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Objective of the course

Introduction to mathematical epidemiology (“math epi”):

I problems considered
I methods:

I modelling
I mathematical analysis
I numerical investigations
I interpretation



Outline – ODE

I SIS with demography: R0

I SIR without demography: final size of an epidemic

I SEIRS in constant population

I SEIR in non-constant population
I Other ODE models:

I Role of vaccination
I Bistability
I Logistic demography

I Large scale systems: metapopulations (spread in discrete
space)



Outline – Infinite dimension

I Sojourn time in compartments

I SIS with arbitrary sojourn in compartments

I SIS with vaccination

I “Compartment age”

I Age structuration

I Spatial spread of epidemics in continuous space



Outline – Stochastic models

I Why stochasticity?

I Stochastic equivalents of deterministic models



SIS model with demography

Size of an epidemic (SIR model of Kermack and McKendrick)

SIRS model with constant population

SLIRS model with constant population

More on incidence functions

Next generation method

Modèle SEIRS – Propriétés globales

SEIRS en population non constante

Herd immunity

Effet de la vaccination – États bistables



Compartments

Consider a population. We want to model the spread of an
infectious disease in this population. We suppose that individuals
can be in one of two (epidemiological) states:

I they are susceptible (to the disease) if they are not
harbouring the infectious pathogen,

I they are infectious if they harbour the pathogen and are
actively spreading it to others.

This defines two compartments. The object of the modelling
exercise is to find how to describe the evolution of the number of
individuals in each compartment.

The type of model we obtain is called a compartmental model.



We denote:

I S(t) the number of susceptible individuals,

I I (t) the number of infectious individuals,

I N(t) = S(t) + I (t) the total population.

The following hypotheses describe a disease for which the
incubation period is very short.

We also assume that infection affects individuals only for a limited
period of time.



Susceptible individuals

Assume that susceptible individuals

I are born at a rate d that is proportional to the total
population N

I die at the per capita rate d (i.e., d is proportional to the
number of susceptible individuals).

In an epidemic model, birth and death are relative to susceptibility,
not necessarily “real” birth and death.

Since all newborns are susceptible, we are not accounting for
vertical transmission of the disease from a parent to a newborn.



Infectious individuals

Assume that infectious individuals

I die at the per capita rate d ,

I recover at the per capita rate γ.

We ignore disease induced mortality: the disease is not severe
enough to cause death.



Interactions – Infection

When a contact takes place between an infectious and a
susceptible individual, the infectious pathogen can be transmitted.

The function f (S , I ) of S and I that describes this process goes
under two different names, depending on how it is written (and
thus the underlying “philosphy”):

I incidence,

I force of infection.

In both cases, the function consists of two components:

I a count of the number of contacts that take place,

I a description of the probability that such a contact is
infecting, i.e., that the pathogen is transmitted.



Infection – Incidence functions

Incidence is defined in (classical) epidemiology as the number of
new infections per time period.

In ODE context, equivalent to “rate at which new infections are
generated, per unit time”.

Most frequently used forms are mass action incidence,

f (S , I ) = βSI

and proportional (or standard) incidence,

f (S , I ) = β
SI

S + I

In both cases, β is the disease transmission coefficient. It has
different units in the two forms.



Mass action incidence

f (S , I ) = βSI (1)

In the case of (1), it is assumed that all susceptible individuals can
meet all infectious individuals (“mass action” comes from
chemistry).

If the population is large, this hypothesis is not very realistic.

Popular nonetheless because this is a “friendly” nonlinearity.

Here, β has units..



Standard incidence

Case of a larger population.

f (S , I ) = β
SI

S + I
(2)

Each infectious individual meets a proportion of the susceptible
individuals (or vice versa: each susceptible meets a proportion of
the infectious individuals).

Can be tricky if limt→∞ S(t) + I (t) = 0 (for instance, the disease
drives the population to extinction).

Here, β has units..



Flow diagram
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The model

Choose standard incidence (2),

S ′ = dN︸︷︷︸
birth

− dS︸︷︷︸
death

− β
SI

N︸︷︷︸
infection

+ γI︸︷︷︸
recovery

(3a)

I ′ = β
SI

N︸︷︷︸
infection

− dI︸︷︷︸
death

− γI︸︷︷︸
recovery

(3b)

Consider the IVP consisting of this system together with initial
conditions S(0) = S0 ≥ 0 and I (0) = I0 ≥ 0.



Remarks

I (3) is an SIS model, (susceptible-infectious-susceptible).

I If γ = 0 (no recovery), then the model is an SI-type model. In
this case, this is a chronic infectious disease, an infected
individual remains infectious their whole life (but the disease
is not lethal, there is no disease induced mortality).

I Diseases with this type of characteristics are bacterial diseases
caused by staphylococcus aureus, streptococcus pyogenes,
chlamydia pneumoniae or neisseria gonorrhoeae.



Demography and susceptibility

The notion of “birth” and “death” in epidemic models is relative
to susceptibility to the disease under consideration.

A model that describes the spread of human immunodeficiency
virus (HIV) in an at risk population such as IDU would consider for
instance

I birth as the beginning of the practice of the risky behaviour,

I death as the end of the risky beahviour (either by actual death
or because the individual ceases to inject).



Analysis of the system

System (3) is nonlinear.

In principle, should use the usual planar methods.

Here, however, we can find an explicit solution.



Dynamics of N

We have

N ′ = (S + N)′

= dN − dSβ
SI

N
+ γI + β

SI

N
− dI − γI

= dN − d(S + I )

= 0

Therefore, for all t, N(t) ≡ N0 := S0 + I0.



Proportions

s =
S

N
i =

I

N

Remark that s + i = (S + I )/N = 1. The derivative of i is given by

i ′ =
I ′N − IN ′

N2
=

I ′

N
− iN ′

N

Since N ′ = 0,

i ′ =
I ′

N

Substitute the RHS of (3b) in this equation gives

i ′ = β
SI

N2
− d

I

N
− γ I

N
= βsi − (d + γ)i



System in proportions

Since s + i = 1, we can substitute s = 1− i in the latter equation,
giving i ′ = β(1− i)i − (d + γ)i .

Therefore, the system in proportions is given by

s = 1− i (4a)

i ′ = β(1− i)i − (d + γ)i (4b)

Since N is constant, solutions to (3) are deduced directly from
those of (4), and we now concentrate on (4).



Rewrite (4b) as

i ′ − (β − (d + γ))i = −βi2 (5)

This is a Bernoulli equation, which, using the change of variables
u = i−1, gives the linear equation

−u′ − (β − (d + γ))u = −β

i.e.,
u′ + (β − (d + γ))u = β (6)



An integrating factor is given by

µ(t) = exp

(∫
P(t)dt

)
= e(β−(d+γ))t

and as a consequence

µ(t)u =
β

β − (d + γ)
e(β−(d+γ))t + C

for C ∈ R. Thus, finally,

u =
β

β − (d + γ)
+ Ce−(β−(d+γ))t



The initial condition i0 = I0/N can be written u(0) = 1/i0. As a
consequence,

u(0) =
1

i0
=

β

β − (d + γ)
+ C

which implies that

C =
β − (d + γ)− i0β

i0(β − (d + γ))



Thus, the solution of the linear equation (6) is given by

u =
i0β + (β − (d + γ)− i0β)e−(β−(d+γ))t

i0(β − (d + γ))

=
i0β(1− e−(β−(d+γ))t) + (β − (d + γ))e−(β−(d+γ))t

i0(β − (d + γ))

and that of (5) is

i(t) =
i0(β − (d + γ))

i0β(1− e−(β−(d+γ))t) + (β − (d + γ))e−(β−(d+γ))t



In summary, the solution to (4) is given by

i(t) =
i0(β − (d + γ))

i0β(1− e−(β−(d+γ))t) + (β − (d + γ))e−(β−(d+γ))t
(7a)

and
s(t) = 1− i(t) (7b)



Observing (7a),

i(t) =
i0(β − (d + γ))

i0β(1− e−(β−(d+γ))t) + (β − (d + γ))e−(β−(d+γ))t
(7a)

it is clear that there are two cases:

I If β − (d + γ) < 0, then limt→∞ e−(β−(d+γ))t = +∞, so
limt→∞ i(t) = 0 and limt→∞ s(t) = 1.

I If β − (d + γ) > 0, then limt→∞ e−(β−(d+γ))t = 0; thus,
limt→∞ i(t) = (β − (d + γ))/β and
limt→∞ s(t) = 1− (β − (d + γ))/β.



The basic reproduction number R0

Reformulate the result in the epidemiological context using the
basic reproduction number, usually denoted R0. Let

R0 =
β

d + γ

We then have the following equivalences:

R0 < 1⇔ β − (d + γ) < 0

R0 > 1⇔ β − (d + γ) > 0

Also,
β − (d + γ)

β
= 1− 1

R0



Summary in “epidemiological terms”

Theorem

For system (3), defining

R0 =
β

d + γ

we have the following alternative:
I If R0 < 1, then

I limt→∞ s(t) = 1
I limt→∞ i(t) = 0,

the disease goes extinct.
I If R0 > 1, then

I limt→∞ s(t) = 1
R0

I limt→∞ i(t) = 1− 1
R0

,

the disease becomes endemic.



Remarks about R0

I R0 determines the propension of a disease to establish itself in
a population.

I The aim of a control measure is thus to reduce R0 to values
smaller than 1..

I The “verbal” definition of R0 is the average number of
secondary infections produced when an infectious individual is
introduced into a completely susceptible population.

I Remark for for our naive model, 1/(d + γ) is the average
sojourn time in the I compartment before death or recovery
and β is linked to the probability of transmitting the infection.



Case R0 > 1

Also, remark that the higher R0, the higher the proportion of
infectious individuals in the population. As a consequence, R0 is
also an indicator of the infectiousness of the diseases.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
0

P
ro

po
rt

io
n 

of
 in

fe
ct

iv
es

 in
 th

e 
po

pu
la

tio
n



A few sample values of R0 (from Anderson and May)

The value of R0 can be estimated with data.

Disease Location Period R0

Measles Cirencester, England 1947-50 13-14
England and Wales 1950-68 16-18
Kansas, USA 1918-21 5-6
Ontario, Canada 1912-3 11-12
Willesden, England 1912-3 11-12
Ghana 1960-8 14-15



SIS model with demography

Size of an epidemic (SIR model of Kermack and McKendrick)

SIRS model with constant population

SLIRS model with constant population

More on incidence functions

Next generation method

Modèle SEIRS – Propriétés globales

SEIRS en population non constante

Herd immunity

Effet de la vaccination – États bistables



Epidemic – Size of an epidemic

Before, we were considering a problem of endemicity, i.e., the long
term behaviour of an infectious diseases.

Here, we consider only the first epidemic peak.

I Does it always take placee?

I When an epidemic goes through a population, are all
individuals infected?

Questions originally asked by Kermack and McKendrick in 1927.



The SIR model without demography

Suppose that

I the time interval considered is small enough that the
demographic component can be neglected. (We say the
model does not include vital dynamics.)

I Incidence is mass action function (1).

Consider the Kermack and McKendrick model:

S ′ = −βSI (8a)

I ′ = (βS − γ)I (8b)

R ′ = γI (8c)



Reduction of the problem

The system contains a third compartment for removed individuals.

However, this compartment does not influence the dynamics of S
and I (R does not appear in S ′ or I ′).

Furthermore, N ′ = (S + I + R)′ = 0 and thus N is constant. So
the dynamics of R can be deduced from that of S and I by using
the fact that R = N − S − I .

So consider the subsystem consisting of equations (8a) and (8b).



Equilibria

Let us seek equilibria of (8). From (8b),

I either S̄ = α/β,

I or Ī = 0.

Substituting in (8a) gives

I in the first case, the equilibrium (S̄ , Ī ) = (α/β, 0),

I in the second case, any S̄ ≥ 0 is an equilibrium (continuum of
equilibria).

Classic methods have problems with non-isolated equilibria.



Plan B..

Let us consider the dynamics of

dI

dS

We have

dI

dS
=

dI

dt

dt

dS

=
I ′

S ′

=
βSI − γI

−βSI

=
γ

βS
− 1



The equation
dI

dS
=

γ

βS
− 1

is easy to integrate, giving

I (S) =
γ

β
ln S − S + C

where C ∈ R. The initial condition I (S0) = I0 gives
C = S0 + I0 − γ

β ln S0 and the solution to (8) is a function of S ,

I (S) = S0 + I0 − S +
γ

β
ln

S

S0



Note also that

R(S) = N − S − I (S) = R0 −
γ

β
ln

S

S0

The equation

I (S) = S0 + I0 − S +
γ

β
ln

S

S0

describes trajectories in the (S , I ) plane corresponding to initial
conditions (S0, 1− S0) (and R0 = 0).



R0

Suppose that the total population is normalised, i.e., N = 1.

Then R = 1− S − I .

Let

R0 =
β

γ

If not normalized, take R0 = βS0/γ.
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Theorem

Let (S(t), I (t)) be a solution of (8).

I If R0S0 ≤ 1, then I (t) tends to 0 when t →∞.

I If R0S0 > 1, then I (t) first reaches a maximal value

1− 1

R0
− ln(R0S0)

R0

then goes to 0 as t →∞.

I The proportion S(t) of susceptibles is a decreasing function
and its limit S(∞) is the unique solution in (0, 1/R0) of the
transcendental equation

1− S(∞) +
ln[S(∞)/S0]

R0
= 0



Summary

We have seen

I an SIS model for endemicity, with demography, where we
characterised a threshold, R0, such that when R0 < 1, the
disease goes extinct whereas when R0 > 1, the disease
becomes established in the population (becomes endemic).

I An SIR epidemic model without vital dynamics, where the
presence or absence of an epidemic wave is characterized by
the value of R0.
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Immunity

When a pathogen (or any foreign object) enters the body, it
triggers an immune response.

Modelling the immune system is another branch of mathematical
biology, very close to mathematical epidemiology (the models are
often very similar if not identical).

The immune system has memory: antibodies generated to ward off
infection with a given pathogen are produced for some amount of
time after the infection, giving better immunity against reinfection
by the same infectious agent.

Immunity is either permanent (⇒ SIR) or temporary (⇒ SIRS).
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Incubation periods

I SIS and SIR: progression from S to I instantaneous.

I Several incubation periods:

Disease Incubation period

Yersinia Pestis 2-6 days
Ebola haemorrhagic fever (HF) 2-21 days
Marburg HF 5-10 days
Lassa fever 1-3 weeks
Tse-tse weeks–months
HIV/AIDS months–years



Hypotheses

I There is demography. New individuals are born at a rate
proportional to the total population.

I There is no vertical transmssion: all “newborns” are
susceptible.

I The disease is non lethal, it causes no additional mortality.

I New infections occur at the rate f (S , I ,N).

I There is a period of incubation for the disease.

I There is a period of time after recovery during which the
disease confers immunity to reinfection.



SLIRS

The model is as follows:

S ′ = d(N − S)− f (S , I ,N) + νR (9a)

L′ = f (S , I ,N)− (d + ε)L (9b)

I ′ = εL− (d + γ)I (9c)

R ′ = γI − (d + ν)R (9d)

Meaning of the parameters:

I 1/ε average duration of the incubation period.

I 1/γ average duration of infectious period.

I 1/ν average duration of immune period.
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More on incidence functions

Suppose transmission occurs at the rate

f (S , I ,N)

I f is the rate at which new cases are generated per unit time,
often called the incidence or incidence function.

I Depends on the number S(t) of susceptible individuals, I (t)
of infectious individuals and, potentially, of the total
population N(t).

I The choice of an appropriate function is hard, often the
hardest and most uncertain part of epidemic modelling.



Mass action incidence

f (S , I ) = βSI (1)

An incidence function of the form (1) is called mass action
incidence.

I Assumes homogeneous mixing of infectious and susceptible
individuals in the population.

I Strong hypothesis: every individual can potentially meet every
other individual.

I If every individual is a vertex in a graph and contacts are the
edges, then mass action is an Erdos-Renyi graph.



Standard incidence

The other most frequently used incidence function takes the form

f (S , I ,N) = β
SI

N
(2)

and is called standard or proportional incidence.

In the case of (2), each susceptible individual can meet a fraction
of the infectious individuals (we can also think in terms of
infectious individuals meeting a fraction of the susceptible
individuals).

Remark

When the total population is constant, set β in (1) to be β̃ = β/N
in (2) ⇒ the forms (1) and (2) are equivalent when the total
population is constant.



General incidence

f (S , I ) = βSqI p (10)

An incidence function of the form (10) is often called general
incidence.

Such functions are generally used in a parameter identification
context: additionally to finding β, one can seek p and q to get the
best possible fit to data.

Has also been used theoretically in obtaining global asymptotic
stability of the SEIR (SLIR) model.

Can be used to implement a required number of contacts.



Incidence with refuge

The following function models a refuge effect:

f (S , I ,N) =

∣∣∣∣∣∣ βI

(
N − I

q

)
, if I < qN

0, if I ≥ qN
(11)

Here, only the proportion 0 < q < 1 of the population is really
susceptible, for example because of spatial heterogeneities.



Negative binomial incidence

The following is called negative binomial incidence:

f (S , I ) = kS ln

(
1 + β

I

k

)
(12)

For small values of k , this function describes a very aggregated
infection, while for k →∞, this is mass action incidence.



Asymptotic contact

The asymptotic contact function takes the form

f (S , I ) =
N

1− ε+ εN

F (S , I )

N
(13)

where F is one of the incidence functions previously described.

When ε = 0, contacts are proportional to N, while when ε = 1,
contacts are independent of N.



Asymptotic transmission

Asymptotic transmission takes the form

f (S , I ) = β
SI

c + S + I
(14)

where c is a0 constant.

For instance, an incidence function of the form

C (N)

N
F (S , I )

with C (N) = N/(1− ε+ εN) the function describing the rate of
contact and F (S , I ) the function describing disease transmission,
the latter assumed in the form (12).
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The basic reproduction number R0

Used frequently in epidemiology (not only math epi).

Definition (R0)

The basic reproduction number R0 is the average number of
secondary cases generated by the introduction of an infectious
individual in a wholly susceptible population.

I If R0 < 1, then on average, each infectious individual infects
less than one other person, so the epidemic has chances of
dying out.

I If R0 > 1, then on average, each infectious individual infects
more than one other person and the disease can become
established in the population (or there will be a major
epidemic).



Computation of R0

Mathematically, R0 is a bifurcation parameter aggregating some of
the model parameters and such that the disease free equilibrium
(DFE) loses its local asymptotic stability when R0 = 1 is crossed
from left to right.

I As a consequence, R0 is found by considering the spectrum of
the Jacobian matrix of the system evaluated at the DFE.

I The matrix quickly becomes hard to deal with (size and
absence of “pattern”) and the form obtained is not unique,
which is annoying when trying to interpret R0.



Example of the SIS model

Take SIS normalized to N = 1.

S ′ = d − dS − βSI + γI

I ′ = βSI − (d + γ)I

DFE: (S̄ , Ī ) = (1, 0).

JESM =

(
−d γ − βS̄
β Ī βS̄ − (d + γ)

)
=

(
−d γ − β
0 β − (d + γ)

)

From this, we get the eigenvalues −d and β − (d + γ).

⇒ LAS of the DFE is governed by the sign of β − (d + γ).

So we find the same R0 that we had found earlier.

But the problem quickly becomes untractable.



The next generation operator

Diekmann and Heesterbeek, characterized in the ODE context by
van den Driessche and Watmough.

Consider only individuals harbouring the pathogen, in a vector I,
and form the vectors

I F of infection fluxes,

I V of other fluxes (with − sign),

so that
I ′ = F − V

Then compute the Fréchet derivatives DF and DV with respect to
the infected variables I and evaluate F = DF(DFE ) and
V = DV(DFE ). Then

R0 = ρ(FV−1)

where ρ is the spectral radius.



Short summary of van den Driessche and Watmough

Theorem (van den Driessche and Watmough)

Suppose that the DFE exists. Let then R0 be defined by

R0 = ρ(FV−1)

with matrices F and V as indicated before. Then,

I if R0 < 1, the DFE is LAS,

I if R0 > 1, the DFE is unstable.


