP y)

From the earlier result, we then know that the solution of
(L IVP y) is given by

ψ(t) = eP−1AP(t−t0)P−1x0,

and since x = Py , the solution to (L IVP) is given by

φ(t) = PeP−1AP(t−t0)P−1x0.

So everything depends on P−1AP.
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Diagonalizable case

Assume P nonsingular in Mn(R) such that

P−1AP =

λ1 0
. . .

0 λn


with all eigenvalues λ1, . . . , λn different. We have

eP−1AP = I +
∞∑

k=1

tk

k!

λ1 0
. . .

0 λn


k
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For a (block) diagonal matrix M of the form

M =

m11 0
. . .

0 mnn


there holds

Mk =

mk
11 0

. . .

0 mk
nn
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Therefore,

eP−1AP =

eλ1t 0
. . .

0 eλnt


And so the solution to (L IVP) is given by

φ(t) = P

eλ1t 0
. . .

0 eλnt

 P−1x0.
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Nondiagonalizable case

The Jordan canonical form is

P−1AP =

J0 0
. . .

0 Js


so we use the same property as before (but with block matrices
now), and

eP−1APt =

eJ0t 0
. . .

0 eJs t
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The first block in the Jordan canonical form takes the form

J0 =

λ0 0
. . .

0 λk


and thus, as before,

eJ0t =

eλ0t 0
. . .

0 eλk t
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Other blocks Ji are written as

Ji = λk+i I + Ni

with I the ni × ni identity and Ni the ni × ni nilpotent matrix

Ni =


0 1 0 0

. . .

1
0 0


λk+i I and Ni commute, and thus

eJi t = eλk+i teNi t
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Since Ni is nilpotent, Nk
i = 0 for all k ≥ ni , and the series eNi t

terminates, and

eJi t = eλk+i t


1 t · · · tni−1

(ni−1)!

0 1 · · · tni−2

(ni−2)!

0 1
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Fixed points (equilibria)

Definition 42
A fixed point (or equilibrium point, or critical point) of an
autonomous differential equation

x ′ = f (x)

is a point p such that f (p) = 0. For a nonautonomous differential
equation

x ′ = f (t, x),

a fixed point satisfies f (t, p) = 0 for all t.

A fixed point is a solution.
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Orbits, limit sets

Orbits and limit sets are defined as for maps.

For the equation x ′ = f (x), the subset {x(t), t ∈ I}, where I is the
maximal interval of existence of the solution, is an orbit.

If the maximal solution x(t, x0) of x ′ = f (x) is defined for all
t ≥ 0, where f is Lipschitz on an open subset V of Rn, then the
omega limit set of x0 is the subset of V defined by

ω(x0) =
∞⋂

τ=0

(
{x(t, x0) : t ≥ τ} ∩ V }

)
.

Proposition 3

A point q is in ω(x0) iff there exists a sequence {tk} such that
limk→∞ tk = ∞ and limk→∞ x(tk , x0) = q ∈ V .
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Definition 43 (Liapunov stable orbit)

The orbit of a point p is Liapunov stable for a flow φt if, given
ε > 0, there exists δ > 0 such that d(x , p) < δ implies that
d(φt(x), φt(p)) < ε for all t ≥ 0. If p is a fixed point, then this is
written d(φt(x), p) < ε.

Definition 44 (Asymptotically stable orbit)

The orbit of a point p is asymptotically stable (or attracting) for a
flow φt if it is Liapunov stable, and there exists δ1 > 0 such that
d(x , p) < δ1 implies that limt→∞ d(φt(x), φt(p)) = 0. If p is a
fixed point, then it is asymptotically stable if it is Liapunov stable
and there exists δ1 > 0 such that d(x , p) < δ1 implies that
ω(x) = {p}.
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Contracting linear equation

Theorem 45
Let A ∈Mn(R), and consider the equation (L). Then the
following conditions are equivalent.

1. There is a norm ‖ ‖A on Rn and a constant a > 0 such that
for any x0 ∈ Rn and all t ≥ 0,

‖eAtx0‖A ≤ e−at‖x0‖A.

2. There is a norm ‖ ‖B on Rn and constants a > 0 and C ≥ 1
such that for any x0 ∈ Rn and all t ≥ 0,

‖eAtx0‖B ≤ Ce−at‖x0‖B .

3. All eigenvalues of A have negative real parts.

In that case, the origin is a sink or attracting, the flow is a
contraction (antonyms source, repelling and expansion).
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Hyperbolic linear equation

Definition 46
The linear differential equation (L) is hyperbolic if A has no
eigenvalue with zero real part.
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Definition 47 (Stable eigenspace)

The stable eigenspace of A ∈Mn(R) is

E s = span{v : v generalized eigenvector for eigenvalue λ,
with <(λ) < 0}

Definition 48 (Center eigenspace)

The center eigenspace of A ∈Mn(R) is

E c = span{v : v generalized eigenvector for eigenvalue λ,
with <(λ) = 0}

Definition 49 (Unstable eigenspace)

The unstable eigenspace of A ∈Mn(R) is

Eu = span{v : v generalized eigenvector for eigenvalue λ,
with <(λ) > 0}
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We can write
Rn = E s ⊕ Eu ⊕+E c ,

and in the case that E c =, then Rn = E s ⊕ Eu is called a
hyperbolic splitting.

The symbol ⊕ stands for direct sum.

Definition 50 (Direct sum)

Let U,V be two subspaces of a vector space X . Then the span of
U and V is defined by u + v for u ∈ U and v ∈ V . If U and V are
disjoint except for 0, then the span of U and V is called the direct
sum of U and V , and is denoted U ⊕ V .
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Trichotomy
Define

V s = {v : there exists a > 0 and C ≥ 1 such that

‖eAtv‖ ≤ Ce−at‖v‖ for t ≥ 0}.
V u = {v : there exists a > 0 and C ≥ 1 such that

‖eAtv‖ ≤ Ce−a|t|‖v‖ for t ≤ 0}.
V c = {v : for all a > 0, ‖eAtv‖e−a|t| → 0 as t → ±∞}.

Theorem 51
The following are true.

1. The subspaces E s , Eu and E c are invariant under the flow
eAt .

2. There holds that E s = V s , Eu = V u and E c = V c , and thus
eAt |Eu is an exponential expansion, eAt |E s is an exponential
contraction, and eAt |E c grows subexponentially as t → ±∞.
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Topologically conjugate linear ODEs

Definition 52 (Topologically conjugate flows)

Let φt and ψt be two flows on a space M. φt and ψt are
topologically conjugate if there exists an homeomorphism
h : M → M such that

h ◦ φt(x) = ψt ◦ h(x),

for all x ∈ M and all t ∈ R.

Definition 53 (Topologically equivalent flows)

Let φt and ψt be two flows on a space M. φt and ψt are
topologically equivalent if there exists an homeomorphism
h : M → M and a function α : R×M → R such that

h ◦ φα(t+s,x)(x) = ψt ◦ h(x),

for all x ∈ M and all t ∈ R, and where α(t, x) is monotonically
increasing in t for each x and onto all of R.
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Theorem 54
Let A,B ∈Mn(R).

1. If all eigenvalues of A and B have negative real parts, then
the linear flows eAt and eBt are topologically conjugate.

2. Assume that the system is hyperbolic, and that the dimension
of the stable eigenspace of A is equal to the dimension of the
eigenspace of B. Then the linear flows eAt and eBt are
topologically conjugate.

Theorem 55
Let A,B ∈Mn(R). Assume that eAt and eBt are linearly
conjugate, i.e., there exists M with eBt = MeAtM−1. Then A and
B have the same eigenvalues.
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Theorem 56
Consider

x ′ = A(t)x + g(t) (LNH)

and
x ′ = A(t)x (LH)

1. If x1 and x2 are two solutions of (LNH), then x1 − x2 is a
solution to (LH).

2. If xn is a solution to (LNH) and xh is a solution to (LH), then
xn + xh is a solution to (LNH).

3. If xn is a solution to (LNH) and M is a fundamental matrix
solution of (LH), then any solution of (LNH) can be written
as xn + M(t)v.
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Linear maps

Linear maps p. 78

Similarities between ODEs and maps

Let A ∈Mn(R). Let v be an eigenvector associated to the
eigenvalue λ.

Then

A2v = A(Av)

= A(λv)

= λAv

= λ2v

By induction,
Anv = λnv ,

i.e., v is an eigenvector of the matrix An, associated to the
eigenvalue λn. Thus, if |λ| < 1, then ‖Anv‖ = |λ|n‖v‖ goes to
zero as n →∞.
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Linear map corresponding to a matrix with all eigenvalues of
modulus less than 1 is a linear contraction, with the origin a linear
sink or attracting fixed point. If all eigenvalues have modulus
larger than 1, then the map induced by A is a linear expansion, and
the origin is a linear source or repelling fixed point.

The map Ax is a hyperbolic linear map if all eigenvalues of A have
modulus different of 1.
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Definition 57 (Stable eigenspace)

The stable eigenspace of A ∈Mn(R) is

E s = span{v : v generalized eigenvector for eigenvalue λ,
with |λ| < 1}

Definition 58 (Center eigenspace)

The center eigenspace of A ∈Mn(R) is

E c = span{v : v generalized eigenvector for eigenvalue λ,
with |λ| = 1}

Definition 59 (Unstable eigenspace)

The unstable eigenspace of A ∈Mn(R) is

Eu = span{v : v generalized eigenvector for eigenvalue λ,
with |λ| > 1}
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Objective

Consider the autonomous nonlinear system in Rn

x ′ = f (x) (8)

The object here is to show two results which link the behavior of
(8) near a hyperbolic equilibrium point x∗ to the behavior of the
linearized system

x ′ = Df (x∗)(x − x∗) (9)

about that same equilibrium.
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Stable manifold theorem

Theorem 60 (Stable manifold theorem)

Let f ∈ C 1(E ), E be an open subset of Rn containing a point x∗

such that f (x∗) = 0, and let φt be the flow of the nonlinear system
(8). Suppose that Df (x∗) has k eigenvalues with negative real part
and n − k eigenvalues with positive real part. Then there exists a
k-dimensional differentiable manifold S tangent to the stable
subspace E s of the linear system (9) at x∗ such that for all t ≥ 0,
φt(S) ⊂ S and for all x0 ∈ S,

lim
t→∞

φt(x0) = x∗

and there exists an (n − k)-dimensional differentiable manifold U
tangent to the unstable subspace Eu of (9) at x∗ such that for all
t ≤ 0, φt(U) ⊂ U and for all x0 ∈ U,

lim
t→−∞

φt(x0) = x∗
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HG theorem – Formulation 1

Theorem 61 (Hartman-Grobman)

Suppose that x∗ is an equilibrium point of the nonlinear system
(8). Let ϕt be the flow of (8), and ψt be the flow of the linearized
system x ′ = Df (x∗)(x − x∗). If x∗ is a hyperbolic equilibrium, then
there exists an open subset D of Rn containing x∗, and a
homeomorphism G with domain in D such that
G (ϕt(x)) = ψt(G (x)) whenever x ∈ D and both sides of the
equation are defined.
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HG theorem – Formulation 2

Theorem 62 (Hartman-Grobman)

Let f ∈ C 1(E ), E an open subset of Rn containing x∗ where
f (x∗) = 0, and let φt be the flow of the nonlinear system (8).
Suppose that the matrix A = Df (x∗) has no eigenvalue with zero
real part.
Then there exists a homeomorphism H of an open set U
containing x∗ onto an open set V containing the origin such that
for each x0 ∈ U, there is an open interval I0 ⊂ R containing x∗

such that for all x0 ∈ U and t ∈ I0,

H ◦ φt(x0) = eAtH(x0);

i.e., H maps trajectories of (8) near the origin onto trajectories of
x ′ = Df (x∗)(x − x∗) near the origin and preserves the
parametrization by time.
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Lyapunov function

We consider x ′ = f (x), x ∈ Rn, with flow φt(x). Let p be a fixed
point.

Definition 63 (Weak Lyapunov function)

The function V ∈ C 1(U,R) is a weak Lyapunov function for φt on
the open neighborhood U 3 p if V (x) > V (p) and
d
dt V (φt(x)) ≤ 0 for all x ∈ U \ {p}.

Definition 64 (Lyapunov function)

The function V ∈ C 1(U,R) is a (strong) Lyapunov function for φt

on the open neighborhood U 3 p if V (x) > V (p) and
d
dt V (φt(x)) < 0 for all x ∈ U \ {p}.
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Theorem 65
Suppose that p is a fixed point of x ′ = f (x), U is a neighborhood
of p, and V : U → R.

1. If V is a weak Lyapunov function for φt on U, then p is
Liapunov stable.

2. If V is a Lyapunov function for φt on U, then p is
asymptotically stable.
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Periodic orbits for flows

Definition 66 (Periodic point)

Let x ′ = f (x), and φt(x) be the associated flow. p is a periodic
point with (least) period T , or T -periodic point, if φT (p) = p and
φt(p) 6= p for 0 < t < T .

Definition 67 (Periodic orbit)

If p is a T -periodic point, then

O(p) = {φt(p) : 0 ≤ t ≤ T}

is the orbit of p, called a periodic orbit or a closed orbit.
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Definition 68 (Stable periodic orbit)

A periodic orbit γ is stable if for each ε > 0, there exists a
neighborhood U of γ such that for all x ∈ U, d(γ+

x , γ) < ε, i.e., if
for all x ∈ U and t ≥ 0, d(φt(x), γ) < ε.

Definition 69 (Unstable periodic orbit)

A periodic orbit that is not stable is unstable.

Definition 70 (Asymptotically stable periodic orbit)

A periodic orbit γ is asymptotically stable if it is stable and for all
x in some neighborhood U of γ,

lim
t→∞

d(φt(x), γ) = 0.

Analysis near fixed points (linearization) p. 94

Hyperbolic periodic orbits

Definition 71 (Characteristic multipliers)

If γ is a periodic orbit of period T , with p ∈ γ, then the
eigenvalues of the Poincaré map DφT (p) are 1, λ1, . . . , λn−1. The
eigenvalues λ1, . . . , λn−1 are called the characteristic multipliers of
the periodic orbit.

Definition 72 (Hyperbolic periodic orbit)

A periodic orbit is hyperbolic if none of the characteristic
multipliers has modulus 1.

Definition 73 (Periodic sink)

A periodic orbit which has all characteristic multipliers λ such that
|λ| < 1.

Definition 74 (Periodic source)

A periodic orbit which has all characteristic multipliers λ such that
|λ| > 1.
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Theorem 75

1. If φt(x) is a solution of x ′ = f (x), γ is a periodic orbit of
period T , and p ∈ γ, then DφT (p) has 1 as an eigenvalue
with eigenvector f (p).

2. If p and q belong to the same T-periodic orbit γ, then
DφT (p) and DφT (q) are linearly conjugate and thus have the
same eigenvalues.
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The general context of bifurcations

Consider the discrete time system

xt+1 = f (xt , µ) = fµ(xt) (10)

or the continuous time system

x ′ = f (x , µ) = fµ(x) (11)

for µ ∈ R. We start with a function f : R2 → R, C r when a map is
considered, C 1 when continuous time is considered.

In both cases, the function f can depend on some parameters. We
are interested in the differences of qualitative behavior, as one of
these parameters, which we call µ, varies.

Bifurcations p. 99

Bifurcations
General context
A few types of bifurcations
Saddle-node
Pitchfork
Hopf

Bifurcations p. 100



Types of bifurcations (discrete time)

Saddle-node (or tangent):

xt+1 = µ+ xt + x2
t

Transcritical:
xt+1 = (µ+ 1)xt + x2

t

Pitchfork:
xt+1 = (µ+ 1)xt − x3

t
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Types of bifurcations (continuous time)

I Saddle-node
x ′ = µ− x2

I Transcritical
x ′ = µx − x2

I Pitchfork
I supercritical

x ′ = µx − x3

I subcritical
x ′ = µx + x3
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Saddle-node for maps

Theorem 76
Assume f ∈ C r with r ≥ 2, for both x and µ. Suppose that

1. f (x0, µ0) = x0,

2. f ′µ0
(x0) = 1,

3. f ′′µ0
(x0) 6= 0 and

4.
∂f

∂µ
(x0, µ0) 6= 0.

Then ∃I 3 x0 and N 3 µ0, and m ∈ C r (I ,N), such that

1. fm(x)(x) = x,

2. m(x0) = µ0,

3. the graph of m gives all the fixed points in I × N.
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Theorem 77 (cont.)

Moreover, m′(x0) = 0 and

m′′(x0) =
−∂

2f

∂x2
(x0, µ0)

∂f

∂µ
(x0, µ0)

6= 0.

These fixed points are attracting on one side of x0 and repelling on
the other.
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Saddle-node for continuous equations

Consider the system x ′ = f (x , µ), x ∈ R. Suppose that
f (x0, µ0) = 0. Further, assume that the following nondegeneracy
conditions hold:

1. a0 = 1
2

∂2f
∂x2 (x0, µ0) 6= 0,

2. ∂f
∂µ(x0, µ0) 6= 0.

Then, in a neighborhood of (x0, µ0), the equation x ′ = f (x , µ) is
topologically equivalent to the normal form

x ′ = γ + sign(a0)x
2
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Saddle-node for continuous systems

Theorem 78
Consider the system x ′ = f (x , µ), x ∈ Rn. Suppose that
f (x , 0) = x0 = 0. Further, assume that

1. The Jacobian matrix A0 = Df (0, 0) has a simple zero
eigenvalue,

2. a0 6= 0, where

a0 =
1

2
〈p,B(q, q)〉 =

1

2

d2

dτ2
〈p, f (τq, 0)〉

∣∣∣∣
τ=0

3. fµ(0, 0) 6= 0.

B is the bilinear function with components

Bj(x , y) =
n∑

k,`=1

∂2fj(ξ, 0)

∂ξk∂ξ`

∣∣∣∣
ξ=0

xky`, j = 1, . . . , n

and 〈p, q〉 = pTq the standard inner product.
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Theorem 79 (cont.)

Then, in a neighborhood of the origin, the system x ′ = f (x , µ) is
topologically equivalent to the suspension of the normal form by
the standard saddle,

y ′ = γ + sign(a0)y
2

y ′S = −yS

y ′U = yU

with y ∈ R, yS ∈ RnS and yU ∈ RnU , where nS + nU + 1 = n and
nS is number of eigenvalues of A0 with negative real parts.
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Pitchfork bifurcation

The ODE x ′ = f (x , µ), with the function f (x , µ) satisfying

−f (x , µ) = f (−x , µ)

(f is odd),

∂f

∂x
(0, µ0) = 0,

∂2f

∂x2
(0, µ0) = 0,

∂3f

∂x3
(0, µ0) 6= 0,

∂f

∂r
(0, µ0) = 0,

∂2f

∂r∂x
(0, µ0) 6= 0.

has a pitchfork bifurcation at (x , µ) = (0, µ0). The form of the
pitchfork is determined by the sign of the third derivative:

∂3f

∂x3
(0, µ0)

{
< 0, supercritical
> 0, subcritical
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Canonical example

Consider the system

x ′ = −y + x(µ− x2 − y2)

y ′ = x + y(µ− x2 − y2)

Transform to polar coordinates:

r ′ = r(µ− r2)

θ′ = 1

Bifurcations p. 112



Hopf bifurcation

Theorem 80 (Hopf bifurcation theorem)

Let x ′ = A(µ)x + F (µ, x) be a C k planar vector field, with k ≥ 0,
depending on the scalar parameter µ such that F (µ, 0) = 0 and
DxF (µ, 0) = 0 for all µ sufficiently close enough to the origin.
Assume that the linear part A(µ) at the origin has the eigenvalue
α(µ)± iβ(µ), with α(0) = 0 and β(0) 6= 0. Furthermore, assume
the eigenvalues cross the imaginary axis with nonzero speed, i.e.,

d

dµ
α(µ)

∣∣∣∣
µ=0

6= 0.

Then, in any neighborhood U 3 (0, 0) in R2 and any given µ0 > 0,
there exists a µ̄ with |µ̄| < µ0 such that the differential equation
x ′ = A(µ̄)x + F (µ̄, x) has a nontrivial periodic orbit in U .
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Supercritical or subcritical Hopf?

Transform the system into

d

dt

(
x
y

)
=

(
α(µ) β(µ)
−β(µ) α(µ)

) (
x
y

)
+

(
f1(x , y , µ)
g1(x , y , µ)

)
=

(
f (x , y , µ)
g(x , y , µ)

)
The Jacobian at the origin is

J(µ) =

(
α(µ) β(µ)
−β(µ) α(µ)

)
and thus eigenvalues are α(µ)± iβ(µ), and α(0) = 0 and β(0) > 0.
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Supercritical or subcritical Hopf? (cont.)

Define

C = fxxx + fxyy + gxxy + gyyy

+
1

β(0)
(−fxy (fxx + fyy ) + gxy (gxx + gyy ) + fxxgxx − fyygyy ) ,

evaluated at (0, 0) and for µ = 0. Then, if dα(0)/dµ > 0,

1. If C < 0, then for µ < 0, the origin is a stable spiral, and for
µ > 0, there exists a stable periodic solution and the origin is
unstable (supercritical Hopf).

2. If C > 0, then for µ < 0, there exists an unstable periodic
solution and the origin is unstable, and for µ > 0, the origin is
unstable (subcritical Hopf).

3. If C = 0, the test is inconclusive.
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Position of the problem

You are given an autonomous system, whether in discrete time

xt+1 = f (xt) (12)

or in continuous time
x ′ = f (x) (13)

with x ∈ Rn and f : Rn → Rn a C k function (k ≥ 2 for (12) or
k ≥ 1 for (13)).

What do you do now?
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Battle plan

1. If you can solve explicitly (12) or (13), solve it explicitly.

2. If not (99% of the time, in real life), plan B:

2.1 Determine invariants.
2.2 Determine equilibria.
2.3 Study (local) stability of the equilibria.
2.4 Seek Lyapunov functions for global stability.
2.5 Study bifurcations that occur equilibria lose stability.
2.6 Use numerical techniques (not relevant for the final, though).
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Explicit solutions

It happens.. so infrequently with nonlinear systems that most of
the times, you will overlook the possibility.

If a nonlinear system is integrable explicitly, it is often linked to the
presence of invariants, that allow to reduce the dimension
(typically, 2d to 1d).

In case of linear systems, solutions can be found explicitly (they
can be complicated, or can be in an implicit form).
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Look for invariants

If the system lives on a hyperplane, which is characterized by∑
i

xi (t) ≡ C ∈ R

or ∑
i

x ′i = 0

then its dimension can be reduced, since one of the variables, say
xi , can be expressed as C −

∑
j 6=i xi .

The same can be true with subparts of the system, if for example
some variables always appear as sums in the remaining equations.
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Study local stability

Compute the Jacobian matrix, and evaluate it at the equilibria
(fixed points).

If DTE, the fixed point is locally asymptotically stable if all
eigenvalues have modulus less than 1, repelling (unstable)
otherwise.

If ODE, the fixed point is locally asymptotically stable if all
eigenvalues have negative real parts, unstable otherwise.
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Seek Lyapunov functions

In your case, if you need to use a Lyapunov function, it will be
provided..

Be sure to know how to differentiate the function, it is not always
simple..
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Study bifurcations

It can be a good way to figure out what is happening..

Also, sometimes checking for a bifurcation can give you
information about the stability of the equilibrium, without having
to do the stability analysis.
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Nonnegative matrices

Definition 81 (Nonnegative matrix)

Let A = (aij) ∈Mn(R). A is nonnegative iff ∀i , j , aij ≥ 0.

Definition 82 (Positive matrix)

A is positive iff aij > 0 for all i , j = 1, . . . , n.

Definition 83 (Irreducible matrix)

A is irreducible iff for all i , j , there exists q ∈ N such that aq
ij > 0.

If A is not irreducible, it is reducible, and there is a permutation
matrix P such that A is written in block triangular form,

P−1AP =

(
A11 0
A21 A22

)

Definition 84 (Primitive matrix)

A is primitive iff there exists q ∈ N such that ∀i , j , aq
ij > 0.
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Perron-Frobenius theorem

Theorem 85
Let A ∈Mn(R) be primitive.

1. There exists an eigenvalue λ1, real and positive, that is a
simple, and such that any other eigenvalue λ verifies |λ| < λ1.
To this eigenvalue, there corresponds a strongly positive
eigenvector, i.e., with all entries positive, and all other (left
and right) eigenvectors of A have components of both signs.
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Properties of 2× 2 matrices

Consider the matrix

M =

(
a b
c d

)
The characteristic polynomial of M is

P(λ) = (a− λ)(d − λ)− bc

= λ2 − (a + d)λ+ (ad − bc)

= λ2 − tr(M)λ+ det(M)

Theorem 86
The matrix M has eigenvalues with negative real parts if, and only
if, det(M) > 0 and tr(M) < 0.
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